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Preface 

 

Over the years, when reviewing books we found that many had been mainstreamed by 

the publishers in an effort to appeal to everyone, leaving them with very little 

character.  There were only a handful of books that had the conceptual and application 

driven focus we liked, and most of those were lacking in other aspects we cared about, 

like providing students sufficient examples and practice of basic skills. The largest 

frustration, however, was the never ending escalation of cost and being forced into new 

editions every three years.  We began researching open textbooks, however the ability for 

those books to be adapted, remixed, or printed were often limited by the types of licenses, 

or didn’t approach the material the way we wanted. 

 

This book is available online for free, in both Word and PDF format.  You are free to 

change the wording, add materials and sections or take them away.  We welcome 

feedback, comments and suggestions for future development at 

precalc@opentextbookstore.com. Additionally, if you add a section, chapter or problems, 

we would love to hear from you and possibly add your materials so everyone can benefit.   

 

In writing this book, our focus was on the story of functions.  We begin with function 

notation, a basic toolkit of functions, and the basic operation with functions: composition 

and transformation.  Building from these basic functions, as each new family of functions 

is introduced we explore the important features of the function: its graph, domain and 

range, intercepts, and asymptotes.  The exploration then moves to evaluating and solving 

equations involving the function, finding inverses, and culminates with modeling using 

the function.   

 

The "rule of four" is integrated throughout - looking at the functions verbally, 

graphically, numerically, as well as algebraically.  We feel that using the “rule of four” 

gives students the tools they need to approach new problems from various angles.  Often 

the “story problems of life” do not always come packaged in a neat equation.  Being able 

to think critically, see the parts and build a table or graph a trend, helps us change the 

words into meaningful and measurable functions that model the world around us. 

 

There is nothing we hate more than a chapter on exponential equations that begins 

"Exponential functions are functions that have the form f(x)=ax."  As each family of 

functions is introduced, we motivate the topic by looking at how the function arises from 

life scenarios or from modeling.  Also, we feel it is important that precalculus be the 

bridge in level of thinking between algebra and calculus.  In algebra, it is common to see 

numerous examples with very similar homework exercises, encouraging the student 

to mimic the examples.  Precalculus provides a link that takes students from the basic 

plug & chug of formulaic calculations towards building an understanding that equations 

and formulas have deeper meaning and purpose.  While you will find examples and 

similar exercises for the basic skills in this book, you will also find examples of multistep 

problem solving along with exercises in multistep problem solving.  Often times these 

exercises will not exactly mimic the exercises, forcing the students to employ their 

critical thinking skills and apply the skills they've learned to new situations.  By 
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developing students’ critical thinking and problem solving skills this course prepares 

students for the rigors of Calculus. 

 

While we followed a fairly standard ordering of material in the first half of the book, we 

took some liberties in the trig portion of the book.  It is our opinion that there is no need 

to separate unit circle trig from triangle trig, and instead integrated them in the first 

chapter.  Identities are introduced in the first chapter, and revisited throughout. Likewise, 

solving is introduced in the second chapter and revisited more extensively in the third 

chapter.  As with the first part of the book, an emphasis is placed on motivating the 

concepts and on modeling and interpretation. 

 

About the Second Edition 

 

About 4 years and several minor typo revisions after the original release of this book, we 

started contemplating creating a second edition.  We didn’t want to change much; we’ve 

always found it very annoying when new editions change things just for the sake of 

making it seem different.  However, in talking with instructors from around the country, 

we knew there were a few topics that we had left out that other schools need.  We didn’t 

want to suffer the same “content bloat” that many commercial books do, but we also 

wanted to make it easier for more schools to adopt open resources. 

 

We put our plans for a new revision on hold after OpenStax started working on a 

precalculus book, using the first edition of this text as a base.  After the final product 

came out, though, we felt it had strayed a bit far from our original vision.  We had written 

this text, not to be an encyclopedic reference text, but to be a concise, easy-to-read, 

student-friendly approach to precalculus.  We valued contextual motivation and 

conceptual understanding over procedural skills.  Our book took, in places, a non-

traditional approach to topics and content ordering.  Ultimately, we decided to go ahead 

with this second edition. 

 

The primary changes in the second edition are: 

• New, higher resolution graphs throughout 

• New sections added to Chapter 3: 

o 3.4 Factor theorem (includes long division of polynomials) 

o 3.5 Real zeros of polynomials (using rational roots theorem) 

o 3.6 Complex zeros of polynomials 

• Coverage of oblique asymptotes added to the rational equations section (now 3.7) 

• A new section 8.5 on dot product of vectors 

• A new chapter 9 on conic sections 

 

There were many additional refinements, some new examples added, and Try it Now 

answers expanded, but most of the book remains unchanged. 
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Instructor Resources 

 

As part of the Washington Open Course Library project, we developed a full course 

package to accompany this text.  The course shell was built for the IMathAS online 

homework platform, and is available for Washington State faculty at www.wamap.org 

and mirrored for others at www.myopenmath.com.  It contains: 

 

• Online homework for each section (algorithmically generated, free response), 

most with video help associated. 

• Video lessons for each section.  The videos were mostly created and selected by 

James Sousa, of Mathispower4u. 

• A selection of printable class worksheets, activities, and handouts 

• Support materials for an example course (does not include all sections): 

o Suggested syllabus and Day by day course guide 

o Instructor guide with lecture outlines and examples 

o Discussion forums 

o Diagnostic review 

o Chapter review problems 

o Sample quizzes and sample chapter exams 

The course shell was designed to follow Quality Matters (QM) guidelines, but has not yet 

been formally reviewed. 

 

Getting Started 

 

To get started using this textbook and the online supplementary materials, 

• Request an instructor account on WAMAP (in Washington) or MyOpenMath 

(outside Washington). 

• Review the table of contents of the text, and compare it to your course outcomes 

or student learning objectives.  Determine which sections you will need to cover, 

and which to omit.  If there are topics in your outcomes that are not in the text, 

explore other sources like the Stitz/Zeager Precalc or OpenStax Precalc to 

supplement from.  Also check the book’s website, as we may offer additional 

online-only topics. 

• Once your instructor account is approved, log in, and click Add New Course 

• From the “Use content from a template course”, select “Precalculus – 

Lippman/Rasmussen 2nd Ed”.  Note that you might also see two half-book 

templates, one covering chapters 1 – 4, and the other covering chapters 5 – 9.  

• Once you have copied the course, go through and remove any sections you don’t 

need for your course.  Refer to the Training Course Quickstart videos in 

MyOpenMath and WAMAP for more details on how to make those changes. 

http://www.wamap.org/
http://www.myopenmath.com/
https://www.wamap.org/wamap/newinstructor.php
https://www.myopenmath.com/newinstructor.php
http://www.stitz-zeager.com/
https://openstax.org/details/books/precalculus
http://www.opentextbookstore.com/precalc/
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How To Be Successful In This Course 

This is not a high school math course, although for some of you the content may seem 

familiar. There are key differences to what you will learn here, how quickly you will be 

required to learn it and how much work will be required of you. 

 

You will no longer be shown a technique and be asked to mimic it repetitively as the only 

way to prove learning.  Not only will you be required to master the technique, but you 

will also be required to extend that knowledge to new situations and build bridges 

between the material at hand and the next topic, making the course highly cumulative. 

 

As a rule of thumb, for each hour you spend in class, you should expect this course will 

require an average of 2 hours of out-of-class focused study. This means that some of you 

with a stronger background in mathematics may take less, but if you have a weaker 

background or any math anxiety it will take you more.   

 

Notice how this is the equivalent of having a part time job, and if you are taking a 

fulltime load of courses as many college students do, this equates to more than a full time 

job.   If you must work, raise a family and take a full load of courses all at the same time, 

we recommend that you get a head start & get organized as soon as possible.  We also 

recommend that you spread out your learning into daily chunks and avoid trying to cram 

or learn material quickly before an exam.  

 

To be prepared, read through the material before it is covered in class and note or 

highlight the material that is new or confusing.  The instructor’s lecture and activities 

should not be the first exposure to the material.  As you read, test your understanding 

with the Try it Now problems in the book.  If you can’t figure one out, try again after 

class, and ask for help if you still can’t get it.   

 

As soon as possible after the class session recap the day’s lecture or activities into a 

meaningful format to provide a third exposure to the material.  You could summarize 

your notes into a list of key points, or reread your notes and try to work examples done in 

class without referring back to your notes.  Next, begin any assigned homework.  The 

next day, if the instructor provides the opportunity to clarify topics or ask questions, do 

not be afraid to ask.  If you are afraid to ask, then you are not getting your money’s 

worth!  If the instructor does not provide this opportunity, be prepared to go to a tutoring 

center or build a peer study group. Put in quality effort and time and you can get quality 

results. 

 

Lastly, if you feel like you do not understand a topic.  Don’t wait, ASK FOR HELP! 

 
ASK:  Ask a teacher or tutor, Search for ancillaries, Keep a detailed list of questions 

FOR: Find additional resources, Organize the material, Research other learning options 

HELP: Have a support network, Examine your weaknesses, List specific examples & Practice  

 

Best of luck learning! We hope you like the course & love the price. 

David  & Melonie 
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Chapter 5: Trigonometric 
Functions of Angles 
In the previous chapters, we have explored a variety of functions which could be 

combined to form a variety of shapes.  In this discussion, one common shape has been 

missing: the circle.  We already know certain things about the circle, like how to find area 

and circumference, and the relationship between radius and diameter, but now, in this 

chapter, we explore the circle and its unique features that lead us into the rich world of 

trigonometry. 
 

Section 5.1 Circles ...................................................................................................... 337 
Section 5.2 Angles ...................................................................................................... 347 

Section 5.3 Points on Circles using Sine and Cosine.................................................. 362 
Section 5.4 The Other Trigonometric Functions ........................................................ 375 

Section 5.5 Right Triangle Trigonometry ................................................................... 385 
 

Section 5.1 Circles 

 

To begin, we need to find distances.  Starting with the Pythagorean Theorem, which 

relates the sides of a right triangle, we can find the distance between two points. 

 

 

Pythagorean Theorem 

The Pythagorean Theorem states that the sum of the squares of the legs of a right 

triangle will equal the square of the hypotenuse of the triangle.   

 

In graphical form, given the triangle shown,
2 2 2a b c+ = . 

  

 

We can use the Pythagorean Theorem to find the distance between two points on a graph. 

 

 

Example 1 

Find the distance between the points (-3, 2) and (2, 5). 

 

By plotting these points on the plane, we can then draw a 

right triangle with these points at each end of the 

hypotenuse.  We can calculate horizontal width of the 

triangle to be 5 and the vertical height to be 3.   

 

 

a 

b 

c 
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From these we can find the distance between the points using the Pythagorean 

Theorem: 

34

3435 222

=

=+=

dist

dist
 

 

 

Notice that the width of the triangle was calculated using the difference between the x 

(input) values of the two points, and the height of the triangle was found using the 

difference between the y (output) values of the two points.  Generalizing this process 

gives us the distance formula. 

 

 

Distance Formula 

The distance between two points ),( 11 yx  and ),( 22 yx  can be calculated as 

2

12

2

12 )()( yyxxdist −+−=  

 

 

Try it Now 

1. Find the distance between the points (1, 6) and (3, -5). 

 

 

Circles 

 

If we wanted to find an equation to represent a circle with 

a radius of r centered at a point (h, k), we notice that the 

distance between any point (x, y) on the circle and the 

center point is always the same: r.   Noting this, we can 

use our distance formula to write an equation for the 

radius: 
22 )()( kyhxr −+−=  

 

Squaring both sides of the equation gives us the standard equation for a circle. 

 

 

Equation of a Circle 

The equation of a circle centered at the point (h, k) with radius r can be written as 
222 )()( rkyhx =−+−  

 

 

Notice that a circle does not pass the vertical line test.  It is not possible to write y as a 

function of x or vice versa. 

 

r 

(h, k) 

(x, y) 
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Example 2 

Write an equation for a circle centered at the point (-3, 2) with radius 4. 

 

Using the equation from above, h = -3, k = 2, and the radius r = 4.  Using these in our 

formula, 
222 4)2())3(( =−+−− yx   simplified, this gives 

16)2()3( 22 =−++ yx  

 

 

Example 3 

Write an equation for the circle graphed here. 

 

This circle is centered at the origin, the point (0, 0).  By 

measuring horizontally or vertically from the center out to the 

circle, we can see the radius is 3.  Using this information in our 

formula gives: 
222 3)0()0( =−+− yx           simplified, this gives 

922 =+ yx  

 

 

Try it Now 

2. Write an equation for a circle centered at (4, -2) with radius 6. 

 

 

Notice that, relative to a circle centered at the origin, horizontal and vertical shifts of the 

circle are revealed in the values of h and k, which are the coordinates for the center of the 

circle. 

 

 

Points on a Circle 

 

As noted earlier, an equation for a circle cannot be written so that y is a function of x or 

vice versa.  To find coordinates on the circle given only the x or y value, we must solve 

algebraically for the unknown values. 

 

 

Example 4 

Find the points on a circle of radius 5 centered at the origin with an x value of 3. 

 

We begin by writing an equation for the circle centered at the origin with a radius of 5. 

2522 =+ yx  

 

Substituting in the desired x value of 3 gives an equation we can solve for y. 
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416

16925

253

2

22

==

=−=

=+

y

y

y

 

 

There are two points on the circle with an x value of 3:  (3, 4) and (3, -4). 

 

 

Example 5 

Find the x intercepts of a circle with radius 6 centered at the point (2, 4). 

 

We can start by writing an equation for the circle. 

36)4()2( 22 =−+− yx  

 

To find the x intercepts, we need to find the points where y = 0.  Substituting in zero for 

y, we can solve for x. 

36)40()2( 22 =−+−x  

3616)2( 2 =+−x  

20)2( 2 =−x  

202 =−x  

522202 ==x  

 

The x intercepts of the circle are ( )0,522 +  and ( )0,522 −  

 

 

Example 6 

In a town, Main Street runs east to west, and Meridian Road runs north to south.  A 

pizza store is located on Meridian 2 miles south of the intersection of Main and 

Meridian.  If the store advertises that it delivers within a 3-mile radius, how much of 

Main Street do they deliver to? 

