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1.3 Continuous Functions

In section 1.2 we saw a few “nice” functions whose limits as x → a
simply involved substituting a into the function: lim

x→a
f (x) = f (a).

Functions whose limits have this substitution property are called con-
tinuous functions and such functions possess a number of other useful
properties.

In this section we will examine what it means graphically for a func-
tion to be continuous (or not continuous), state some properties of con-
tinuous functions, and look at a few applications of these properties—

including a way to solve horrible equations such as sin(x) =
2x + 1
x− 2

.

Definition of a Continuous Function

We begin by formally stating the definition of this new concept.

Definition of Continuity at a Point:

A function f is continuous at x = a if and only if
lim
x→a

f (x) = f (a).

The graph in the margin illustrates some of the different ways a
function can behave at and near a point, and the accompanying table
contains some numerical information about the example function f and
its behavior. We can conclude from the information in the table that f

a f (a) lim
x→a

f (x)

1 2 2
2 1 2
3 2 DNE
4 undefined 2

is continuous at 1 because lim
x→1

f (x) = 2 = f (1).

We can also conclude that f is not continuous at 2 or 3 or 4, because
lim
x→2

f (x) 6= f (2), lim
x→3

f (x) 6= f (3) and lim
x→4

f (x) 6= f (4).

Graphical Meaning of Continuity

When x is close to 1, the values of f (x) are close to the value f (1), and
the graph of f does not have a hole or break at x = 1. The graph of f is
“connected” at x = 1 and can be drawn without lifting your pencil. At
x = 2 and x = 4 the graph of f has “holes,” and at x = 3 the graph has
a “break.” The function f is also continuous at 1.7 (why?) and at every
point shown except at 2, 3 and 4.

Informally, we can say:

• A function is continuous at a point if the graph of the function
is connected there.

• A function is not continuous at a point if its graph has a hole
or break at that point.
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Sometimes the definition of “continuous” (the substitution condition
for limits) is easier to use if we chop it into several smaller pieces and
then check whether or not our function satisfies each piece.

f is continuous at a if and only if:

(i) f is defined at a

(ii) the limit of f (x), as x → a, exists
(so the left limit and right limits exist and are equal)

(iii) the value of f at a equals the value of the limit as x → a:

lim
x→a

f (x) = f (a)

If f satisfies conditions (i), (ii) and (iii), then f is continuous at a. If
f does not satisfy one or more of the three conditions at a, then f is not
continuous at a.

For f (x) in the figure on the previous page, all three conditions are
satisfied for a = 1, so f is continuous at 1. For a = 2, conditions (i)
and (ii) are satisfied but not (iii), so f is not continuous at 2. For a = 3,
condition (i) is satisfied but (ii) is violated, so f is not continuous at 3.
For a = 4, condition (i) is violated, so f is not continuous at 4.

A function is continuous on an interval if it is continuous at every
point in the interval.

A function f is continuous from the left at a if lim
x→a−

f (x) = f (a)

and is continuous from the right at a if lim
x→a+

f (x) = f (a).

Example 1. Is the function

f (x) =


x + 1 if x ≤ 1

2 if 1 < x ≤ 2
1

x−3 if x > 2

continuous at x = 1? At x = 2? At x = 3?

Solution. We could answer these questions by examining the graph
of f (x), but let’s try them without the benefit of a graph. At x = 1,
f (1) = 2 and the left and right limits are equal:

lim
x→1−

f (x) = lim
x→1−

(x + 1) = 2 = lim
x→1+

2 = lim
x→1+

f (x)

and their common limit matches the value of the function at x = 1:

lim
x→1

f (x) = 2 = f (1)

so f is continuous at 1.
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At x = 2, f (2) = 2, but the left and right limits are not equal:

lim
x→2−

f (x) = lim
x→1−

2 = 2 6= −1 = lim
x→2+

1
x− 3

= lim
x→2+

f (x)

so f fails condition (ii) and is therefore not continuous at 2. We can,
however, say that f is continuous from the left at 2 (but not from the
right at 2).

