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Section 7.4 Modeling Changing Amplitude and Midline 
While sinusoidal functions can model a variety of behaviors, it is often necessary to 
combine sinusoidal functions with linear and exponential curves to model real 
applications and behaviors.  We begin this section by looking at changes to the midline of 
a sinusoidal function.  Recall that the midline describes the middle, or average value, of 
the sinusoidal function. 
 
Changing Midlines 
 
Example 1 

A population of elk currently averages 2000 elk, and that average has been growing by 
4% each year.  Due to seasonal fluctuation, the population oscillates from 50 below 
average in the winter up to 50 above average in the summer.  Find a function that 
models the number of elk after t years. 
 
There are two components to the behavior of the elk population:  the changing average, 
and the oscillation.  The average is an exponential growth, starting at 2000 and growing 
by 4% each year.  Writing a formula for this: 

(1 ) 2000(1 0.04)t taverage initial r= + = +  
 
For the oscillation, since the population oscillates 50 above and below average, the 
amplitude will be 50.  Since it takes one year for the population to cycle, the period is 1.  

We find the value of the horizontal stretch coefficient original period 2 2
new period 1

B π π= = = . 

Additionally, since we weren’t told when t was first measured we will have to decide if 
t = 0 corresponds to winter, or summer.  If we choose winter then the shape of the 
function would be a negative cosine, since it starts at the lowest value.   
 
Putting it all together, the equation would be: 

( ) 50cos(2 )P t t midlineπ= − +  
 
Since the midline represents the average population, we substitute in the exponential 
function into the population equation to find our final equation: 

( ) 50cos(2 ) 2000(1 0.04)tP t tπ= − + +  
 
 
This is an example of changing midline – in this case an exponentially changing midline. 
 
 
Changing Midline 

A function of the form )()sin()( tgBtAtf +=  will oscillate above and below the 
average given by the function g(t). 
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Changing midlines can be exponential, linear, or any other type of function.   Here are 
some examples: 
 
  Linear midline  Exponential midline  Quadratic midline 

       
( )( ) sin ( )f t A Bt mt b= + +     ( )( ) sin ( )tf t A Bt ab= +     ( ) 2( ) sin ( )f t A Bt at= +  

 
 
Example 2 

Find a function with linear midline of the form bmttAtf ++





=

2
sin)( π  that will pass 

through the points given below.   
 

 
 
Since we are given the value of the horizontal compression coefficient we can calculate 

the period of this function: original period 2new period 4
2B
π

π= = = . 

 
Since the sine function is at the midline at the beginning of a cycle and halfway through 
a cycle, we would expect this function to be at the midline at t = 0 and t = 2, since 2 is 
half the full period of 4.  Based on this, we expect the points (0, 5) and (2, 9) to be 
points on the midline. We can clearly see that this is not a constant function and so we 
use the two points to calculate a linear function: bmtmidline += .  From these two 
points we can calculate a slope: 

2
2
4

02
59

==
−
−

=m  

 
Combining this with the initial value of 5, we have the midline: 52 += tmidline , giving 

a full function of the form 52
2

sin)( ++





= ttAtf π .  To find the amplitude, we can 

plug in a point we haven’t already used, such as (1, 10) 

5)1(2)1(
2

sin10 ++





=
πA    Evaluate the sine and combine like terms 

710 += A  
3=A  

t 0 1 2 3 
f(t) 5 10 9 8 
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A function of the form given fitting the data would be  

52
2

sin3)( ++





= tttf π  

 
Alternative Approach 
Notice we could have taken an alternate approach by plugging points (0, 5) and (2, 9) 
into the original equation.  Substituting (0, 5), 

bmA ++





= )0()0(

2
sin5 π    Evaluate the sine and simplify 

b=5  
 
Substituting (2, 9) 

5)2()2(
2

sin9 ++





= mA π    Evaluate the sine and simplify 

529 += m  
m24 =  

2=m , as we found above.  Now we can proceed to find A the same way we did before. 
 
 
Example 3 

The number of tourists visiting a ski and hiking resort averages 4000 people annually 
and oscillates seasonally, 1000 above and below the average.  Due to a marketing 
campaign, the average number of tourists has been increasing by 200 each year.  Write 
an equation for the number of tourists after t years, beginning at the peak season. 
 
Again there are two components to this problem:  the oscillation and the average.  For 
the oscillation, the number of tourists oscillates 1000 above and below average, giving 
an amplitude of 1000.  Since the oscillation is seasonal, it has a period of 1 year.  Since 
we are given a starting point of “peak season”, we will model this scenario with a 
cosine function.   
So far, this gives an equation in the form ( ) 1000cos(2 )N t t midlineπ= +  
 
The average is currently 4000, and is increasing by 
200 each year.  This is a constant rate of change, so 
this is linear growth, taverage 2004000 += . 
 