 

This type of question is one in which introducing a coordinate system and drawing a 

picture can help us solve the problem.  We could 

either place the origin at the intersection of the two 

streets, or place the origin at the pizza store itself.  It is 

often easier to work with circles centered at the origin, 

so we’ll place the origin at the pizza store, though 

either approach would work fine. 

 

Placing the origin at the pizza store, the delivery area 

with radius 3 miles can be described as the region 

inside the circle described by 922 =+ yx .   
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Main Street, located 2 miles north of the pizza store and running east to west, can be 

described by the equation y = 2.   

To find the portion of Main Street the store will deliver to, we first find the boundary of 

their delivery region by looking for where the delivery circle intersects Main Street.  To 

find the intersection, we look for the points on the circle where y = 2.  Substituting y = 2 

into the circle equation lets us solve for the corresponding x values. 

 

236.25

549

92

2

22

=

=−=

=+

x

x

x

 

 

This means the pizza store will deliver 2.236 miles down Main Street east of Meridian 

and 2.236 miles down Main Street west of Meridian.  We can conclude that the pizza 

store delivers to a 4.472 mile long segment of Main St. 

 

 

In addition to finding where a vertical or horizontal line intersects the circle, we can also 

find where an arbitrary line intersects a circle. 

 

 

Example 7 

Find where the line xxf 4)( =  intersects the circle 16)2( 22 =+− yx . 

 

Normally, to find an intersection of two functions f(x) and g(x) we would solve for the x 

value that would make the functions equal by solving the equation f(x) = g(x).  In the 

case of a circle, it isn’t possible to represent the equation as a function, but we can 

utilize the same idea.   

 

The output value of the line determines the y value:  xxfy 4)( == .  We want the y 

value of the circle to equal the y value of the line, which is the output value of the 

function.  To do this, we can substitute the expression for y from the line into the circle 

equation. 

 

16)2( 22 =+− yx   replace y with the line formula: xy 4=  

16)4()2( 22 =+− xx  expand  

161644 22 =++− xxx  simplify 

164417 2 =+− xx   since this equation is quadratic, we arrange one side to be 0 

012417 2 =−− xx  

 

Since this quadratic doesn’t appear to be easily factorable, we can use the quadratic 

formula to solve for x: 

34

8324

)17(2

)12)(17(4)4()4( 2


=
−−−−−

=x , or approximately x ≈ 0.966 or -0.731 
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From these x values we can use either equation to find the corresponding y values.   

Since the line equation is easier to evaluate, we might choose to use it: 

923.2)731.0(4)731.0(

864.3)966.0(4)966.0(

−=−=−=

===

fy

fy
 

 

The line intersects the circle at the points (0.966, 3.864) and (-0.731, -2.923). 

 

 

Try it Now 

3. A small radio transmitter broadcasts in a 50 mile radius.  If you drive along a straight 

line from a city 60 miles north of the transmitter to a second city 70 miles east of the 

transmitter, during how much of the drive will you pick up a signal from the 

transmitter? 

 

 

Important Topics of This Section 

Distance formula 

Equation of a Circle 

Finding the x coordinate of a point on the circle given the y coordinate or vice versa 

Finding the intersection of a circle and a line 

 

 

Try it Now Answers 

1.  55  

2. 36)2()4( 22 =++− yx  

3. The circle can be represented by 222 50=+ yx .   

Finding a line from (0,60) to (70,0) gives xy
70

60
60 −= .   

Substituting the line equation into the circle gives 

2

2 260
60 50

70
x x

 
+ − = 
 

.   

Solving this equation, we find x = 14 or x = 45.29, corresponding to points (14, 48) 

and (45.29, 21.18).   

The distance between these points is 41.21 miles. 

 



  Section 5.1 Circles     343 

 

Section 5.1 Exercises 

 

1. Find the distance between the points (5,3) and (-1,-5). 

2. Find the distance between the points (3,3) and (-3,-2). 

3. Write an equation of the circle centered at (8 , -10) with radius 8.  

4. Write an equation of the circle centered at (-9, 9)  with radius 16.  

5. Write an equation of the circle centered at (7, -2) that passes through (-10, 0).  

6. Write an equation of the circle centered at (3, -7) that passes through (15, 13). 

7. Write an equation for a circle where (2, 6) and (8, 10) lie at the ends of a diameter. 

8. Write an equation for a circle where (-3, 3) and (5, 7) lie at the ends of a diameter. 

9. Sketch a graph of ( ) ( )
2 2

2   3  9x y− + + = . 

10. Sketch a graph of ( ) ( )
2 2

1   2 1  6x y+ + − = . 

11. Find the y intercept(s) of the circle with center (2, 3) with radius 3. 

12. Find the x intercept(s) of the circle with center (2, 3) with radius 4. 

13. At what point in the first quadrant does the line with equation    2    5y x= +  intersect a 

circle with radius 3 and center (0, 5)?  

14. At what point in the first quadrant does the line with equation        2y x= +  intersect the 

circle with radius 6 and center (0, 2)?  

15. At what point in the second quadrant does the line with equation    2    5y x= +  intersect a 

circle with radius 3 and center (-2, 0)?  

16. At what point in the first quadrant does the line with equation        2y x= +  intersect the 

circle with radius 6 and center (-1,0)?  

17. A small radio transmitter broadcasts in a 53 mile radius. If you drive along a straight 

line from a city 70 miles north of the transmitter to a second city 74 miles east of the 

transmitter, during how much of the drive will you pick up a signal from the 

transmitter?  

 

18. A small radio transmitter broadcasts in a 44 mile radius. If you drive along a straight 

line from a city 56 miles south of the transmitter to a second city 53 miles west of the 

transmitter, during how much of the drive will you pick up a signal from the 

transmitter?  
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19. A tunnel connecting two portions of a space 

station has a circular cross-section of radius 15 

feet. Two walkway decks are constructed in the 

tunnel. Deck A is along a horizontal diameter 

and another parallel Deck B is 2 feet below Deck 

A. Because the space station is in a weightless 

environment, you can walk vertically upright 

along Deck A, or vertically upside down along 

Deck B. You have been assigned to paint “safety 

stripes” on each deck level, so that a 6 foot 

person can safely walk upright along either deck. 

Determine the width of the “safe walk zone” on 

each deck.  [UW] 

 

 

 

20. A crawling tractor sprinkler is 

located as pictured here, 100 feet 

south of a sidewalk. Once the water 

is turned on, the sprinkler waters a 

circular disc of radius 20 feet and 

moves north along the hose at the 

rate of ½ inch/second. The hose is 

perpendicular to the 10 ft. wide 

sidewalk. Assume there is grass on 

both sides of the sidewalk.  [UW]  

 

a) Impose a coordinate system. 

Describe the initial coordinates 

of the sprinkler and find 

equations of the lines forming and find equations of the lines forming the north 

and south boundaries of the sidewalk. 

b) When will the water first strike the sidewalk? 

c) When will the water from the sprinkler fall completely north of the sidewalk? 

d) Find the total amount of time water from the sprinkler falls on the sidewalk. 

e) Sketch a picture of the situation after 33 minutes.  Draw an accurate picture of the 

watered portion of the sidewalk. 

f) Find the area of grass watered after one hour. 
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21. Erik’s disabled sailboat is floating anchored 3 miles East and 2 miles north of 

Kingsford.  A ferry leaves Kingsford heading toward Eaglerock at 12 mph. Eaglerock 

is 6 miles due east of Kingsford. After 20 minutes the ferry turns, heading due south. 

Bander is 8 miles south and 1 mile west of Eaglerock. Impose coordinates with 

Bander as the origin. [UW] 

 

 
 

 

a) Find equations for the lines along which the ferry is moving and draw in these 

lines. 

b) The sailboat has a radar scope that will detect any object within 3 miles of the 

sailboat. Looking down from above, as in the picture, the radar region looks like a 

circular disk.  The boundary is the “edge” or circle around this disk, the interior is 

everything inside of the circle, and the exterior is everything outside of the circle. 

Give the mathematical description (an equation or inequality) of the boundary, 

interior and exterior of the radar zone.  Sketch an accurate picture of the radar 

zone by determining where the line connecting Kingsford and Eaglerock would 

cross the radar zone. 

c) When does the ferry enter the radar zone? 

d) Where and when does the ferry exit the radar zone? 

e) How long does the ferry spend inside the radar zone? 

 

 

 

 

 

 

 

 

North 

Kingsford Eaglerock 

Bander 
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22. Nora spends part of her summer driving a combine during the wheat harvest. Assume 

she starts at the indicated position heading east at 10 ft/sec toward a circular wheat 

field of radius 200 ft. The combine cuts a swath 20 feet wide and begins when the 

corner of the machine labeled “a” is 60 feet north and 60 feet west of the western-

most edge of the field. [UW] 

 
a) When does Nora’s combine first start cutting the wheat? 

b) When does Nora’s combine first start cutting a swath 20 feet wide? 

c) Find the total amount of time wheat is being cut during this pass across the field. 

d) Estimate the area of the swath cut during this pass across the field. 

 

 

23. The vertical cross-section of a drainage ditch is 

pictured to the right.  Here, R indicates in each 

case the radius of a circle with R = 10 feet, 

where all of the indicated circle centers lie 

along a horizontal line 10 feet above and 

parallel to the ditch bottom. Assume that water 

is flowing into the ditch so that the level above 

the bottom is rising at a rate of 2 inches per 

minute. [UW] 

 

a) When will the ditch be completely full? 

b) Find a piecewise defined function that 

models the vertical cross-section of the ditch. 

c) What is the width of the filled portion of the ditch after 1 hour and 18 minutes? 

d) When will the filled portion of the ditch be 42 feet wide? 50 feet wide? 73 feet 

wide? 
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Section 5.2 Angles 

 

Because many applications involving circles also involve a rotation of the circle, it is 

natural to introduce a measure for the rotation, or angle, between two rays (line segments) 

emanating from the center of a circle.  The angle measurement you are most likely 

familiar with is degrees, so we’ll begin there. 

 

 

Measure of an Angle 

The measure of an angle is a measurement between two  

intersecting lines, line segments or rays, starting at the initial side  

and ending at the terminal side. It is a rotational measure, not a 

linear measure. 

 

 

Measuring Angles 

 

Degrees 

A degree is a measurement of angle.  One full rotation around the circle is equal to 

360 degrees, so one degree is 1/360 of a circle.   

 

An angle measured in degrees should always include the unit “degrees” after the 

number, or include the degree symbol °.  For example, 90 degrees = 90 . 

 

Standard Position 

When measuring angles on a circle, unless otherwise directed, we measure angles in 

standard position:  starting at the positive horizontal axis and with counter-clockwise 

rotation. 

 

 

Example 1 

Give the degree measure of the angle shown on the circle. 

 

The vertical and horizontal lines divide the circle into quarters.  

Since one full rotation is 360 degrees= 360 , each quarter rotation 

is 360/4 = 90  or 90 degrees.   

 

 

Example 2 

Show an angle of 30 on the circle. 

 

An angle of 30 is 1/3 of 90 , so by dividing a quarter rotation into 

thirds, we can sketch a line at 30 . 

initial side 

terminal side 

angle 
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Going Greek 

 

When representing angles using variables, it is traditional to use Greek letters.  Here is a 

list of commonly encountered Greek letters. 

 

    or         

theta phi alpha beta gamma 

 

 

Working with Angles in Degrees 

 

Notice that since there are 360 degrees in one rotation, an 

angle greater than 360 degrees would indicate more than 1 

full rotation.  Shown on a circle, the resulting direction in 

which this angle’s terminal side points would be the same as 

for another angle between 0 and 360 degrees.   These angles 

would be called coterminal. 

 

 

Coterminal Angles 

After completing their full rotation based on the given angle, two angles are 

coterminal if they terminate in the same position, so their terminal sides coincide 

(point in the same direction). 

 

 

Example 3 

Find an angle θ that is coterminal with 800 , where 0 360    

 

Since adding or subtracting a full rotation, 360 degrees, would result in an angle with 

terminal side pointing in the same direction, we can find coterminal angles by adding or 

subtracting 360 degrees.   An angle of 800 degrees is coterminal with an angle of 800-

360 = 440 degrees.  It would also be coterminal with an angle of 440-360 = 80 degrees. 

 

The angle = 80 is coterminal with 800 . 

 

By finding the coterminal angle between 0 and 360 degrees, it can be easier to see 

which direction the terminal side of an angle points in. 

 

 

Try it Now 

1. Find an angle   that is coterminal with 870 , where  3600  . 
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On a number line a positive number is measured to the right and a negative number is 

measured in the opposite direction (to the left).  Similarly a positive angle is measured 

counterclockwise and a negative angle is measured in the opposite direction (clockwise). 

 

 

Example 4 

Show the angle − 45 on the circle and find a positive angle  that is coterminal and 

 3600  . 

 

Since 45 degrees is half of 90 degrees, we can start at the 

positive horizontal axis and measure clockwise half of a 90 

degree angle.   

 

Since we can find coterminal angles by adding or subtracting a 

full rotation of 360 degrees, we can find a positive coterminal 

angle here by adding 360 degrees: 

=+− 31536045  

 

 

Try it Now 

2. Find an angle   coterminal with 300−   where 0 360    . 

 

 

It can be helpful to have a 

familiarity with the frequently 

encountered angles in one 

rotation of a circle.  It is common 

to encounter multiples of 30, 45, 

60, and 90 degrees.  These values 

are shown to the right.  

Memorizing these angles and 

understanding their properties 

will be very useful as we study 

the properties associated with 

angles 

 

 

 

 

Angles in Radians 

 

While measuring angles in degrees may be familiar, doing so often complicates matters 

since the units of measure can get in the way of calculations.  For this reason, another 

measure of angles is commonly used.  This measure is based on the distance around a 

circle. 

-45° 

315° 

0° 

30° 

60° 
90° 

120° 

150° 

180° 

210° 

240° 
270° 

300° 

330° 

45° 135° 

225° 315° 
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Arclength 

Arclength is the length of an arc, s, along a circle of radius r 

subtended (drawn out) by an angle .   

 

It is the portion of the circumference between the initial and  

terminal sides of the angle. 

 

 

The length of the arc around an entire circle is called the circumference of a circle.  The 

circumference of a circle is rC 2= .  The ratio of the circumference to the radius, 

produces the constant 2 .  Regardless of the radius, this ratio is always the same, just as 

how the degree measure of an angle is independent of the radius.   

 

To elaborate on this idea, consider two circles, one with radius 2 and one with radius 3.  