At x = 3, f (3) =
1
0

, which is undefined, so f is not continuous at 3
because it fails condition (i). J

Example 2. Where is f (x) = 3x2 − 2x continuous?

Solution. By the Substitution Theorem for Polynomial and Rational
Functions, lim

x→a
P(x) = P(a) for any polynomial P(x) at any point a,

so every polynomial is continuous everywhere. In particular, f (x) =
3x2 − 2x everywhere. J

Example 3. Where are the functions g(x) =
x + 5
x− 3

and h(x) =
x2 + 4x− 5
x2 − 4x + 3

continuous?

Solution. g(x) is a rational function, so by the Substitution Theorem
for Polynomial and Rational Functions it is continuous everywhere
except where its denominator is 0: g is continuous everywhere except
3. The graph of g (see margin) is “connected” everywhere except at 3,
where it has a vertical asymptote.

We can write the rational function h(x) as:

h(x) =
(x− 1)(x + 5)
(x− 1)(x− 3)

and note that its denominator is 0 at x = 1 and x = 3, so h is continuous
everywhere except 3 and 1. The graph of h (see margin) is “connected”
everywhere except at 3, where it has a vertical asymptote, and 1, where
it has a hole: f (1) = 0

0 is undefined. J

Example 4. Where is f (x) = bxc continuous?

Solution. The graph of y = bxc seems to be “connected” except at
each integer, where there is a “jump” (see margin).

If a is an integer, then lim
x→a−

bxc = a− 1 and lim
x→a+

bxc = a so lim
x→a
bxc

is undefined, and bxc is not continuous at x = a.
If a is not an integer, then the left and right limits of bxc, as x → a,

both equal bac so: lim
x→a
bxc = a = bac, so bxc is continuous at x = a.

Summarizing: bxc is continuous everywhere except at the integers.
In fact, f (x) = bxc is continuous from the right everywhere and is
continuous from the left everywhere except at the integers. J

Practice 1. Where is f (x) =
|x|
x

continuous?
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Why Do We Care Whether a Function Is Continuous?

There are several reasons for us to examine continuous functions and
their properties:

• Many applications in engineering, the sciences and business are
continuous or are modeled by continuous functions or by pieces of
continuous functions.

• Continuous functions share a number of useful properties that do
not necessarily hold true if the function is not continuous. If a
result is true of all continuous functions and we have a continuous
function, then the result is true for our function. This can save us
from having to show, one by one, that each result is true for each
particular function we use. Some of these properties are given in the
remainder of this section.

• Differential calculus has been called the study of continuous change,
and many of the results of calculus are guaranteed to be true only for
continuous functions. If you look ahead into Chapters 2 and 3, you
will see that many of the theorems have the form “If f is continuous
and (some additional hypothesis), then (some conclusion).”

Combinations of Continuous Functions

Not only are most of the basic functions we will encounter continuous
at most points, so are basic combinations of those functions.

Theorem:

If f (x) and g(x) are continuous at a
and k is any constant

then the elementary combinations of f and g

• k · f (x)

• f (x) + g(x)

• f (x)− g(x)

• f (x) · g(x)

•
f (x)
g(x)

(as long as g(a) 6= 0)

are continuous at a.

The continuity of a function is defined using limits, and all of these
results about simple combinations of continuous functions follow from
the results about combinations of limits in the Main Limit Theorem.
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Our hypothesis is that f and g are both continuous at a, so we can
assume that

lim
x→a

f (x) = f (a) and lim
x→a

g(x) = g(a)

and then use the appropriate part of the Main Limit Theorem.
For example,

lim
x→a

[ f (x) + g(x)] = lim
x→a

f (x) + lim
x→a

g(x) = f (a) + g(a)

so f + g is continuous at a.