Combining these two pieces gives a function for the 
number of tourists: 

( ) 1000cos(2 ) 4000 200N t t tπ= + +  
 
 
Try it Now 

1. Given the function 2( ) ( 1) 8cos( )g x x x= − + , describe the midline and amplitude 
using words. 
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Changing Amplitude 
There are also situations in which the amplitude of a sinusoidal function does not stay 
constant.  Back in Chapter 6, we modeled the motion of a spring using a sinusoidal 
function, but had to ignore friction in doing so.  If there were friction in the system, we 
would expect the amplitude of the oscillation to decrease over time.  In the equation 

kBtAtf += )sin()( , A gives the amplitude of the oscillation, we can allow the amplitude 
to change by replacing this constant A with a function A(t). 
 
 
Changing Amplitude 

A function of the form kBttAtf += )sin()()(  will oscillate above and below the 
midline with an amplitude given by A(t). 

 
 
When thinking about a spring with amplitude decreasing over time, it is tempting to use 
the simplest tool for the job – a linear function.  But if we attempt to model the amplitude 
with a decreasing linear function, such as ttA −= 10)( , we quickly see the problem when 
we graph the equation )4sin()10()( tttf −= . 

 
 
While the amplitude decreases at first as intended, the amplitude hits zero at t = 10, then 
continues past the intercept, increasing in absolute value, which is not the expected 
behavior.  This behavior and function may model the situation on a restricted domain and 
we might try to chalk the rest of it up to model breakdown, but in fact springs just don’t 
behave like this.   
 
A better model, as you will learn later in physics and calculus, would show the amplitude 
decreasing by a fixed percentage each second, leading to an exponential decay model for 
the amplitude. 
 
 
Damped Harmonic Motion 

Damped harmonic motion, exhibited by springs subject to friction, follows a model of 
the form 

kBtabtf t += )sin()(   or   kBtaetf rt += )sin()( . 
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Example 4 
A spring with natural length of 20 inches is pulled back 6 inches and released.  It 
oscillates once every 2 seconds.  Its amplitude decreases by 20% each second.  Find a 
function that models the position of the spring t seconds after being released. 
 
Since the spring will oscillate on either side of the natural length, the midline will be at 
20 inches.  The oscillation has a period of 2 seconds, and so the horizontal compression 
coefficient is B π= . Additionally, it begins at the furthest distance from the wall, 
indicating a cosine model. 
 
Meanwhile, the amplitude begins at 6 inches, 
and decreases by 20% each second, giving an 
amplitude function of ttA )20.01(6)( −= .   
 
Combining this with the sinusoidal 
information gives a function for the position 
of the spring: 

20)cos()80.0(6)( += ttf t π  
 
 
Example 5 

A spring with natural length of 30 cm is pulled out 10 cm and released.  It oscillates 4 
times per second.  After 2 seconds, the amplitude has decreased to 5 cm.  Find a 
function that models the position of the spring. 
 

The oscillation has a period of 1
4

 second, so 2 81
4

B π π= = .  Since the spring will 

oscillate on either side of the natural length, the midline will be at 30 cm.  It begins at 
the furthest distance from the wall, suggesting a cosine model.  Together, this gives  

( ) ( ) cos(8 ) 30f t A t tπ= + . 
 
For the amplitude function, we notice that the amplitude starts at 10 cm, and decreases 
to 5 cm after 2 seconds.  This gives two points (0, 10) and (2, 5) that must be satisfied 
by an exponential function:  10)0( =A  and 5)2( =A .  Since the function is exponential, 
we can use the form tabtA =)( .  Substituting the first point, 010 ab= , so a = 10.  
Substituting in the second point, 

2105 b=   Divide by 10 
2

2
1 b=   Take the square root 

707.0
2
1
≈=b  
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This gives an amplitude function of ttA )707.0(10)( = .  Combining this with the 
oscillation, 

( ) 10(0.707) cos(8 ) 30tf t tπ= +  
 
 
Try it Now 

2. A certain stock started at a high value of $7 per share and has been oscillating above 
and below the average value, with the oscillation decreasing by 2% per year. However, 
the average value started at $4 per share and has grown linearly by 50 cents per year.  
 a. Find a formula for the midline 
 b. Find a formula for the amplitude. 
 c. Find a function S(t) that models the value of the stock after t years.   

 
 
Example 6 

In AM (Amplitude Modulated) radio, a carrier wave with a high frequency is used to 
transmit music or other signals by applying the to-be-transmitted signal as the amplitude 
of the carrier signal.  A musical note with frequency 110 Hz (Hertz = cycles per second) 
is to be carried on a wave with frequency of 2 KHz (KiloHertz = thousands of cycles 
per second).  If the musical wave has an amplitude of 3, write a function describing the 
broadcast wave. 
 