Recall the circumference (perimeter) of a circle is rC 2= , where r is the radius of the 

circle.  The smaller circle then has circumference  4)2(2 =  and the larger has 

circumference  6)3(2 = . 

 

Drawing a 45 degree angle on the two circles, we might be 

interested in the length of the arc of the circle that the angle 

indicates.  In both cases, the 45 degree angle draws out an arc that 

is 1/8th of the full circumference, so for the smaller circle, the 

arclength = 
1 1

(4 )
8 2

 = , and for the larger circle, the length of the 

arc or arclength = 
1 3

(6 )
8 4

 = . 

 

Notice what happens if we find the ratio of the arclength divided by the radius of the 

circle: 

Smaller circle:  

1
12

2 4


=  

Larger circle: 

3
14

3 4


=  

 

The ratio is the same regardless of the radius of the circle – it only depends on the angle.  

This property allows us to define a measure of the angle based on arclength. 

 

 

 

 

 

θ 

r s 

45° 

2 3 
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Radians 

The radian measure of an angle is the ratio of the length of the circular arc subtended 

by the angle to the radius of the circle.   

 

In other words, if s is the length of an arc of a circle, and r is the radius of the circle, 

then 

radian measure
s

r
=  

If the circle has radius 1, then the radian measure corresponds to the length of the arc. 

 

 

Because radian measure is the ratio of two lengths, it is a unitless measure.  It is not 

necessary to write the label “radians” after a radian measure, and if you see an angle that 

is not labeled with “degrees” or the degree symbol, you should assume that it is a radian 

measure. 

 

Considering the most basic case, the unit circle (a circle with radius 1), we know that 1 

rotation equals 360 degrees, 360 .  We can also track one rotation around a circle by 

finding the circumference, rC 2= , and for the unit circle 2=C .  These two different 

ways to rotate around a circle give us a way to convert from degrees to radians.  

 

1 rotation = 360 = 2 radians 

½ rotation = 180  =  radians 

¼ rotation = 90 = 
2


radians 

 

 

Example 5 

Find the radian measure of one third of a full rotation. 

 

For any circle, the arclength along such a rotation would be one third of the 

circumference, 
3

2
)2(

3

1 r
rC


 == .  The radian measure would be the arclength divided 

by the radius: 

Radian measure = 
2 2

3 3

r

r

 
= . 
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Converting Between Radians and Degrees 

1 degree = 
180


 radians    

or:  to convert from degrees to radians, multiply by 
radians

180




 

 

1 radian = 
180


 degrees 

or:  to convert from radians to degrees, multiply by 
180

radians


 

 

 

Example 6 

Convert 
6


 radians to degrees. 

Since we are given a problem in radians and we want degrees, we multiply by 


180
. 

Remember radians are a unitless measure, so we don’t need to write “radians.” 

6


 radians = 30

180

6
=






 degrees. 

 

 

Example 7 

Convert 15 degrees to radians. 

 

In this example, we start with degrees and want radians so we use the other conversion

180


so that the degree units cancel and we are left with the unitless measure of radians. 

15 degrees = 
12180

15


=


  

 

 

Try it Now 

3. Convert 
10

7
 radians to degrees. 
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Just as we listed all the common 

angles in degrees on a circle, we 

should also list the corresponding 

radian values for the common 

measures of a circle 

corresponding to degree 

multiples of 30, 45, 60, and 90 

degrees.  As with the degree 

measurements, it would be 

advisable to commit these to 

memory. 

 

We can work with the radian 

measures of an angle the same 

way we work with degrees. 

 

 

 

 

Example 8 

Find an angle    that is coterminal with 
19

4


, where  20  . 

 

When working in degrees, we found coterminal angles by adding or subtracting 360 

degrees, a full rotation.  Likewise, in radians, we can find coterminal angles by adding 

or subtracting full rotations of 2  radians. 

 

19 19 8 11
2

4 4 4 4

   
− = − =         

The angle
11

4


 is coterminal, but not less than 2 , so we subtract another rotation. 

11 11 8 3
2

4 4 4 4

   
− = − =  

 

The angle 
3

4


 is coterminal with 

19

4


. 

 

 

Try it Now 

4.  Find an angle  that is coterminal with 
17

6


−  where  20  . 

 

 

20,  

6


 

4


 

3


 

2


 2

3


 

3

4


 

5

6


 

  

7

6


 

5

4


 

4

3


 3

2


 

5

3


 

7

4


 

11

6
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Arclength and Area of a Sector 

 

Recall that the radian measure of an angle was defined as the ratio of the arclength of a 

circular arc to the radius of the circle, 
s

r
 = .  From this relationship, we can find 

arclength along a circle given an angle. 

 

 

Arclength on a Circle 

The length of an arc, s, along a circle of radius r subtended by angle  in radians is 

s r=  

 

 

Example 9 

Mercury orbits the sun at a distance of approximately 36 million miles.  In one Earth 

day, it completes 0.0114 rotation around the sun.  If the orbit was perfectly circular, 

what distance through space would Mercury travel in one Earth day? 

 

To begin, we will need to convert the decimal rotation value to a radian measure.   

 

 

Since one rotation = 2  radians, 

0.0114 rotation = 2 (0.0114) 0.0716 =  radians. 

 

Combining this with the given radius of 36 million miles, we can find the arclength: 

(36)(0.0716) 2.578s = =  million miles travelled through space. 

 

 

Try it Now 

5.  Find the arclength along a circle of radius 10 subtended by an angle of 215 degrees. 

 

 

In addition to arclength, we can also use angles to find the area of a sector of a circle.  A 

sector is a portion of a circle contained between two lines from the center, like a slice of 

pizza or pie. 

 

Recall that the area of a circle with radius r can be found using the formula 
2A r= .  If a 

sector is cut out by an angle of  , measured in radians, then the fraction of full circle that 

angle has cut out is 
2




, since 2  is one full rotation.  Thus, the area of the sector would 

be this fraction of the whole area:  

Area of sector 
2

2 21

2 2 2

r
r r

 
 

 

 
= = = 
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Area of a Sector 

The area of a sector of a circle with radius r subtended by an  

angle  , measured in radians, is  

Area of sector
21

2
r=  

 

 

 

Example 10 

An automatic lawn sprinkler sprays a distance of 20 feet while rotating 30 degrees.  

What is the area of the sector of grass the sprinkler waters? 

 

First, we need to convert the angle measure into radians.  Since 30 degrees is one of our 

common angles, you ideally should already know the equivalent radian measure, but if 

not we can convert: 

30 degrees = 30
180 6

 
 =  radians.  

 

The area of the sector is then Area 21
(20) 104.72

2 6

 
= = 

 
 ft2 

 

 

Try it Now 

6.  In central pivot irrigation, a large irrigation 

pipe on wheels rotates around a center point, 

as pictured here1. A farmer has a central pivot 

system with a radius of 400 meters.  If water 

restrictions only allow her to water 150 

thousand square meters a day, what angle 

should she set the system to cover? 

 

 

Linear and Angular Velocity 

 

When your car drives down a road, it makes sense to describe its speed in terms of miles 

per hour or meters per second.  These are measures of speed along a line, also called 

linear velocity.  When a point on a circle rotates, we would describe its angular velocity, 

or rotational speed, in radians per second, rotations per minute, or degrees per hour. 

 

 

 

 

 
1 http://commons.wikimedia.org/wiki/File:Pivot_otech_002.JPG  CC-BY-SA 

r 

θ 

20 ft 30° 

 

http://commons.wikimedia.org/wiki/File:Pivot_otech_002.JPG
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Angular and Linear Velocity 

As a point moves along a circle of radius r, its angular velocity,  , can be found as 

the angular rotation   per unit time, t. 

t


 =  

 

The linear velocity, v, of the point can be found as the distance travelled, arclength s, 

per unit time, t. 

s
v

t
=  

 

 

Example 11 

A water wheel completes 1 rotation every 5 seconds.  Find the 

angular velocity in radians per second.2 

 

The wheel completes 1 rotation = 2  radians in 5 seconds, so the 

angular velocity would be 
2

1.257
5


 =  radians per second. 

 

 

Combining the definitions above with the arclength equation, s r= , we can find a 

relationship between angular and linear velocities.  The angular velocity equation can be 

solved for  , giving t = .  Substituting this into the arclength equation gives 

s r r t = = .  

 

Substituting this into the linear velocity equation gives 

s r t
v r

t t


= = =  

 

 

Relationship Between Linear and Angular Velocity 

When the angular velocity is measured in radians per unit time, linear velocity and 

angular velocity are related by the equation 

v r=  

 

 

 

 

 

 

 
2 http://en.wikipedia.org/wiki/File:R%C3%B6mische_S%C3%A4gem%C3%BChle.svg CC-BY 

http://en.wikipedia.org/wiki/File:R%C3%B6mische_S%C3%A4gem%C3%BChle.svg
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Example 12 

A bicycle has wheels 28 inches in diameter.  A tachometer determines the wheels are 

rotating at 180 RPM (revolutions per minute).  Find the speed the bicycle is travelling 

down the road. 

 

Here we have an angular velocity and need to find the corresponding linear velocity, 

since the linear speed of the outside of the tires is the speed at which the bicycle travels 

down the road.  

 

We begin by converting from rotations per minute to radians per minute.  It can be 

helpful to utilize the units to make this conversion 

rotations 2 radians radians
180 360

minute rotation minute


 =  

 

Using the formula from above along with the radius of the wheels, we can find the 

linear velocity 

radians inches
(14 inches) 360 5040

minute minute
v  

 
= = 

 
 

 

You may be wondering where the “radians” went in this last equation.  Remember that 

radians are a unitless measure, so it is not necessary to include them. 

 

Finally, we may wish to convert this linear velocity into a more familiar measurement, 

like miles per hour. 

inches 1 feet 1 mile 60 minutes
5040 14.99

minute 12 inches 5280 feet 1 hour
    =  miles per hour (mph). 

 

 

Try it Now 

7.  A satellite is rotating around the earth at 27,934 kilometers per minute at an altitude of 

242 km above the earth.  If the radius of the earth is 6378 kilometers, find the angular 

velocity of the satellite. 
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Important Topics of This Section 

Degree measure of angle 

Radian measure of angle 

Conversion between degrees and radians 

Common angles in degrees and radians 

Coterminal angles 

Arclength 

Area of a sector 

Linear and angular velocity 

 

 

Try it Now Answers 

1. =−−= 150360360870  

 

2. =+−= 60360300  

 

3. =


 126
180

10

7




 

 

4. 
6

7

6

12

6

12

6

17
22

6

17 



=++−=++−  

 

5. 215° = 
180

215
  radians.  525.37

18

215

180

215
10 ==


s   

 

6. 000,150)400(
2

1 2 = .  875.1= , or 43.107  

 

7.  v = 27934.  r = 6378+242=6620.   2196.4
6620

27934
===

r

v
  radians per hour.
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Section 5.2 Exercises 

 

1. Indicate each angle on a circle:  30°, 300°, -135°, 70°, 
2

3


, 

7

4


 

 

2. Indicate each angle on a circle:  30°, 315°, -135°, 80°, 
7

6


, 

3

4


 

 

3. Convert the angle 180° to radians. 

 

4. Convert the angle 30° to radians. 

 

5. Convert the angle 
5

6


 from radians to degrees. 

 

6. Convert the angle 
11 

6


 from radians to degrees. 

 

7. Find the angle between 0° and 360° that is coterminal with a 685°  angle.  

 

8. Find the angle between 0° and  360° that is coterminal with a 451°  angle. 

 

9. Find the angle between 0° and 360° that is coterminal with a -1746°  angle. 

 

10. Find the angle between 0° and 360° that is coterminal with a -1400°  angle. 

 

11. Find the angle between 0 and 2π in radians that is coterminal with the angle 
26 

9


. 

 

12. Find the angle between 0 and 2π  in radians that is coterminal with the angle  
17 

3


. 

 

13. Find the angle between 0 and 2π in radians that is coterminal with the angle 
3 

2


− . 

 

14. Find the angle between 0 and 2π  in radians that is coterminal with the angle  
7 

6


− .  

 

15. On a circle of radius 7 miles, find the length of the arc that subtends a central angle of 

5 radians.  

 

16. On a circle of radius 6 feet, find the length of the arc that subtends a central angle of 1 

radian.  
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17. On a circle of radius 12 cm, find the length of the arc that subtends a central angle of 

120 degrees. 

 

18. On a circle of radius 9 miles, find the length of the arc that subtends a central angle of 

800 degrees.  

 

19. Find the distance along an arc on the surface of the Earth that subtends a central angle 

of 5 minutes (1 minute = 1/60 degree). The radius of the Earth is 3960 miles.  

 

20. Find the distance along an arc on the surface of the Earth that subtends a central angle 

of 7 minutes (1 minute = 1/60 degree). The radius of the Earth is 3960 miles. 

 

21. On a circle of radius 6 feet, what angle in degrees would subtend an arc of length 3 

feet? 

 

22. On a circle of radius 5 feet, what angle in degrees would subtend an arc of length 2 

feet? 

 

23. A sector of a circle has a central angle of 45°. Find the area of the sector if the radius 

of the circle is 6 cm. 

 

24. A sector of a circle has a central angle of 30°. Find the area of the sector if the radius 

of the circle is 20 cm. 

 

25. A truck with 32-in.-diameter wheels is traveling at 60 mi/h.  Find the angular speed of 

the wheels in rad/min.  How many revolutions per minute do the wheels make?  

 

26. A bicycle with 24-in.-diameter wheels is traveling at 15 mi/h.  Find the angular speed 

of the wheels in rad/min.  How many revolutions per minute do the wheels make? 

 

27. A wheel of radius 8 in. is rotating 15°/sec. What is the linear speed v, the angular 

speed in RPM, and the angular speed in rad/sec? 

 

28. A wheel of radius 14 in. is rotating 0.5 rad/sec. What is the linear speed v, the angular 

speed in RPM, and the angular speed in deg/sec? 

 

29. A CD has diameter of 120 millimeters.  When playing audio, the angular speed varies 

to keep the linear speed constant where the disc is being read.  When reading along 

the outer edge of the disc, the angular speed is about 200 RPM (revolutions per 

minute).  Find the linear speed. 