Practice 2. Prove: If f and g are continuous at a, then k · f and f − g
are continuous at a (where k a constant).

Composition of Continuous Functions:

If g(x) is continuous at a and
f (x) is continuous at g(a)

then lim
x→a

f (g(x)) = f (lim
x→a

g(x)) = f (g(a))

so f ◦ g(x) = f (g(x)) is continuous at a.

The proof of this result involves some technical details, but just
formalizes the following line of reasoning:

The hypothesis that “g is continuous at a” means that if x is close
to a then g(x) will be close to g(a). Similarly, “ f is continuous at g(a)”
means that if g(x) is close to g(a) then f (g(x)) = f ◦ g(x) will be close
to f (g(a)) = f ◦ g(a). Finally, we can conclude that if x is close to a,
then g(x) is close to g(a) so f ◦ g(x) is close to f ◦ g(a) and therefore
f ◦ g is continuous at x = a.

The next theorem presents an alternate version of the limit condition
for continuity, which we will use occasionally in the future.

Theorem:

lim
x→a

f (x) = f (a) if and only if lim
h→0

f (a + h) = f (a)

Proof. Let’s define a new variable h by h = x − a so that x = a + h
(see margin figure). Then x → a if and only if h = x − a → 0, so
lim
x→a

f (x) = lim
h→0

f (a + h) and therefore lim
x→a

f (x) = f (a) if and only if

lim
h→0

f (a + h) = f (a).

We can restate the result of this theorem as:

A function f is continuous at a if and only if lim
h→0

f (a + h) = f (a).
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Which Functions Are Continuous?

Fortunately, the functions we encounter most often are either continu-
ous everywhere or continuous everywhere except at a few places.

Theorem: The following functions are continuous everywhere

(a) polynomials (b) sin(x) and cos(x) (c) |x|

Proof. (a) This follows from the Substitution Theorem for Polynomial
and Rational Functions and the definition of continuity.

(b) The graph of y = sin(x) (see margin) clearly has no holes or breaks,
so it is reasonable to think that sin(x) is continuous everywhere.
Justifying this algebraically, for every real number a:

lim
h→0

sin(a + h) = lim
h→0

sin(a) cos(h) + cos(a) sin(h)

= lim
h→0

sin(a) · lim
h→0

cos(h) + lim
h→0

cos(a) · lim
h→0

sin(h)

= sin(a) · 1 + cos(a) · 0 = sin(a)

so f (x) = sin(x) is continuous at every point. The justification for
f (x) = cos(x) is similar.

(c) For f (x) = |x|, when x > 0, then |x| = x and its graph (see margin)
is a straight line and is continuous because x is a polynomial.
When x < 0, then |x| = −x and it is also continuous. The only
questionable point is the “corner” on the graph when x = 0, but
the graph there is only bent, not broken:

lim
h→0+

|0 + h| = lim
h→0+

h = 0

and:
lim

h→0−
|0 + h| = lim

h→0+
−h = 0

so:
lim
h→0
|0 + h| = 0 = |0|

and f (x) = |x| is also continuous at 0.

Recall the angle addition formula for
sin(θ) and the results from section 1.2
that lim

h→0
cos(h) = 1 and lim

h→0
sin(h) = 0.

A continuous function can have corners but not holes or breaks.

Even functions that fail to be continuous at some points are often
continuous most places:

• A rational function is continuous except where the denominator is 0.

• The trig functions tan(x), cot(x), sec(x) and csc(x) are continuous
except where they are undefined.
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• The greatest integer function bxc is continuous except at each integer.

• But the “holey” function

h(x) =

{
2 if x is a rational number
1 if x is an irrational number

is discontinuous everywhere.