The carrier wave, with a frequency of 2000 cycles per second, would have period 
2000

1  

of a second, giving an equation of the form sin(4000 )tπ .  Our choice of a sine function 
here was arbitrary – it would have worked just was well to use a cosine. 
 
The musical tone, with a frequency of 110 cycles per second, would have a period of 

110
1  of a second.  With an amplitude of 3, this would correspond to a function of the 

form 3sin(220 )tπ .  Again our choice of using a sine function is arbitrary. 
 
The musical wave is acting as the amplitude of the carrier wave, so we will multiply the 
musical tone’s function by the carrier wave function, resulting in the function 

( ) 3sin(220 )sin(4000 )f t t tπ π=  
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Important Topics of This Section 
Changing midline 
Changing amplitude 
 Linear Changes 
 Exponential Changes 
 Damped Harmonic Motion 

 
 
Try it Now Answers 

1. The midline follows the path of the quadratic 2 1x − and the amplitude is a constant 
value of 8. 

 

2. 
( ) 4 0.5
( ) 7(0.98)t

m t t
A t

= +

=
 

      S(t)= 7(0.98) cos 4 0.5
6

t t tπ  + + 
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Section 7.4 Exercises 
 

Find a possible formula for the trigonometric function whose values are given in the 
following tables. 

1. x 0 3 6 9 12 15 18 
y -4 -1 2 -1 -4 -1 2 

 

2.  x 0 2 4 6 8 10 12 
y 5 1 -3 1 5 1 -3 

 

 

3. The displacement ( )h t , in centimeters, of a mass suspended by a spring is modeled 
by the function ( ) 8sin(6 )h t tπ= , where t is measured in seconds.  Find the 
amplitude, period, and frequency of this displacement. 

 
4. The displacement ( )h t , in centimeters, of a mass suspended by a spring is modeled 

by the function ( ) 11sin(12 )h t tπ= , where t is measured in seconds.  Find the 
amplitude, period, and frequency of this displacement. 
 

5. A population of rabbits oscillates 19 above and below average during the year, 
reaching the lowest value in January. The average population starts at 650 rabbits and 
increases by 160 each year. Find a function that models the population, P, in terms of 
the months since January, t. 
 

6. A population of deer oscillates 15 above and below average during the year, reaching 
the lowest value in January. The average population starts at 800 deer and increases 
by 110 each year. Find a function that models the population, P, in terms of the 
months since January, t. 
 

7. A population of muskrats oscillates 33 above and below average during the year, 
reaching the lowest value in January. The average population starts at 900 muskrats 
and increases by 7% each month. Find a function that models the population, P, in 
terms of the months since January, t. 
 

8. A population of fish oscillates 40 above and below average during the year, reaching 
the lowest value in January. The average population starts at 800 fish and increases 
by 4% each month. Find a function that models the population, P, in terms of the 
months since January, t. 
  

9. A spring is attached to the ceiling and pulled 10 cm down from equilibrium and 
released. The amplitude decreases by 15% each second. The spring oscillates 18 
times each second. Find a function that models the distance, D, the end of the spring 
is below equilibrium in terms of seconds, t, since the spring was released. 
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10. A spring is attached to the ceiling and pulled 7 cm down from equilibrium and 
released. The amplitude decreases by 11% each second. The spring oscillates 20 
times each second. Find a function that models the distance, D, the end of the spring 
is below equilibrium in terms of seconds, t, since the spring was released. 
 

11. A spring is attached to the ceiling and pulled 17 cm down from equilibrium and 
released. After 3 seconds the amplitude has decreased to 13 cm. The spring oscillates 
14 times each second.  Find a function that models the distance, D the end of the 
spring is below equilibrium in terms of seconds, t, since the spring was released. 
 

12. A spring is attached to the ceiling and pulled 19 cm down from equilibrium and 
released. After 4 seconds the amplitude has decreased to 14 cm. The spring oscillates 
13 times each second.  Find a function that models the distance, D the end of the 
spring is below equilibrium in terms of seconds, t, since the spring was released. 
 
  

Match each equation form with one of the graphs.  
13. a. ( )sin 5xab x+   b. ( )sin 5x mx b+ +    

14. a. ( )sin 5xab x   b. ( )sin(5 )mx b x+  

I   II   III   IV  

  

Find a function of the form sin
2

xy ab c xπ = +  
 

 that fits the data given. 

15. x 0 1 2 3 
y 6 29 96 379 

 

16.  x 0 1 2 3 
y 6 34 150 746 

 

 

Find a function of the form sin
2

y a x m bxπ = + + 
 

 that fits the data given. 

17. x 0 1 2 3 
y 7 6 11 16 

 

18.  x 0 1 2 3 
y -2 6 4 2 

 

 

Find a function of the form cxaby x +





=

2
cos π  that fits the data given. 

19. x 0 1 2 3 
y 11 3 1 3 

 

20.  x 0 1 2 3 
y 4 1 -11 1 
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