 

30. When being burned in a writable CD-R drive, the angular speed of a CD is often 

much faster than when playing audio, but the angular speed still varies to keep the 

linear speed constant where the disc is being written.  When writing along the outer 

edge of the disc, the angular speed of one drive is about 4800 RPM (revolutions per 

minute).  Find the linear speed. 
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31. You are standing on the equator of the Earth (radius 3960 miles). What is your linear 

and angular speed? 

 

32. The restaurant in the Space Needle in Seattle rotates at the rate of one revolution 

every 47 minutes. [UW] 

a) Through how many radians does it turn in 100 minutes? 

b) How long does it take the restaurant to rotate through 4 radians? 

c) How far does a person sitting by the window move in 100 minutes if the radius of 

the restaurant is 21 meters? 
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Section 5.3 Points on Circles Using Sine and Cosine 

 

While it is convenient to describe the location of a point on a circle using an angle or a 

distance along the circle, relating this information to the x and y coordinates and the circle 

equation we explored in Section 5.1 is an important application of trigonometry.  

 

A distress signal is sent from a sailboat during a storm, but the transmission is unclear 

and the rescue boat sitting at the marina cannot determine the sailboat’s location.  Using 

high powered radar, they determine the distress signal is coming from a distance of 20 

miles at an angle of 225 degrees from the marina.  How many miles east/west and 

north/south of the rescue boat is the stranded sailboat? 

 

In a general sense, to investigate this, we begin by 

drawing a circle centered at the origin with radius r, 

and marking the point on the circle indicated by some 

angle θ.  This point has coordinates (x, y).   

 

If we drop a line segment vertically down from this 

point to the x axis, we would form a right triangle 

inside of the circle.   

 

No matter which quadrant our angle θ puts us in we 

can draw a triangle by dropping a perpendicular line 

segment to the x axis, keeping in mind that the values 

of x and y may be positive or negative, depending on the quadrant. 

 

Additionally, if the angle θ puts us on an axis, we simply measure the radius as the x or y 

with the other value being 0, again ensuring we have appropriate signs on the coordinates 

based on the quadrant. 

  

Triangles obtained from different radii will all be similar triangles, meaning 

corresponding sides scale proportionally.  While the lengths of the sides may change, as 

we saw in the last section, the ratios of the side lengths will always remain constant for 

any given angle. 

 

1 2

1 2

y y

r r
=  

1 2

1 2

x x

r r
=  

 

 

      

To be able to refer to these ratios more easily, we will give them names.  Since the ratios 

depend on the angle, we will write them as functions of the angle  . 

(x, y) 

r 

θ 

r1 

θ 

y1 

x1 

r2 

θ 

y2 

x2 
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Sine and Cosine 

For the point (x, y) on a circle of radius r at an angle of  , we can  

define two important functions as the ratios of the sides of the 

corresponding triangle: 

The sine function:  
r

y
=)sin(  

The cosine function:  
r

x
=)cos(  

 

 

In this chapter, we will explore these functions using both circles and right triangles.  In 

the next chapter, we will take a closer look at the behavior and characteristics of the sine 

and cosine functions. 

 

 

Example 1 

The point (3, 4) is on the circle of radius 5 at some angle θ.  Find )cos( and )sin( . 

 

Knowing the radius of the circle and coordinates of the point, we can evaluate the 

cosine and sine functions as the ratio of the sides. 

5

3
)cos( ==

r

x
   

5

4
)sin( ==

r

y
  

 

 

There are a few cosine and sine values which we can determine fairly easily because the 

corresponding point on the circle falls on the x or y axis. 

 

 

Example 2 

Find )90cos(   and )90sin(   

 

On any circle, the terminal side of a 90 degree angle 

points straight up, so the coordinates of the 

corresponding point on the circle would be (0, r).  

Using our definitions of cosine and sine, 

0
0

)90cos( ===
rr

x
 

1)90sin( ===
r

r

r

y
 

 

 

 

 

(x, y) 

r 

θ 

y 

x 

r 

90° 

 

(0, r) 
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Try it Now 

1. Find cosine and sine of the angle  . 

 

 

Notice that the definitions above can also be stated as: 

 

 

Coordinates of the Point on a Circle at a Given Angle 

On a circle of radius r at an angle of  , we can find the coordinates of the point  

(x, y)  at that angle using 

)cos(rx =  

)sin(ry =  

 

On a unit circle, a circle with radius 1, )cos(=x  and )sin(=y . 

 

 

Utilizing the basic equation for a circle centered at the origin, 222 ryx =+ , combined 

with the relationships above, we can establish a new identity. 

 
222 ryx =+      substituting the relations above, 

222 ))sin(())cos(( rrr =+    simplifying, 

22222 ))(sin())(cos( rrr =+   dividing by 
2r  

1))(sin())(cos( 22 =+    or using shorthand notation 

1)(sin)(cos 22 =+   

 

Here )(cos2   is a commonly used shorthand notation for 2))(cos( .  Be aware that many 

calculators and computers do not understand the shorthand notation. 

 

In Section 5.1 we related the Pythagorean Theorem 
222 cba =+  to the basic equation of 

a circle 222 ryx =+ , which we have now used to arrive at the Pythagorean Identity. 

 

 

Pythagorean Identity 

The Pythagorean Identity.  For any angle θ,  1)(sin)(cos 22 =+  . 

 

 

One use of this identity is that it helps us to find a cosine value of an angle if we know 

the sine value of that angle or vice versa.  However, since the equation will yield two 

possible values, we will need to utilize additional knowledge of the angle to help us find 

the desired value. 
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Example 3 

If 
7

3
)sin( =  and   is in the second quadrant, find )cos( . 

 

Substituting the known value for sine into the Pythagorean identity, 

1
7

3
)(cos

2

2 =







+  

1
49

9
)(cos 2 =+  

49

40
)(cos 2 =  

40 40 2 10
cos( )

49 7 7
 =  =  =   

 

Since the angle is in the second quadrant, we know the x value of the point would be 

negative, so the cosine value should also be negative.  Using this additional information, 

we can conclude that 
2 10

cos( )
7

 = − . 

 

 

Values for Sine and Cosine 

 

At this point, you may have noticed that we haven’t found any cosine or sine values from 

angles not on an axis.  To do this, we will need to utilize our knowledge of triangles. 

 

First, consider a point on a circle at an angle of 45 degrees, or 
4


.  

At this angle, the x and y coordinates of the corresponding point 

on the circle will be equal because 45 degrees divides the first 

quadrant in half.  Since the x and y values will be the same, the 

sine and cosine values will also be equal.  Utilizing the 

Pythagorean Identity, 

1
4

sin
4

cos 22 =







+







 
 since the sine and cosine are equal, we can 

     substitute sine with cosine 

1
4

cos
4

cos 22 =







+







 
 add like terms 

1
4

cos2 2 =






 
   divide 

2

1

4
cos 2 =







 
   since the x value is positive, we’ll keep the positive root 

 

1 

45° 

y 

x 

(x, y) = (x, x) 
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2

1

4
cos =








   often this value is written with a rationalized denominator  

 

Remember, to rationalize the denominator we multiply by a term equivalent to 1 to get 

rid of the radical in the denominator. 

2

2

4

2

2

2

2

1

4
cos ===








  

 

Since the sine and cosine are equal, 
2

2

4
sin =








 as well.  The (x, y) coordinates for a 

point on a circle of radius 1 at an angle of 45 degrees are 













2

2
,

2

2
. 

 

 

Example 4 

Find the coordinates of the point on a circle of radius 6 at an angle of 
4


. 

 

Using our new knowledge that 
2

2

4
sin =








 and 

2

2

4
cos =








, along with our 

relationships that stated )cos(rx =  and )sin(ry = , we can find the coordinates of 

the point desired: 

23
2

2
6

4
cos6 =














=








=


x  

23
2

2
6

4
sin6 =














=








=


y  

 

 

Try it Now 

2. Find the coordinates of the point on a circle of radius 3 at an angle of  90 . 

 

 

Next, we will find the cosine and sine at an angle of 30 

degrees, or 
6


.  To do this, we will first draw a triangle 

inside a circle with one side at an angle of 30 degrees, and 

another at an angle of -30 degrees.  If the resulting two right 

triangles are combined into one large triangle, notice that all 

three angles of this larger triangle will be 60 degrees.   

r 

30° 

(x, y) 
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Since all the angles are equal, the sides will all be equal as 

well.  The vertical line has length 2y, and since the sides are all 

equal we can conclude that 2y = r, or 
2

r
y = .  Using this, we 

can find the sine value: 

2

11

2

2

6
sin ====









r

r

r

r

r

y
 

 

Using the Pythagorean Identity, we can find the cosine value: 

1
6

sin
6

cos 22 =







+







 
 

1
2

1

6
cos

2

2 =







+








 

4

3

6
cos 2 =







 
   since the x value is positive, we’ll keep the positive root 

2

3

4

3

6
cos ==








 

 

The (x, y) coordinates for the point on a circle of radius 1 at an angle of 30 degrees are 















2

1
,

2

3
. 

 

By drawing a the triangle inside the unit circle with a 30 degree angle and reflecting it 

over the line y = x, we can find the cosine and sine for 60 degrees, or 
3


, without any 

additional work. 

 

 

 

 

 

 

 

 

 

By this symmetry, we can see the coordinates of the point on the unit circle at an angle of 

60 degrees will be 













2

3
,

2

1
, giving 

2

1

3
cos =








 and 

2

3

3
sin =








 

30° 

 

2

1  

2

3  

1 

y = x 

30° 

 

2

1  

1 

60° 

 

y = x 
3

2
  

2

3  

60° 

60° 

60° 

r 

r 

y 

y 
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We have now found the cosine and sine values for all the commonly encountered angles 

in the first quadrant of the unit circle.   

 

Angle 0  

6


, or 30° 

4


, or 45° 

3


, or 60° 

2


, or 90° 

Cosine 1 3

2
 

2

2
 

1

2
 

0 

Sine 0 1

2
 2

2
 

3

2
 

1 

 

For any given angle in the first quadrant, there will be an angle in another quadrant with 

the same sine value, and yet another angle in yet another quadrant with the same cosine 

value.  Since the sine value is the y coordinate on the unit circle, the other angle with the 

same sine will share the same y value, but have the opposite x value.  Likewise, the angle 

with the same cosine will share the same x value, but have the opposite y value. 

 

As shown here, angle α has the same sine value as angle θ; the cosine values would be 

opposites.  The angle β has the same cosine value as the angle θ; the sine values would be 

opposites. 

 

)sin()sin(  =  and  )cos()cos(  −=  )sin()sin(  −=  and  )cos()cos(  =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is important to notice the relationship between the angles.  If, from the angle, you 

measured the smallest angle to the horizontal axis, all would have the same measure in 

absolute value.  We say that all these angles have a reference angle of θ. 

 

 

 

 

 

 

 

(x, y) 

r 
θ 

α 

(x, y) 

r 
θ 

β 
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Reference Angle 

An angle’s reference angle is the size of the 

smallest angle to the horizontal axis. 

 

A reference angle is always an angle between 0  

and 90 degrees, or 0 and 
2


 radians. 

 

Angles share the same cosine and sine values as  

their reference angles, except for signs (positive or  

negative) which can be determined from the  

quadrant of the angle. 

 

 

Example 5 

Find the reference angle of 150 degrees.  Use it to find )150cos(  and )150sin(  . 

 

150 degrees is located in the second quadrant.  It is 30 degrees short of the horizontal 

axis at 180 degrees, so the reference angle is 30 degrees. 

 

This tells us that 150 degrees has the same sine and cosine values as 30 degrees, except 

for sign.  We know that 
2

1
)30sin( =  and 

2

3
)30cos( = .  Since 150 degrees is in the 

second quadrant, the x coordinate of the point on the circle would be negative, so the 

cosine value will be negative.  The y coordinate is positive, so the sine value will be 

positive. 

2

1
)150sin( =  and 

2

3
)150cos( −=  

The (x, y) coordinates for the point on a unit circle at an angle of 150  are 











 −

2

1
,

2

3
. 

 

 

Using symmetry and reference angles, we can fill in cosine and sine values at the rest of 

the special angles on the unit circle.  Take time to learn the (x, y) coordinates of all the 

major angles in the first quadrant! 

(x, y) 

θ 

θ 

θ 

θ 
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Example 6 

Find the coordinates of the point on a circle of radius 12 at an angle of 
6

7
. 

 

Note that this angle is in the third quadrant, where both x and y are negative.  Keeping 

this in mind can help you check your signs of the sine and cosine function. 

 

36
2

3
12

6

7
cos12 −=













 −
=








=


x  

6
2

1
12

6

7
sin12 −=







 −
=








=


y  

 

The coordinates of the point are )6,36( −− . 

 

 

Try it Now 

3. Find the coordinates of the point on a circle of radius 5 at an angle of 
5

3


. 

3 1
30 , , ,

6 2 2




 
 
 

 

2 2
45 , , ,

4 2 2




 
 
 

 

1 3
60 , ,

3 2 2
,




 
 
 

 

( )90 , , 0 1
2

,


  2 1 3
120 , ,

3 2 2
,




 
− 
 

 

3 2 2
135 , ,

4 2 2
,




 
− 
 

 

5 3 1
150 , ,

6 2 2
,




 
− 
 

 

( )180 , , 1 0, −  

5 2 2
225 , ,

4 2 2
,




 
− − 
 

 

4 1 3
240 , ,

3 2 2
,




 
− − 
 

 ( )
3

270 , , 0 1
2

,


 −  
5 1 3

300 , ,
3 2 2

,



 

− 
 

 

7 2 2
315 , ,

4 2 2
,




 
− 

 
 

11 3 1
330 , ,

6 2 2
,




 
− 

 
 

( )

( )

0 , 0, 1, 0

360 , 2 , 1, 0




 

7 3 1
210 , ,

6 2 2
,




 
− − 
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Example 7 

We now have the tools to return to the sailboat question posed at the beginning of this 

section.  

 

A distress signal is sent from a sailboat during a 

storm, but the transmission is unclear and the rescue 

boat sitting at the marina cannot determine the 

sailboat’s location.  Using high powered radar, they 

determine the distress signal is coming from a point 

20 miles away at an angle of 225 degrees from the 

marina.  How many miles east/west and north/south 

of the rescue boat is the stranded sailboat? 

 

We can now answer the question by finding the 

coordinates of the point on a circle with a radius of 20 

miles at an angle of 225 degrees. 