Intermediate Value Property of Continuous Functions

Because the graph of a continuous function is connected and does not
have any holes or breaks in it, the values of the function can not “skip”
or “jump over” a horizontal line (see margin figure). If one value of the
continuous function is below the line and another value of the function
is above the line, then somewhere the graph will cross the line. The
next theorem makes this statement more precise. The result seems
obvious, but its proof is technically difficult and is not given here.

Intermediate Value Theorem for Continuous Functions:

If f is continuous on the interval [a, b]
and V is any value between f (a) and f (b)

then there is a number c between a and b so that
f (c) = V. (That is, f actually takes on each
intermediate value between f (a) and f (b).)

If the graph of f connects the points (a, f (a)) and (b, f (b)) and V
is any number between f (a) and f (b), then the graph of f must cross
the horizontal line y = V somewhere between x = a and x = b (see
margin figure). Since f is continuous, its graph cannot “hop” over the
line y = V.

We often take this theorem for granted in some common situations:

• If a child’s temperature rose from 98.6◦F to 101.3◦F, then there was
an instant when the child’s temperature was exactly 100

◦F. (In fact,
every temperature between 98.6◦F and 101.3◦F occurred at some
instant.)

• If you dove to pick up a shell 25 feet below the surface of a lagoon,
then at some instant in time you were 17 feet below the surface.
(Actually, you want to be at 17 feet twice. Why?)

• If you started driving from a stop (velocity = 0) and accelerated to a
velocity of 30 kilometers per hour, then there was an instant when
your velocity was exactly 10 kilometers per hour.
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But we cannot apply the Intermediate Value Theorem if the function
is not continuous:

• In 1987 it cost 22¢ to mail a first-class letter inside the United States,
and in 1990 it cost 25¢ to mail the same letter, but we cannot conclude
that there was a time when it cost 23¢ or 24¢ to send the letter. (Postal
rates did not increase in a continuous fashion. They jumped directly
from 22¢ to 25¢.)

• Prices, taxes and rates of pay change in jumps—discrete steps—
without taking on the intermediate values.

The Intermediate Value Theorem (IVT) is an example of an “existence
theorem”: it concludes that something exists (a number c so that
f (c) = V). But like many existence theorems, it does not tell us how to
find the the thing that exists (the value of c) and is of no use in actually
finding those numbers or objects.

Bisection Algorithm for Approximating Roots

The IVT can help us finds roots of functions and solve equations. If f
is continuous on [a, b] and f (a) and f (b) have opposite signs (one is
positive and one is negative), then 0 is an intermediate value between
f (a) and f (b) so f will have a root c between x = a and x = b where
f (c) = 0.

While the IVT does not tell us how to find c, it lays the groundwork
for a method commonly used to approximate the roots of continuous
functions.

Bisection Algorithm for Finding a Root of f (x)

1. Find two values of x (call them a and b) so that f (a) and f (b) have
opposite signs. (The IVT will then guarantee that f (x) has a root
between a and b.)

2. Calculate the midpoint (or bisection point) of the interval [a, b],

using the formula m =
a + b

2
, and evaluate f (m).

3. (a) If f (m) = 0, then m is a root of f and we are done.

(b) If f (m) 6= 0, then f (m) has the sign opposite f (a) or f (b):

i. if f (a) and f (m) have opposite signs, then f has a root in
[a, m] so put b = m

ii. if f (b) and f (m) have opposite signs, then f has a root in
[m, b] so put a = m

4. Repeat steps 2 and 3 until a root is found exactly or is approximated
closely enough.
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The length of the interval known to contain a root is cut in half
each time through steps 2 and 3, so the Bisection Algorithm quickly
“squeezes” in on a root (see margin figure).

The steps of the Bisection Algorithm can be done “by hand,” but
it is tedious to do very many of them that way. Computers are very
good with this type of tedious repetition, and the algorithm is simple
to program.

Example 5. Find a root of f (x) = −x3 + x + 1.

Solution. f (0) = 1 and f (1) = 1 so we cannot conclude that f has a
root between 0 and 1. f (1) = 1 and f (2) = −5 have opposite signs, so
by the IVT (this function is a polynomial, so it is continuous everywhere
and the IVT applies) we know that there is a number c between 1 and
2 such that f (c) = 0 (see figure). The midpoint of the interval [1, 2] is
m = 1+2

2 = 3
2 = 1.5 and f ( 3

2 ) = −
7
8 so f changes sign between 1 and 1.5

and we can be sure that there is a root between 1 and 1.5. If we repeat
the operation for the interval [1, 1.5], the midpoint is m = 1+1.5

2 = 1.25,
and f (1.25) = 19

64 > 0 so f changes sign between 1.25 and 1.5 and we
know f has a root between 1.25 and 1.5.

Repeating this procedure a few more times, we get:

a b m = b+a
2 f (a) f (b) f (m) root between

1 2 1 −5 1 2
1 2 1.5 1 −5 −0.875 1 1.5
1 1.5 1.25 1 −0.875 0.2969 1.25 1.5
1.25 1.5 1.375 0.2969 −0.875 −0.2246 1.25 1.375
1.25 1.375 1.3125 0.2969 −0.2246 0.0515 1.3125 1.375
1.3125 1.375 1.34375

If we continue the table, the interval containing the root will squeeze
around the value 1.324718. J

The Bisection Algorithm has one major drawback: there are some
roots it does not find. The algorithm requires that the function take
on both positive and negative values near the root so that the graph
actually crosses the x-axis. The function f (x) = x2 − 6x + 9 = (x− 3)2

has the root x = 3 but is never negative (see margin figure). We cannot
find two starting points a and b so that f (a) and f (b) have opposite
signs, so we cannot use the Bisection Algorithm to find the root x = 3.
In Chapter 2 we will see another method—Newton’s Method—that
does find roots of this type.

The Bisection Algorithm requires that we supply two starting x-
values, a and b, at which the function has opposite signs. These values
can often be found with a little “trial and error,” or we can examine the
graph of the function to help pick the two values.
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Finally, the Bisection Algorithm can also be used to solve equations,
because the solution of any equation can always be transformed into an
equivalent problem of finding roots by moving everything to one side
of the equal sign. For example, the problem of solving the equation
x3 = x + 1 can be transformed into the equivalent problem of solving
x3 − x − 1 = 0 or of finding the roots of f (x) = x3 − x − 1, which is
equivalent to the problem we solved in the previous example.

Example 6. Find all solutions of sin(x) =
2x + 1
x− 2

(with x in radians.)

Solution. We can convert this problem of solving an equation to the
problem of finding the roots of

f (x) = sin(x)− 2x + 1
x− 2

= 0

The function f (x) is continuous everywhere except at x = 2, and the
graph of f (x) (in the margin) can help us find two starting values
for the Bisection Algorithm. The graph shows that f (−1) is negative
and f (0) is positive, and we know f (x) is continuous on the interval
[−1, 0]. Using the algorithm with the starting interval [−1, 0], we know
that a root is contained in the shrinking intervals [−0.5, 0], [−0.25, 0],
[−0.25,−0.125],. . . , [−0.238281,−0.236328],. . . , [−0.237176,−0.237177]
so the root is approximately −0.237177.

We might notice that f (0) = 0.5 > 0 while f (π) = 0 − 2π+1
π−2 ≈

−6.38 < 0. Why is it wrong to conclude that f (x) has another root
between x = 0 and x = π? J

1.3 Problems

1. At which points is the function in the graph below discontinuous?

2. At which points is the function in the graph below discontinuous?
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3. Find at least one point at which each function is
not continuous and state which of the three con-
ditions in the definition of continuity is violated
at that point.