( ) 142.14
2

2
20225cos20 −













 −
==x miles 

( ) 142.14
2

2
20225sin20 −













 −
==y miles 

 

The sailboat is located 14.142 miles west and 14.142 miles south of the marina. 

 

 

The special values of sine and cosine in the first quadrant are very useful to know, since 

knowing them allows you to quickly evaluate the sine and cosine of very common angles 

without needing to look at a reference or use your calculator.  However, scenarios do 

come up where we need to know the sine and cosine of other angles. 

 

To find the cosine and sine of any other angle, we turn to a computer or calculator.  Be 

aware:  most calculators can be set into “degree” or “radian” mode, which tells the 

calculator the units for the input value.  When you evaluate “cos(30)” on your calculator, 

it will evaluate it as the cosine of 30 degrees if the calculator is in degree mode, or the 

cosine of 30 radians if the calculator is in radian mode.  Most computer software with 

cosine and sine functions only operates in radian mode. 

 

 

 

 

 

 

 

 

 

20 mi 

225° 

 E 

 

W 

 

N 

 

S 
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Example 8 

Evaluate the cosine of 20 degrees using a calculator or computer. 

 

On a calculator that can be put in degree mode, you can evaluate this directly to be 

approximately 0.939693.   

 

On a computer or calculator without degree mode, you would first need to convert the 

angle to radians, or equivalently evaluate the expression 








180

20cos


. 

 

 

Important Topics of This Section 

The sine function 

The cosine function 

Pythagorean Identity 

Unit Circle values 

Reference angles 

Using technology to find points on a circle 

 

 

Try it Now Answers 

1. 1)cos( −=   0)sin( =  

 

2. 

313
2

sin3

003
2

cos3

==







=

==







=





y

x

 

 

3. 











 −
=

























2

35
,

2

5

3

5
sin5,

3

5
cos5
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Section 5.3 Exercises 

 

1. Find the quadrant in which the terminal point determined by t lies if 

a. sin( ) 0t    and cos( ) 0t    b. sin( ) 0t    and cos( ) 0t   

 

2. Find the quadrant in which the terminal point determined by t lies if  

a. sin( ) 0t    and cos( ) 0t    b. sin( ) 0t    and cos( ) 0t   

 

3. The point P is on the unit circle. If the y-coordinate of P is 
3

5
, and P is in quadrant II, 

find the x coordinate. 

 

4. The point P is on the unit circle. If the x-coordinate of P is 
1

5
, and P is in quadrant 

IV, find the y coordinate. 

  

5. If ( )
1

cos
7

 =  and θ is in the 4th quadrant, find ( )sin  . 

6. If ( )
2

cos
9

 =  and θ is in the 1st quadrant, find ( )sin  . 

7. If ( )
3

sin
8

 =  and θ is in the 2nd quadrant, find ( )cos  .  

8. If ( )
1

sin
4

 = −  and θ is in the 3rd quadrant, find ( )cos  .  

 

9. For each of the following angles, find the reference angle and which quadrant the 

angle lies in.  Then compute sine and cosine of the angle. 

a.  225°  b. 300°  c. 135°  d. 210° 

 

10. For each of the following angles, find the reference angle and which quadrant the 

angle lies in.  Then compute sine and cosine of the angle. 

a. 120°  b. 315°  c. 250°  d. 150° 

 

11. For each of the following angles, find the reference angle and which quadrant the 

angle lies in.  Then compute sine and cosine of the angle. 

a. 
5

4


  b. 

7

6


  c. 

5

3


  d. 

3

4


 

 

12. For each of the following angles, find the reference angle and which quadrant the 

angle lies in.  Then compute sine and cosine of the angle. 

a. 
4

3


  b. 

2

3


  c. 

5

6


  d. 

7

4
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13. Give exact values for ( )sin   and ( )cos   for each of these angles. 

a. 
3

4


−   b. 

23

6


  c. 

2


−   d. 5  

 

14. Give exact values for ( )sin   and ( )cos   for each of these angles. 

a. 
2

3


−  b. 

17

4


  c. 

6


−   d. 10  

 

15. Find an angle θ with 0 360    or 0 2    that has the same sine value as: 

a. 
3


  b.  80°  c. 140°  d. 

4

3


  e. 305°  

 

16. Find an angle θ with 0 360    or 0 2     that has the same sine value as: 

a. 
4


  b.  15°  c. 160°  d. 

7

6


  e. 340°  

 

17. Find an angle θ with 0 360    or 0 2    that has the same cosine value as: 

a. 
3


  b.  80°  c. 140°  d. 

4

3


  e. 305°  

 

18. Find an angle θ with 0 360    or 0 2    that has the same cosine value as: 

a. 
4


  b.  15°  c. 160°  d. 

7

6


  e. 340°  

 

19. Find the coordinates of the point on a circle with radius 15 corresponding to an angle 

of 220°. 

 

20. Find the coordinates of the point on a circle with radius 20 corresponding to an angle 

of 280°.  

 

21. Marla is running clockwise around a circular track. She runs at a constant speed of 3 

meters per second. She takes 46 seconds to complete one lap of the track. From her 

starting point, it takes her 12 seconds to reach the northernmost point of the track. Impose 

a coordinate system with the center of the track at the origin, and the northernmost point 

on the positive y-axis. [UW] 

a) Give Marla’s coordinates at her starting point. 

b) Give Marla’s coordinates when she has been running for 10 seconds. 

c) Give Marla’s coordinates when she has been running for 901.3 seconds. 
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Section 5.4 The Other Trigonometric Functions 

 

In the previous section, we defined the sine and cosine functions as ratios of the sides of a 

right triangle in a circle.  Since the triangle has 3 sides there are 6 possible combinations 

of ratios.  While the sine and cosine are the two prominent ratios that can be formed, 

there are four others, and together they define the 6 trigonometric functions. 

 

 

Tangent, Secant, Cosecant, and Cotangent Functions 

For the point (x, y) on a circle of radius r at an angle of  , we can 

define four additional important functions as the ratios of the 

sides of the corresponding triangle: 

The tangent function:   
x

y
=)tan(  

The secant function:   
x

r
=)sec(   

The cosecant function:   
y

r
=)csc(  

The cotangent function:   
y

x
=)cot(  

 

 

Geometrically, notice that the definition of tangent corresponds with the slope of the line 

segment between the origin (0, 0) and the point (x, y).   This relationship can be very 

helpful in thinking about tangent values. 

 

You may also notice that the ratios defining the secant, cosecant, and cotangent are the 

reciprocals of the ratios defining the cosine, sine, and tangent functions, respectively.  

Additionally, notice that using our results from the last section, 

)cos(

)sin(

)cos(

)sin(
)tan(








 ===

r

r

x

y
  

 

Applying this concept to the other trig functions we can state the reciprocal identities. 

 

 

Identities 

The other four trigonometric functions can be related back to the sine and cosine 

functions using these basic relationships: 

 

)cos(

)sin(
)tan(




 =      

)cos(

1
)sec(


 =      

)sin(

1
)csc(


 =      

1 cos( )
cot( )

tan( ) sin( )




 
= =  

(x, y) 

r 

θ 

y 

x 
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These relationships are called identities.  Identities are statements that are true for all 

values of the input on which they are defined.  Identities are usually something that can 

be derived from definitions and relationships we already know, similar to how the 

identities above were derived from the circle relationships of the six trig functions.  The 

Pythagorean Identity we learned earlier was derived from the Pythagorean Theorem and 

the definitions of sine and cosine.  We will discuss the role of identities more after an 

example. 

 

 

Example 1 

Evaluate )45tan(   and 








6

5
sec


. 

 

Since we know the sine and cosine values for these angles, it makes sense to relate the 

tangent and secant values back to the sine and cosine values. 

 

1

2
2

2
2

)45cos(

)45sin(
)45tan( ==




=  

 

Notice this result is consistent with our interpretation of the tangent value as the slope 

of the line passing through the origin at the given angle: a line at 45 degrees would 

indeed have a slope of 1. 

 

3

2

2
3

1

6

5
cos

1

6

5
sec

−
=

−
=









=












, which could also be written as 

3

32−
. 

 

 

Try it Now 

1. Evaluate 








6

7
csc


. 

 

 

Just as we often need to simplify algebraic expressions, it is often also necessary or 

helpful to simplify trigonometric expressions.  To do so, we utilize the definitions and 

identities we have established. 
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Example 2 

Simplify 
( )
( )


tan

sec
. 

 

We can simplify this by rewriting both functions in terms of sine and cosine 

( )
( )

( )
( )

( )








cos
sin

cos
1

tan

sec
=   To divide the fractions we could invert and multiply 

( )
( )
( )


 sin

cos

cos

1
=    cancelling the cosines, 

( )
( )


csc

sin

1
==    simplifying and using the identity 

 

 

By showing that 
( )
( )


tan

sec
 can be simplified to ( )csc , we have, in fact, established a new 

identity:  that 
( )
( )

( )



csc

tan

sec
= .   

 

Occasionally a question may ask you to “prove the identity” or “establish the identity.”  

This is the same idea as when an algebra book asks a question like “show that  

12)1( 22 +−=− xxx .”  In this type of question, we must show the algebraic 

manipulations that demonstrate that the left and right side of the equation are in fact 

equal.  You can think of a “prove the identity” problem as a simplification problem where 

you know the answer: you know what the end goal of the simplification should be, and 

just need to show the steps to get there. 

 

To prove an identity, in most cases you will start with the expression on one side of the 

identity and manipulate it using algebra and trigonometric identities until you have 

simplified it to the expression on the other side of the equation.  Do not treat the identity 

like an equation to solve – it isn’t!  The proof is establishing if the two expressions are 

equal, so we must take care to work with one side at a time rather than applying 

an operation simultaneously to both sides of the equation. 

 

 

Example 3 

Prove the identity 
1 cot( )

sin( ) cos( )
csc( )


 



+
= + . 

 

Since the left side seems a bit more complicated, we will start there and simplify the 

expression until we obtain the right side.  We can use the right side as a guide for what 

might be good steps to make.  In this case, the left side involves a fraction while the 

right side doesn’t, which suggests we should look to see if the fraction can be reduced.   
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Additionally, since the right side involves sine and cosine and the left does not, it 

suggests that rewriting the cotangent and cosecant using sine and cosine might be a 

good idea. 

 

1 cot( )

csc( )





+
    Rewriting the cotangent and cosecant 

cos( )
1

sin( )

1

sin( )







+

=     To divide the fractions, we invert and multiply 

 

cos( ) sin( )
1

sin( ) 1

 



 
= + 
 

  Distributing, 

sin( ) cos( ) sin( )
1

1 sin( ) 1

  


=  +    Simplifying the fractions, 

sin( ) cos( ) = +    Establishing the identity. 

 

Notice that in the second step, we could have combined the 1 and 
cos( )

sin( )




 before 

inverting and multiplying.  It is very common when proving or simplifying identities for 

there to be more than one way to obtain the same result. 

 

 

We can also utilize identities we have previously learned, like the Pythagorean Identity, 

while simplifying or proving identities. 

 

 

Example 4 

Establish the identity 
( )
( )

( )



sin1

sin1

cos 2

−=
+

. 

 

Since the left side of the identity is more complicated, it makes sense to start there.  To 

simplify this, we will have to reduce the fraction, which would require the numerator to 

have a factor in common with the denominator.  Additionally, we notice that the right 

side only involves sine.  Both of these suggest that we need to convert the cosine into 

something involving sine. 

 

Recall the Pythagorean Identity told us 1)(sin)(cos 22 =+  .  By moving one of the 

trig functions to the other side, we can establish: 

 

)(cos1)(sin 22  −=   and   )(sin1)(cos 22  −=  

 

Utilizing this, we now can establish the identity.  We start on one side and manipulate: 
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( )
( )


sin1

cos2

+
   Utilizing the Pythagorean Identity 

=
( )
( )


sin1

sin1 2

+

−
   Factoring the numerator 

( )( ) ( )( )
( )



sin1

sin1sin1

+

+−
=  Cancelling the like factors 

( )sin1−=    Establishing the identity 

 

 

We can also build new identities from previously established identities.  For example, if 

we divide both sides of the Pythagorean Identity by cosine squared (which is allowed 

since we’ve already shown the identity is true), 

)(cos

1

)(cos

)(sin)(cos
22

22




=

+
  Splitting the fraction on the left, 

)(cos

1

)(cos

)(sin

)(cos

)(cos
22

2

2

2








=+  Simplifying and using the definitions of tan and sec 

)(sec)(tan1 22  =+ . 

 

 

Try it Now 

2. Use a similar approach to establish that )(csc1)(cot 22  =+ . 

 

 

Identities 

Alternate forms of the Pythagorean Identity 

)(sec)(tan1 22  =+  

)(csc1)(cot 22  =+  

 

 

Example 5 

If 
7

2
)tan( =  and   is in the 3rd quadrant, find )cos( . 

 

There are two approaches to this problem, both of which work equally well. 
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Approach 1 

Since 
x

y
=)tan(  and the angle is in the third quadrant, we can imagine a triangle in a 

circle of some radius so that the point on the circle is (-7, -2), so  
7

2

7

2
=

−

−
=

x

y
. 

 

Using the Pythagorean Theorem, we can find the radius of the circle:  
222 )2()7( r=−+− , so 53=r .  

 

Now we can find the cosine value: 

53

7
)cos(

−
==

r

x
  

 

Approach 2 

Using the )(sec)(tan1 22  =+  form of the Pythagorean Identity with the known 

tangent value, 

)(sec)(tan1 22  =+  

)(sec
7

2
1 2

2

=







+  

)(sec
49

53 2 =      

7

53

49

53
)sec( ==  

 

Since the angle is in the third quadrant, the cosine value will be negative so the secant 

value will also be negative.  Keeping the negative result, and using definition of secant, 

7

53
)sec( −=  

7

53

)cos(

1
−=


  Inverting both sides 

53

537

53

7
)cos( −=−=  

 

 

Try it Now 

3. If 
3

7
)sec( −=  and 

2


   , find tan( )  and sin( ) . 
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Important Topics of This Section 

6 Trigonometric Functions: 

Sine 

Cosine 

Tangent 

Cosecant 

Secant 

Cotangent 

Trig identities 

 

 

Try it Now Answers 

1. 2

2
1

1

6

7
sin

1

6

7
csc −=

−
=









=












 

 

2. 