(a)
x + 5
x− 3

(b)
x2 + x− 6

x− 2

(c)
√

cos(x)

(d)
⌊

x2
⌋

(e)
x

sin(x)

(f)
x
x

(g) ln(x2)

(h)
π

x2 − 6x + 9

(i) tan(x)

4. Which three of the following functions are not
continuous? Use appropriate theorems from this
section to justify that each of the other functions
is continuous.

(a)
7√

2 + sin(x)

(b) cos2(x5 − 7x + π)

(c)
x2 − 5

1 + cos2(x)

(d)
x2 − 5

1 + cos(x)

(e) b3 + 0.5 sin(x)c

(f) b0.3 sin(x) + 1.5c

(g)
√

cos(sin(x))

(h)
√

x2 − 6x + 10

(i) 3
√

cos(x)

(j) 2sin(x)

(k) 1− 3−x

5. A continuous function f has the values:

x 0 1 2 3 4 5

f (x) 5 3 −2 −1 3 −2
(a) f has at least roots between 0 and 5.

(b) f (x) = 4 in at least places between
x = 0 and x = 5.

(c) f (x) = 2 in at least places between
x = 0 and x = 5.

(d) f (x) = 3 in at least places between
x = 0 and x = 5.

(e) Is it possible for f (x) to equal 7 for some x-
value(s) between 0 and 5?

6. A continuous function g has the values:

x 1 2 3 4 5 6 7

g(x) −3 1 4 −1 3 −2 −1

(a) g has at least roots between 1 and 5.

(b) g(x) = 3.2 in at least places between
x = 1 and x = 7.

(c) g(x) = −0.7 in at least places between
x = 3 and x = 7.

(d) g(x) = 1.3 in at least places between
x = 2 and x = 6.

(e) Is it possible for g(x) to equal π for some x-
value(s) between 5 and 6?

7. This problem asks you to verify that the Interme-
diate Value Theorem is true for some particular
functions, intervals and intermediate values. In
each problem you are given a function f , an inter-
val [a, b] and a value V. Verify that V is between
f (a) and f (b) and find a value of c in the given
interval so that f (c) = V.

(a) f (x) = x2 on [0, 3], V = 2

(b) f (x) = x2 on [−1, 2], V = 3

(c) f (x) = sin(x) on
[
0, π

2
]
, V = 1

2

(d) f (x) = x on [0, 1], V = 1
3

(e) f (x) = x2 − x on [2, 5], V = 4

(f) f (x) = ln(x) on [1, 10], V = 2

8. Two students claim that they both started with the
points x = 1 and x = 9 and applied the Bisection
Algorithm to the function graphed below. The
first student says that the algorithm converged to
the root near x = 8, but the second claims that
the algorithm will converge to the root near x = 4.
Who is correct?
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9. Two students claim that they both started with the
points x = 0 and x = 5 and applied the Bisection
Algorithm to the function graphed below. The
first student says that the algorithm converged
to the root labeled A, but the second claims that
the algorithm will converge to the root labeled B.
Who is correct?

10. If you apply the Bisection Algorithm to the func-
tion graphed below, which root does the algo-
rithm find if you use:

(a) starting points 0 and 9?

(b) starting points 1 and 5?

(c) starting points 3 and 5?

11. If you apply the Bisection Algorithm to the func-
tion graphed below, which root does the algo-
rithm find if you use:

(a) starting points 3 and 7?

(b) starting points 5 and 6?

(c) starting points 1 and 6?

In 12–17, use the IVT to verify each function has
a root in the given interval(s). Then use the Bisec-
tion Algorithm to narrow the location of that root
to an interval of length less than or equal to 0.1.

12. f (x) = x2 − 2 on [0, 3]

13. g(x) = x3 − 3x2 + 3 on [−1, 0], [1, 2], [2, 4]

14. h(t) = t5 − 3t + 1 on [1, 3]

15. r(x) = 5− 2x on [1, 3]

16. s(x) = sin(2x)− cos(x) on [0, π]

17. p(t) = t3 + 3t + 1 on [−1, 1]

18. Explain what is wrong with this reasoning:
If f (x) = 1

x then

f (−1) = −1 < 0 and f (1) = 1 > 0

so f must have a root between x = −1 and x = 1.