     

)(csc1)(cot

)(sin

1

)(sin

)(sin

)(sin

)(cos

1
sin

)(sin)(cos

22

22

2

2

2

2

22















=+

=+

=
+

 

 

3. 
3

7
)sec( −= .  By definition, 

3

7

)cos(

1
−=


, so 

7

3
)cos( −= . 

Using Pythagorean Identity with the sec, 

2

2

3

7
)(tan1 








−=+  .  Solving gives 

3

40
)tan(

−
= .  We use the negative square root since an angle in the second quadrant 

would have a negative tangent. 

Using Pythagorean Identity with the cos,  1
7

3
)(sin

2

2 =







−+ .  Solving, 

7

40
)sin( = .       
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Section 5.4 Exercises 

1. If  
 

4


 =  , find exact values for ( ) ( ) ( ) ( )sec ,csc , tan , cot      . 

2. If  
7  

4


 =  , find exact values for ( ) ( ) ( ) ( )sec ,csc , tan , cot      . 

3. If  
5  

6


 =  , find exact values for ( ) ( ) ( ) ( )sec ,csc , tan , cot      . 

4. If  
 

6


 =  , find exact values for ( ) ( ) ( ) ( )sec ,csc , tan , cot    . 

5. If  
2  

3


 =  , find exact values for ( ) ( ) ( ) ( )sec ,csc , tan , cot      . 

6. If  
4  

3


 =  , find exact values for ( ) ( ) ( ) ( )sec ,csc , tan , cot    . 

7. Evaluate: a. ( )sec 135    b. ( )csc 210    c. ( )tan 60    d. ( )cot 225  

8. Evaluate: a. ( )sec 30      b. ( )csc 315   c. ( )tan 135   d. ( )cot 150  

9. If ( )
3

sin
4

 = , and   is in quadrant II, find ( ) ( ) ( ) ( ) ( )cos , sec ,csc , tan , cot     . 

10. If ( )
2

sin
7

 = , and   is in quadrant II, find ( ) ( ) ( ) ( ) ( )cos , sec ,csc , tan , cot     . 

11. If ( )
1

cos
3

 = − , and   is in quadrant III, find 

( ) ( ) ( ) ( ) ( )sin , sec ,csc , tan , cot     . 

12. If ( )
1

cos
5

 = , and   is in quadrant I, find ( ) ( ) ( ) ( ) ( )sin , sec ,csc , tan , cot     . 

13. If ( )
12

tan
5

 = , and 0
2


  , find ( ) ( ) ( ) ( ) ( )sin , cos ,sec , csc , cot     . 

14. If ( )tan 4 = , and 0
2


  , find ( ) ( ) ( ) ( ) ( )sin , cos ,sec , csc , cot     . 
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15. Use a calculator to find sine, cosine, and tangent of the following values: 

a. 0.15  b. 4  c. 70°  d. 283°  

 

16. Use a calculator to find sine, cosine, and tangent of the following values: 

a. 0.5  b. 5.2  c. 10°  d. 195°  

 

Simplify each of the following to an expression involving a single trig function with no 

fractions. 

17. ( )csc( ) tant t  

18. ( )cos( ) csct t  

19. 
( )

( )

sec

csc  

t

t
 

20. 
( )

( )

cot

csc

t

t
 

21. 
( ) ( )

( )

sec cos

sin

t t

t

−
 

22. 
( )

( ) ( )

tan

sec cos

t

t t−
 

23. 
( )

( )

1 cot

1 tan

t

t

+

+
 

24. 
( )

( )

1 sin

1 csc

t

t

+

+
 

25. 
( ) ( )

( )

2 2

2

sin cos

cos

t t

t

+
    

26. 
( )

( )

2

2

1 sin

sin

t

t

−
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Prove the identities. 

27. 
( )

( )
( )

2sin
1 cos

1 cos





= −

+
 

28.  

29.  

30.  

31.  

32.  

33.  

34.  

35.  

36.  

37.  

38.  

 

( )
2

2

1
tan ( ) 1

cos
t

t
= −

( ) ( ) ( ) ( )sec cos sin tana a a a− =

( )

( )

2

2

2

1 tan
csc ( ) 

tan

b
b

b

+
=

( ) ( )

( ) ( )
( ) ( )

2 2csc sin
cos cot

csc sin

x x
x x

x x

−
=

+

( ) ( )

( ) ( )
( ) ( )

sin cos
sin cos

sec csc

 
 

 

−
=

−

( )

( ) ( )
( )

2

2

csc 1
1 sin

csc csc




 

−
= +

−

( ) ( ) ( ) ( )( )1 cot cos sec cscx x x x+ = +

( )

( )

( )

( )

1 cos sin

sin 1 cos

u u

u u

+
=

−

( )
( )

( ) ( )
2

2

1 sin 1
2sec

cos 1 sin

t
t

t t

−
= +

−

( ) ( )

( ) ( )
( ) ( )

4 4sin cos
sin cos

sin cos

 
 

 

−
= +

−

( )( ) ( )( )
( )

( )
1 cos 1 cos

sin
sin

A A
A

A

+ −
=
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Section 5.5 Right Triangle Trigonometry 

 

In section 5.3 we were introduced to the sine and cosine function as ratios of the sides of 

a triangle drawn inside a circle, and spent the rest of that section discussing the role of 

those functions in finding points on the circle.  In this section, we return to the triangle, 

and explore the applications of the trigonometric functions to right triangles where circles 

may not be involved. 

 

Recall that we defined sine and cosine as 

 

 

 

Separating the triangle from the circle, we can make equivalent but more general 

definitions of the sine, cosine, and tangent on a right triangle.  On the right triangle, we 

will label the hypotenuse as well as the side opposite the angle and the side adjacent (next 

to) the angle. 

 

 

Right Triangle Relationships 

Given a right triangle with an angle of  

 

 

 

 

 

 

A common mnemonic for remembering these relationships is SohCahToa, formed from 

the first letters of “Sine is opposite over hypotenuse, Cosine is adjacent over hypotenuse, 

Tangent is opposite over adjacent.” 

 

 

 

 

 

 

 

 

r

y
=)sin(

r

x
=)cos(



hypotenuse

opposite
)sin( =

hypotenuse

adjacent
)cos( =

adjacent

opposite
)tan( =

(x, y) 

r 

θ 

y 

x 

θ 

adjacent 

opposite 

hypotenuse 
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Example 1 

Given the triangle shown, find the value for . 

 

The side adjacent to the angle is 15, and the 

hypotenuse of the triangle is 17, so 

 

 

 

When working with general right triangles, the same rules apply regardless of the 

orientation of the triangle.  In fact, we can evaluate the sine and cosine of either of the 

two acute angles in the triangle. 

 
 

Example 2 

Using the triangle shown, evaluate , , , and . 

 

 

 

 

 

 

 

Try it Now 

1. A right triangle is drawn with angle  opposite a side with length 33, angle  

opposite a side with length 56, and hypotenuse 65.  Find the sine and cosine of  and

. 

 

 

)cos(

17

15

hypotenuse

adjacent
)cos( ==

)cos( )sin( )cos( )sin(

5

3

hypotenuse

 oadjacent t
)cos( ==




5

4

hypotenuse

 opposite
)sin( ==




5

4

hypotenuse

 oadjacent t
)cos( ==




5

3

hypotenuse

 opposite
)sin( ==




 




  
  

Adjacent to α 

Opposite β 

 

Hypotenuse 

Adjacent to β 

Opposite α 

 

  

15 

8 
17 

  
  

3 

5 

4 
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You may have noticed that in the above example that )sin()cos(  =  and 

)sin()cos(  = .  This makes sense since the side opposite α is also adjacent to β.  Since 

the three angles in a triangle need to add to π, or 180 degrees, then the other two angles 

must add to 
2


, or 90 degrees, so 


 −=

2
, and 


 −=

2
.  Since )sin()cos(  = , 

then 







−= 




2
sin)cos( . 

 

 

Cofunction Identities 

The cofunction identities for sine and cosine are: 









−= 




2
sin)cos(    








−= 




2
cos)sin(  

 

 

In the previous examples, we evaluated the sine and cosine on triangles where we knew 

all three sides of the triangle.  Right triangle trigonometry becomes powerful when we 

start looking at triangles in which we know an angle but don’t know all the sides. 

 

 

Example 3 

Find the unknown sides of the triangle pictured here. 

 

Since 
hypotenuse

opposite
)sin( = ,  

b

7
)30sin( = . 

 

From this, we can solve for the side b. 
7)30sin( =b  

)30sin(

7


=b  

 

To obtain a value, we can evaluate the sine and simplify 

14

2
1

7
==b  

 

To find the value for side a, we could use the cosine, or simply apply the Pythagorean 

Theorem: 
222 7 ba =+  

222 147 =+a  

147=a  

 

30° 

a 

7 

b 
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Notice that if we know at least one of the non-right angles of a right triangle and one side, 

we can find the rest of the sides and angles. 

 

 

Try it Now 

2. A right triangle has one angle of 
3


 and a hypotenuse of 20.  Find the unknown sides 

and angles of the triangle. 

 

 

Example 4 

To find the height of a tree, a person walks to a point 30 feet from the base of the tree, 

and measures the angle from the ground to the top of the tree to be 57 degrees.  Find the 

height of the tree. 

 

We can introduce a variable, h, to represent the height 

of the tree.  The two sides of the triangle that are most 

important to us are the side opposite the angle, the 

height of the tree we are looking for, and the adjacent 

side, the side we are told is 30 feet long. 

 

The trigonometric function which relates the side 

opposite of the angle and the side adjacent to the angle 

is the tangent. 

 

30adjacent

opposite
)57tan(

h
==   Solving for h, 

)57tan(30 =h    Using technology, we can approximate a value 

2.46)57tan(30 =h  feet 

 

The tree is approximately 46 feet tall. 

 

 

Example 5 

A person standing on the roof of a 100 foot tall building is looking towards a skyscraper 

a few blocks away, wondering how tall it is.  She measures the angle of declination 

from the roof of the building to the base of the skyscraper to be 20 degrees and the 

angle of inclination to the top of the skyscraper to be 42 degrees.   

 

 

 

 

 

57° 

30 feet 
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To approach this problem, it would be 

good to start with a picture.  Although 

we are interested in the height, h, of the 

skyscraper, it can be helpful to also label 

other unknown quantities in the picture – 

in this case the horizontal distance x 

between the buildings and a, the height 

of the skyscraper above the person. 

 

To start solving this problem, notice we 

have two right triangles.  In the top 

triangle, we know one angle is 42 

degrees, but we don’t know any of the sides of the triangle, so we don’t yet know 

enough to work with this triangle.   

 

In the lower right triangle, we know one angle is 20 degrees, and we know the vertical 

height measurement of 100 ft.  Since we know these two pieces of information, we can 

solve for the unknown distance x. 

x

100

adjacent

opposite
)20tan( ==   Solving for x 

100)20tan( =x  

)20tan(

100


=x  

 

Now that we have found the distance x, we know enough information to solve the top 

right triangle. 

)20tan(
100adjacent

opposite
)42tan(



===
a

x

a
 

100

)20tan(
)42tan(


=

a
 

)20tan()42tan(100 = a     

a=




)20tan(

)42tan(100
   

   

Approximating a value, 

4.247
)20tan(

)42tan(100





=a  feet 

 

Adding the height of the first building, we determine that the skyscraper is about 347 

feet tall. 

 

100 ft 

h 

a 

x 
42° 

20° 
100 ft 
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Important Topics of This Section 

SOH  CAH  TOA 

Cofunction identities 

Applications with right triangles  

 

 

Try it Now Answers 

1. 
33

sin( )
65

 =     
56

cos( )
65

 =    
56

sin( )
65

 =    
65

33
)cos( =  

 

2.  
20

Adj

hypoteuse

adjacent

3
cos ==








   so, 10

2

1
20

3
cos20adjacent =








=








=


 

   
20

Opp

hypoteuse

Opposite

3
sin ==








    so,  310

2

3
20

3
sin20opposite =














=








=


 

    Missing angle = 180-90-60 = 30 degrees  or  
6

 .
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Section 5.5 Exercises 

 

Note: pictures may not be drawn to scale. 

 

In each of the triangles below, find ( ) ( ) ( ) ( ) ( ) ( )sin ,cos , tan ,sec ,csc ,cotA A A A A A . 

 

 

1.    2.  

 

 

 

 

 

 

In each of the following triangles, solve for the unknown sides and angles. 

3.      4. 

   

   

 

  

 

 

 

5.  6.  

  

   

  

  

 

 

7.  8.  

  

 

 

 

 

9. A 33-ft ladder leans against a building so that the angle between the ground and the 

ladder is 80°.  How high does the ladder reach up the side of the building?  

  

10. A 23-ft ladder leans against a building so that the angle between the ground and the 

ladder is 80°.  How high does the ladder reach up the side of the building?  

  

  

60° 

a 10 

c 

A 

10° 
b 

a 
12 B 

65° 

b 
a 

10 

B 

A 

8 

10 

A 

10 

4 

30° 

7 

c B 

b 

35° 

7 
c 

B 

b 

62° 

a 10 

c 

A 
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11. The angle of elevation to the top of a building in New York is found to be 9 degrees 

from the ground at a distance of 1 mile from the base of the building. Using this 

information, find the height of the building. 

 

12. The angle of elevation to the top of a building in Seattle is found to be 2 degrees from 

the ground at a distance of 2 miles from the base of the building. Using this 

information, find the height of the building.  

 

13. A radio tower is located 400 feet from a building. From a window in the building, a 

person determines that the angle of elevation to the top of the tower is 36° and that 

the angle of depression to the bottom of the tower is 23°. How tall is the tower? 

 

14. A radio tower is located 325 feet from a building. From a window in the building, a 

person determines that the angle of elevation to the top of the tower is 43° and that 

the angle of depression to the bottom of the tower is 31°. How tall is the tower? 

 

15. A 200 foot tall monument is located in the distance. From a window in a building, a 

person determines that the angle of elevation to the top of the monument is 15° and 

that the angle of depression to the bottom of the tower is 2°. How far is the person 

from the monument? 

 

16. A 400 foot tall monument is located in the distance. From a window in a building, a 

person determines that the angle of elevation to the top of the monument is 18° and 

that the angle of depression to the bottom of the tower is 3°. How far is the person 

from the monument? 