19. Each of the following statements is false for some
functions. For each statement, sketch the graph
of a counterexample.

(a) If f (3) = 5 and f (7) = −3, then f has a root
between x = 3 and x = 7.

(b) If f has a root between x = 2 and x = 5, then
f (2) and f (5) have opposite signs.

(c) If the graph of a function has a sharp corner,
then the function is not continuous there.

20. Define A(x) to be the area bounded by the t- and
y-axes, the curve y = f (t), and the vertical line
t = x (see figure below). It is clear that A(1) < 2
and A(3) > 2. Do you think there is a value of x
between 1 and 3 so that A(x) = 2? If so, justify
your conclusion and estimate the location of the
value of x that makes A(x) = 2. If not, justify
your conclusion.
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21. Define A(x) to be the area bounded by the t- and
y-axes, the curve y = f (t), and the vertical line
t = x (see figure below).

(a) Shade the part of the graph represented
by A(2.1) − A(2) and estimate the value of
A(2.1)− A(2)

0.1
.

(b) Shade the part of the graph represented
by A(4.1) − A(4) and estimate the value of
A(4.1)− A(4)

0.1
.

22. (a) A square sheet of paper has a straight line
drawn on it from the lower left corner to the
upper right corner. Is it possible for you to
start on the left edge of the sheet and draw
a “connected” line to the right edge that does
not cross the diagonal line?

(b) Prove: If f is continuous on the interval [0, 1]
and 0 ≤ f (x) ≤ 1 for all x, then there is a
number c with 0 ≤ c ≤ 1 such that f (c) = c.
(The number c is called a “fixed point” of f
because the image of c is the same as c: f does
not “move” c.) Hint: Define a new function

g(x) = f (x)− x and start by considering the
values g(0) and g(1).

(c) What does part (b) have to do with part (a)?

(d) Is the theorem in part (b) true if we replace
the closed interval [0, 1] with the open interval
(0, 1)?

23. A piece of string is tied in a loop and tossed onto
quadrant I enclosing a single region (see figure
below).

(a) Is it always possible to find a line L passing
through the origin so that L divides the region
into two equal areas? (Justify your answer.)

(b) Is it always possible to find a line L parallel to
the x-axis so that L divides the region into two
equal areas? (Justify your answer.)

(c) Is it always possible to find two lines, L paral-
lel to the x-axis and M parallel to the y-axis, so
that L and M divide the region into four equal
areas? (Justify your answer.)
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1.3 Practice Answers

1. f (x) =
|x|
x

(see margin figure) is continuous everywhere except at
x = 0, where this function is not defined.

If a > 0, then lim
x→a

|x|
x

= 1 = f (a) so f is continuous at a.

If a < 0, then lim
x→a

|x|
x

= −1 = f (a) so f is continuous at a.

But f (0) is not defined and

lim
x→0−

|x|
x

= −1 6= 1 = lim
x→0+

|x|
x

so lim
x→a

|x|
x

does not exist.

2. (a) To prove that k · f is continuous at a, we need to prove that k · f
satisfies the definition of continuity at a: lim

x→a
k · f (x) = k · f (a).

Using results about limits, we know

lim
x→a

k · f (x) = k · lim
x→a

f (x) = k · f (a)

(because f is continuous at a) so k · f is continuous at a.

(b) To prove that f − g is continuous at a, we need to prove that f − g
satisfies the definition of continuity at a: lim

x→a
[ f (x)− g(x)] =

f (a)− g(a). Again using information about limits:

lim
x→a

[ f (x)− g(x)] = lim
x→a

f (x)− lim
x→a

g(x) = f (a)− g(a)

(because f and g are both continuous at a) so f − g is continuous
at a.
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