 

17. There is an antenna on the top of a building.  From a location 300 feet from the base 

of the building, the angle of elevation to the top of the building is measured to be 40°.  

From the same location, the angle of elevation to the top of the antenna is measured 

to be 43°.  Find the height of the antenna. 

   

18. There is lightning rod on the top of a building.  From a location 500 feet from the 

base of the building, the angle of elevation to the top of the building is measured to be 

36°.  From the same location, the angle of elevation to the top of the lightning rod is 

measured to be 38°.  Find the height of the lightning rod. 

 

19. Find the length x.     20. Find the length x. 

                 

 

x 

82 

63° 39° 

x 

85 

36° 50° 
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21. Find the length x.     22. Find the length x.   

                       
 

 

23. A plane is flying 2000 feet above sea level 

toward a mountain. The pilot observes the top of 

the mountain to be 18o above the horizontal, then 

immediately flies the plane at an angle of 20o 

above horizontal. The airspeed of the plane is 

100 mph. After 5 minutes, the plane is directly 

above the top of the mountain. How high is the 

plane above the top of the mountain (when it passes over)? What is the height of the 

mountain?  [UW] 

 

 

24. Three airplanes depart SeaTac Airport. A United flight is heading in a direction 50° 

counterclockwise from east, an Alaska flight is heading 115° counterclockwise from 

east and a Delta flight is heading 20° clockwise from east. [UW] 

a. Find the location of the United flight when it is 20 miles north of SeaTac.  

b. Find the location of the Alaska flight when it is 50 miles west of SeaTac.  

c. Find the location of the Delta flight when it is 30 miles east of SeaTac.   

 

 
 

 

 

x 

115 

56° 35° 

x 

119 

70° 26° 

(a) The flight paths of 

three airplanes 

(b) Modeling the paths of 

each flight 

Alaska United 

Delta 

Alaska 
United 

Delta 
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25. The crew of a helicopter needs to 

land temporarily in a forest and spot 

a flat piece of ground (a clearing in 

the forest) as a potential landing site, 

but are uncertain whether it is wide 

enough. They make two 

measurements from A (see picture) 

finding α = 25° and β = 54°. They 

rise vertically 100 feet to B and 

measure γ = 47°. Determine the width of the clearing to the nearest foot.  [UW] 

 

 

26. A Forest Service helicopter needs to determine 

the width of a deep canyon. While hovering, 

they measure the angle γ = 48° at position B 

(see picture), then descend 400 feet to position 

A and make two measurements: α = 13° (the 

measure of  EAD), β = 53° (the measure of 

 CAD).  Determine the width of the canyon 

to the nearest foot.  [UW] 
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Chapter 6:  

Periodic Functions 
In the previous chapter, the trigonometric functions were introduced as ratios of sides of a 

right triangle, and related to points on a circle.  We noticed how the x and y values of the 

points did not change with repeated revolutions around the circle by finding coterminal 

angles. In this chapter, we will take a closer look at the important characteristics and 

applications of these types of functions, and begin solving equations involving them. 
 

Section 6.1 Sinusoidal Graphs .................................................................................... 395 
Section 6.2 Graphs of the Other Trig Functions ......................................................... 412 
Section 6.3 Inverse Trig Functions ............................................................................. 422 

Section 6.4 Solving Trig Equations ............................................................................ 430 
Section 6.5 Modeling with Trigonometric Equations ................................................. 441 

 

Section 6.1 Sinusoidal Graphs 

 

The London Eye1 is a huge Ferris wheel 135 meters 

(394 feet) tall in London, England, which completes one 

rotation every 30 minutes.  When we look at the 

behavior of this Ferris wheel it is clear that it completes 

1 cycle, or 1 revolution, and then repeats this revolution 

over and over again.   

 

This is an example of a periodic function, because the 

Ferris wheel repeats its revolution or one cycle every 30 

minutes, and so we say it has a period of 30 minutes. 

 

In this section, we will work to sketch a graph of a 

rider’s height above the ground over time and express 

this height as a function of time.   

 

 

Periodic Functions 

A periodic function is a function for which a specific horizontal shift, P, results in the 

original function: )()( xfPxf =+  for all values of x.   When this occurs we call the 

smallest such horizontal shift with P > 0 the period of the function.  

 

 

 
1 London Eye photo by authors, 2010, CC-BY 
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You might immediately guess that there is a connection here to finding points on a circle, 

since the height above ground would correspond to the y value of a point on the circle. 

We can determine the y value by using the sine function.  To get a better sense of this 

function’s behavior, we can create a table of values we know, and use them to sketch a 

graph of the sine and cosine functions.  

 

Listing some of the values for sine and cosine on a unit circle, 

θ 0 

6


 

4


 

3


 

2


 

3

2
 

4

3
 

6

5
 

  

cos 1 

2

3
 

2

2
 

2

1
 

0 

2

1
−  

2

2
−  

2

3
−  

-1 

sin 0 

2

1
 

2

2
 

2

3
 

1 

2

3
 

2

2
 

2

1
 

0 

 

Here you can see how for each angle, we use the y value of the point on the circle to 

determine the output value of the sine function. 

 
Plotting more points gives the full shape of the sine and cosine functions. 

 

 
 

6

  
4

  
3

  
2

  

θ 

f(θ) = sin(θ) 
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Notice how the sine values are positive between 0 and π, which correspond to the values 

of sine in quadrants 1 and 2 on the unit circle, and the sine values are negative between π 

and 2π, corresponding to quadrants 3 and 4. 

 

 
 

Like the sine function we can track the value of the cosine function through the 4 

quadrants of the unit circle as we place it on a graph. 

 

Both of these functions are defined for all real numbers, since we can evaluate the sine 

and cosine of any angle.  By thinking of sine and cosine as coordinates of points on a unit 

circle, it becomes clear that the range of both functions must be the interval ]1,1[− . 

 

 

Domain and Range of Sine and Cosine 

The domain of sine and cosine is all real numbers, ( , )−  . 

The range of sine and cosine is the interval [-1, 1]. 

 

 

Both these graphs are called sinusoidal graphs. 

 

In both graphs, the shape of the graph begins repeating after 2π.  Indeed, since any 

coterminal angles will have the same sine and cosine values, we could conclude that 

)sin()2sin(  =+  and )cos()2cos(  =+ . 

 

In other words, if you were to shift either graph horizontally by 2π, the resulting shape 

would be identical to the original function.  Sinusoidal functions are a specific type of 

periodic function. 

 

 

Period of Sine and Cosine 

The periods of the sine and cosine functions are both 2π. 
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Looking at these functions on a domain centered at the vertical axis helps reveal 

symmetries. 

 

sine     cosine 

          
 

The sine function is symmetric about the origin, the same symmetry the cubic function 

has, making it an odd function. The cosine function is clearly symmetric about the y axis, 

the same symmetry as the quadratic function, making it an even function. 

 

 

Negative Angle Identities 

The sine is an odd function, symmetric about the origin, so )sin()sin(  −=− . 

The cosine is an even function, symmetric about the y-axis, so )cos()cos(  =− . 

 

 

These identities can be used, among other purposes, for helping with simplification and 

proving identities. 

You may recall the cofunction identity from last chapter, 







−= 




2
cos)sin( .   

 

Graphically, this tells us that the sine and cosine graphs are horizontal transformations of 

each other.  We can prove this by using the cofunction identity and the negative angle 

identity for cosine. 

 









−=
















−−=








+−=








−=

2
cos

2
cos

2
cos

2
cos)sin(











    

 

Now we can clearly see that if we horizontally shift the cosine function to the right by π/2 

we get the sine function. 

 

Remember this shift is not representing the period of the function.  It only shows that the 

cosine and sine function are transformations of each other. 
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Example 1 

Simplify 
)tan(

)sin(



−
. 

 

We start by using the negative angle identity for sine. 

)tan(

)sin(



−
  Rewriting the tangent 

)cos(
)sin(

)sin(




−
 Inverting and multiplying 

)sin(

)cos(
)sin(




 −  Simplifying we get 

)cos(−  

 

 

Transforming Sine and Cosine 

 

 

Example 2 

A point rotates around a circle of radius 3.  

Sketch a graph of the y coordinate of the 

point. 

 

Recall that for a point on a circle of radius 

r, the y coordinate of the point is 

)sin(ry = , so in this case, we get the 

equation )sin(3)(  =y .   

 

The constant 3 causes a vertical stretch of 

the y values of the function by a factor of 3.   

 

Notice that the period of the function does not change. 

 

 

Since the outputs of the graph will now oscillate between -3 and 3, we say that the 

amplitude of the sine wave is 3. 

 

 

Try it Now 

1. What is the amplitude of the function )cos(7)(  =f ?  Sketch a graph of this 

function. 
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Example 3 

A circle with radius 3 feet is mounted with its center 4 

feet off the ground.  The point closest to the ground is 

labeled P.  Sketch a graph of the height above ground of 

the point P as the circle is rotated, then find a function 

that gives the height in terms of the angle of rotation. 

 

Sketching the height, we note that it will start 1 foot 

above the ground, then increase up to 7 feet above the 

ground, and continue to oscillate 3 feet above and 

below the center value of 4 feet. 

 

Although we could use a transformation of either the 

sine or cosine function, we start by looking for 

characteristics that would make one function easier to 

use than the other.  

 

We decide to use a cosine function because it starts at 

the highest or lowest value, while a sine function starts 

at the middle value.  A standard cosine starts at the 

highest value, and this graph starts at the lowest value, 

so we need to incorporate a vertical reflection.   

 

Second, we see that the graph oscillates 3 above and below the center, while a basic 

cosine has an amplitude of one, so this graph has been vertically stretched by 3, as in 

the last example. 

 

Finally, to move the center of the circle up to a height of 4, the graph has been vertically 

shifted up by 4.  Putting these transformations together, 

 

4)cos(3)( +−= h  

 

 

Midline 

The center value of a sinusoidal function, the value that the function oscillates above 

and below, is called the midline of the function, corresponding to a vertical shift. 

 

The function kf += )cos()(   has midline at y = k. 

 

 

Try it Now 

2. What is the midline of the function 4)cos(3)( −= f ?  Sketch a graph of the 

function. 

 

3 ft 

4 ft 

P 
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To answer the Ferris wheel problem at the beginning of the section, we need to be able to 

express our sine and cosine functions at inputs of time.  To do so, we will utilize 

composition.  Since the sine function takes an input of an angle, we will look for a 

function that takes time as an input and outputs an angle.  If we can find a suitable )(t

function, then we can compose this with our )cos()(  =f  function to obtain a sinusoidal 

function of time: ))(cos()( ttf = . 

 

 

Example 4 

A point completes 1 revolution every 2 minutes around a circle of radius 5.  Find the x 

coordinate of the point as a function of time, if it starts at (5, 0). 

 

Normally, we would express the x coordinate of a point on a circle centered at the origin 

using )cos(rx = .  Here we write the function )cos(5)(  =x . 

 

The rotation rate of 1 revolution every 2 minutes is an 

angular velocity.  We can use this rate to find a formula for 

the angle as a function of time.  The point begins at an 

angle of 0.  Since the point rotates 1 revolution = 2π 

radians every 2 minutes, it rotates π radians every minute.  

After t minutes, it will have rotated: 

tt  =)(  radians 

 

Composing this with the cosine function, we obtain a 

function of time. 

)cos(5))(cos(5)( tttx  ==  

 

 

Notice that this composition has the effect of a horizontal compression, changing the 

period of the function. 

 

To see how the period relates to the stretch or compression coefficient B in the equation 

( )Bttf sin)( = , note that the period will be the time it takes to complete one full 

revolution of a circle.  If a point takes P minutes to complete 1 revolution, then the 

angular velocity is 
minutes

radians2

P


.  Then t

P
t




2
)( = .  Composing with a sine function, 









== t

P
ttf




2
sin))(sin()(  

 

From this, we can determine the relationship between the coefficient B and the period:  

P
B

2
= .   
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Notice that the stretch or compression coefficient B is a ratio of the “normal period of a 

sinusoidal function” to the “new period.”   If we know the stretch or compression 

coefficient B, we can solve for the “new period”: 
B

P
2

= .   

 

Summarizing our transformations so far: 

 

 

Transformations of Sine and Cosine 

Given an equation in the form ( ) kBtAtf += sin)(  or ( ) kBtAtf += cos)(  

A is the vertical stretch, and is the amplitude of the function.  

B is the horizontal stretch/compression, and is related to the period, P, by 
B

P
2

= . 

k is the vertical shift and determines the midline of the function. 

 

 
 

 

Example 5 

What is the period of the function 







= ttf

6
sin)(


? 

 

Using the relationship above, the stretch/compression factor is 
6


=B , so the period 

will be 12
6

2

6

22
====








B
P . 

 

 

While it is common to compose sine or cosine with functions involving time, the 

composition can be done so that the input represents any reasonable quantity. 

 

 

y = k 
A 

A 

P 

P 
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Example 6 

A bicycle wheel with radius 14 inches has the bottom-most point on the wheel marked 

in red.  The wheel then begins rolling down the street.  Write a formula for the height 

above ground of the red point after the bicycle has travelled x inches. 

 

The height of the point begins at the lowest value, 0, 

increases to the highest value of 28 inches, and 

continues to oscillate above and below a center height 

of 14 inches.  In terms of the angle of rotation, θ: 

14)cos(14)( +−= h  

 

In this case, x is representing a linear distance the 

wheel has travelled, corresponding to an arclength 

along the circle.  Since arclength and angle can be 

related by rs = , in this case we can write 14=x , 

which allows us to express the angle in terms of x:  

14
)(

x
x =  

 

Composing this with our cosine-based function from above, 

14
14

1
cos1414

14
cos14))(()( +








−=+








−== x

x
xhxh   

 

The period of this function would be 


28142

14

1

22
====

B
P , the circumference 

of the circle.  This makes sense – the wheel completes one full revolution after the 

bicycle has travelled a distance equivalent to the circumference of the wheel. 

 

 

Example 7 

Determine the midline, amplitude, and period of the function ( ) 12sin3)( += ttf . 

 

The amplitude is 3 

The period is 

===

2

22

B
P  

The midline is at 1y =  

 

 

Amplitude, midline, and period, when combined with vertical flips, allow us to write 

equations for a variety of sinusoidal situations. 

 

 

 

θ 

Starting 

Rotated by θ 

14in 

x 
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Try it Now 

3. If a sinusoidal function starts on the midline at point (0,3), has an amplitude of 2, and 

a period of 4, write a formula for the function 

 

 

Example 8 

Find a formula for the sinusoidal function 

graphed here. 

 

The graph oscillates from a low of -1 to a 

high of 3, putting the midline at y = 1, 

halfway between. 

 

The amplitude will be 2, the distance from 

the midline to the highest value (or lowest 

value) of the graph. 

 

The period of the graph is 8.  We can measure this from the first peak at x = -2 to the 

second at x = 6.  Since the period is 8, the stretch/compression factor we will use will be 

48

22 
===

P
B  

 

At x = 0, the graph is at the midline value, which tells us the graph can most easily be 

represented as a sine function.  Since the graph then decreases, this must be a vertical 

reflection of the sine function.  Putting this all together, 

 1
4

sin2)( +







−= ttf


 

 

 

With these transformations, we are ready to answer the Ferris wheel problem from the 

beginning of the section. 

 

 

Example 9 

The London Eye is a huge Ferris wheel in London, England, which completes one 

rotation every 30 minutes.  The diameter of the wheel is 120 meters, but the passenger 

capsules sit outside the wheel.  Suppose the diameter at the capsules is 130 meters, and 

riders board from a platform 5 meters above the ground.  Express a rider’s height above 

ground as a function of time in minutes. 

 

It can often help to sketch a graph of the situation before trying to find the equation. 
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With a diameter of 130 meters, the wheel has a 

radius of 65 meters.  The height will oscillate with 

amplitude of 65 meters above and below the 

center. 

 

Passengers board 5 meters above ground level, so 

the center of the wheel must be located 65 + 5 = 

70 meters above ground level.  The midline of the 

oscillation will be at 70 meters. 

 

The wheel takes 30 minutes to complete 1 

revolution, so the height will oscillate with period 

of 30 minutes. 

 

Lastly, since the rider boards at the lowest point, 

the height will start at the smallest value and 

increase, following the shape of a flipped cosine curve. 

Putting these together: 

Amplitude: 65 

Midline: 70 

Period: 30, so 
1530

2 
==B   

Shape: negative cosine 

 

An equation for the rider’s height would be 

( ) 65cos 70
15

h t t
 

= − + 
 

 

 

 

Try it Now 

4. The Ferris wheel at the Puyallup Fair2 has a diameter of about 70 

feet and takes 3 minutes to complete a full rotation.  Passengers 

board from a platform 10 feet above the ground.  Write an 

equation for a rider’s height above ground over time.  

 

 

While these transformations are sufficient to represent many situations, occasionally we 

encounter a sinusoidal function that does not have a vertical intercept at the lowest point, 

highest point, or midline.  In these cases, we need to use horizontal shifts.  Since we are 

combining horizontal shifts with horizontal stretches, we need to be careful.  Recall that 

when the inside of the function is factored, it reveals the horizontal shift. 

 

 

 
2 Photo by photogirl7.1, http://www.flickr.com/photos/kitkaphotogirl/432886205/sizes/z/, CC-BY 

http://www.flickr.com/photos/kitkaphotogirl/432886205/sizes/z/
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Horizontal Shifts of Sine and Cosine 

Given an equation in the form ( ) khtBAtf +−= )(sin)(  or ( ) khtBAtf +−= )(cos)(  

h is the horizontal shift of the function 

 

 

Example 10 

Sketch a graph of 







−=

44
sin3)(


ttf . 

 

To reveal the horizontal shift, we first need to factor inside the function:  









−= )1(

4
sin3)( ttf


 

 

This graph will have the shape of a sine function, starting at the midline and increasing, 

with an amplitude of 3.  The period of the graph will be 8
4

2

4

22
====








B
P .  

Finally, the graph will be shifted to the right by 1.   

 
 

 

In some physics and mathematics books, you will hear the horizontal shift referred to as 

phase shift.  In other physics and mathematics books, they would say the phase shift of 

the equation above is 
4


, the value in the unfactored form.  Because of this ambiguity, we 

will not use the term phase shift any further, and will only talk about the horizontal shift. 
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Example 11 

Find a formula for the function graphed here. 

 

With highest value at 1 and lowest value at -5, the 

midline will be halfway between at -2.   

 

The distance from the midline to the highest or 

lowest value gives an amplitude of 3. 

 

The period of the graph is 6, which can be 

measured from the peak at x = 1 to the next peak at 

x = 7, or from the distance between the lowest 

points.  This gives 
36

22 
===

P
B . 

 

For the shape and shift, we have more than one option.  We could either write this as: 

 A cosine shifted 1 to the right 

 A negative cosine shifted 2 to the left 

 A sine shifted ½ to the left 

 A negative sine shifted 2.5 to the right 

 

While any of these would be fine, the cosine shifts are easier to work with than the sine 

shifts in this case, because they involve integer values.  Writing these: 

2)1(
3

cos3)( −







−= xxy


   or 

2)2(
3

cos3)( −







+−= xxy


 

 

Again, these functions are equivalent, so both yield the same graph. 

 

 

Try it Now 

5. Write a formula for the function graphed here. 
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Important Topics of This Section 

Periodic functions 

Sine and cosine function from the unit circle 

Domain and range of sine and cosine functions 

Sinusoidal functions 

Negative angle identity 

Simplifying expressions 

Transformations 

 Amplitude 

 Midline 

 Period 

 Horizontal shifts 

 

 

Try it Now Answers 

1. 7 

2. -4 

3. ( ) 2sin 3
2

f x x
 

= + 
 

 

4. 
2

( ) 35cos 45
3

h t t
 

= − + 
 

 

5. Two possibilities: ( ) 4cos ( 3.5) 4
5

f x x
 

= − + 
 

 or ( ) 4sin ( 1) 4
5

f x x
 

= − + 
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Section 6.1 Exercises 

 

1. Sketch a graph of ( ) ( )3sinf x x= − . 

2. Sketch a graph of ( ) ( )4sinf x x= . 

3. Sketch a graph of ( ) ( )2cosf x x= . 

4.  Sketch a graph of ( ) ( )4cosf x x= − . 

 

For the graphs below, determine the amplitude, midline, and period, then find a formula 

for the function. 

5.    6.   

7.    8.  

9.   10.   
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For each of the following equations, find the amplitude, period, horizontal shift, and 

midline. 

 

11. 3sin(8( 4)) 5y x= + +  

 

12. 4sin ( 3) 7
2

y x
 

= − + 
 

 

 

13. 2sin(3 21) 4y x= − +  

 

14. 5sin(5 20) 2y x= + −  

 

15. sin 3
6

y x



 

= + − 
 

 

 

16. 
7 7

8sin 6
6 2

y x
  

= + + 
 

 

 

Find a formula for each of the functions graphed below.   

17.  

       

18.  
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19.  

20.  

  

21. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the temperature is 50 degrees at midnight and the high and low 

temperature during the day are 57 and 43 degrees, respectively. Assuming t is the 

number of hours since midnight, find a function for the temperature, D, in terms of t. 

 

22. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the temperature is 68 degrees at midnight and the high and low 

temperature during the day are 80 and 56 degrees, respectively. Assuming t is the 

number of hours since midnight, find a function for the temperature, D, in terms of t. 

 

23. A Ferris wheel is 25 meters in diameter and boarded from a platform that is 1 meters 

above the ground. The six o'clock position on the Ferris wheel is level with the 

loading platform. The wheel completes 1 full revolution in 10 minutes. The function 

( )h t  gives your height in meters above the ground t minutes after the wheel begins to 

turn.   

a. Find the amplitude, midline, and period of ( )h t . 

b. Find a formula for the height function ( )h t . 

c. How high are you off the ground after 5 minutes? 

 

24. A Ferris wheel is 35 meters in diameter and boarded from a platform that is 3 meters 

above the ground. The six o'clock position on the Ferris wheel is level with the 

loading platform. The wheel completes 1 full revolution in 8 minutes. The function 

( )h t  gives your height in meters above the ground t minutes after the wheel begins to 

turn.   

a. Find the amplitude, midline, and period of ( )h t . 

b. Find a formula for the height function ( )h t . 

c. How high are you off the ground after 4 minutes? 
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Section 6.2 Graphs of the Other Trig Functions 

 

In this section, we will explore the graphs of the other four trigonometric functions.  

We’ll begin with the tangent function.  Recall that in Chapter 5 we defined tangent as y/x 

or sine/cosine, so you can think of the tangent as the slope of a line through the origin 

making the given angle with the positive x axis.   

 

At an angle of 0, the line would be horizontal with a slope of zero.  As the angle increases 

towards π/2, the slope increases more and more.  At an angle of π/2, the line would be 

vertical and the slope would be undefined.  

Immediately past π/2, the line would have a steep 

negative slope, giving a large negative tangent value.  

There is a break in the function at π/2, where the 

tangent value jumps from large positive to large 

negative.   

 

We can use these ideas along with the definition of 

tangent to sketch a graph.  Since tangent is defined as 

sine/cosine, we can determine that tangent will be 

zero when sine is zero:  at -π, 0, π, and so on.  

Likewise, tangent will be undefined when cosine is 

zero:  at -π/2, π/2, and so on. 

 

The tangent is positive from 0 to π/2 and π to 3π/2, corresponding to quadrants 1 and 3 of 

the unit circle. 

 

Using technology, we can obtain a graph of tangent on a standard grid. 

 

Notice that the graph appears to repeat itself.  For any 

angle on the circle, there is a second angle with the 

same slope and tangent value halfway around the 

circle, so the graph repeats itself with a period of π; 

we can see one continuous cycle from - π/2 to π/2, 

before it jumps and repeats itself.  

  

The graph has vertical asymptotes and the tangent is 

undefined wherever a line at that angle would be 

vertical: at π/2, 3π/2, and so on.  While the domain of 

the function is limited in this way, the range of the 

function is all real numbers. 
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Features of the Graph of Tangent 

The graph of the tangent function )tan()(  =m  

The period of the tangent function is π 

The domain of the tangent function is 


 k+
2

, where k is an integer 

The range of the tangent function is all real numbers, ( , )−   

 

 

With the tangent function, like the sine and cosine functions, horizontal 

stretches/compressions are distinct from vertical stretches/compressions.  The horizontal 

stretch can typically be determined from the period of the graph.  With tangent graphs, it 

is often necessary to determine a vertical stretch using a point on the graph. 

 

 

Example 1 

Find a formula for the function graphed here. 

 

The graph has the shape of a tangent 

function, however the period appears to be 8. 

We can see one full continuous cycle from -4 

to 4, suggesting a horizontal stretch.  To 

stretch π to 8, the input values would have to 

be multiplied by


8
.  Since the constant k in 

( )( ) tanf a k = is the reciprocal of the 

horizontal stretch 


8
, the equation must have 

form 









= 




8
tan)( af . 

 

We can also think of this the same way we did with sine and cosine.  The period of the 

tangent function is   but it has been transformed and now it is 8; remember the ratio of 

the “normal period” to the “new period” is 
8


and so this becomes the value on the 

inside of the function that tells us how it was horizontally stretched. 

 

To find the vertical stretch a, we can use a point on the graph.  Using the point (2, 2) 









=








=

4
tan2

8
tan2


aa .   Since 1

4
tan =







 
,   a = 2. 

This function would have a formula 







= 




8
tan2)(f . 



414  Chapter 6 

 

Try it Now 

1. Sketch a graph of 







= 




6
tan3)(f . 

 

 

For the graph of secant, we remember the reciprocal identity where 
)cos(

1
)sec(


 = .   

Notice that the function is undefined when the cosine is 0, leading to a vertical asymptote 

in the graph at π/2, 3π/2, etc.  Since the cosine is always no more than one in absolute 

value, the secant, being the reciprocal, will always be no less than one in absolute value.  

Using technology, we can generate the graph.  The graph of the cosine is shown dashed 

so you can see the relationship. 

 

 

)cos(

1
)sec()(


 ==f  

 

 

 

 

 

 

 

 

 

The graph of cosecant is similar.  In fact, since 







−= 




2
cos)sin( , it follows that 









−= 




2
sec)csc( , suggesting the cosecant graph is a horizontal shift of the secant 

graph.  This graph will be undefined where sine is 0.  Recall from the unit circle that this 

occurs at 0, π, 2π, etc.  The graph of sine is shown dashed along with the graph of the 

cosecant. 

 

 

)sin(

1
)csc()(


 ==f  
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Features of the Graph of Secant and Cosecant 

The secant and cosecant graphs have period 2π like the sine and cosine functions. 

Secant has domain 


 k+
2

, where k is an integer 

Cosecant has domain  k , where k is an integer 

Both secant and cosecant have range of ),1[]1,( −−  

 

 

Example 2 

Sketch a graph of 1
2

csc2)( +







= 


f .  What is the domain and range of this 

function? 

 

The basic cosecant graph has vertical asymptotes at the integer multiples of π.  Because 

of the factor 
2


 inside the cosecant, the graph will be compressed by 



2
, so the vertical 

asymptotes will be compressed to kk 2
2

== 


 .  In other words, the graph will have 

vertical asymptotes at the integer multiples of 2, and the domain will correspondingly 

be k2 , where k is an integer. 

 

The basic sine graph has a range of [-1, 1].  The vertical stretch by 2 will stretch this to 

[-2, 2], and the vertical shift up 1 will shift the range of this function to [-1, 3]. 

 

The basic cosecant graph has a range of ),1[]1,( −− . The vertical stretch by 2 will 

stretch this to ),2[]2,( −− , and the vertical shift up 1 will shift the range of this 

function to ),3[]1,( −− . 

 

The resulting graph is shown to the right.  

 

Notice how the graph of the transformed 

cosecant relates to the graph of 

1
2

sin2)( +







= 


f  shown dashed. 
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Try it Now 

2. Given the graph of 1
2

cos2)( +







= 


f  shown, sketch the  

graph of  1
2

sec2)( +







= 


g  on the same axes. 

 

  

 

 

Finally, we’ll look at the graph of cotangent.  Based on its definition as the ratio of cosine 

to sine, it will be undefined when the sine is zero:  at at 0, π, 2π, etc.  The resulting graph 

is similar to that of the tangent.  In fact, it is a horizontal flip and shift of the tangent 

function, as we’ll see shortly in the next example. 

 

 
 

 

Features of the Graph of Cotangent 

The cotangent graph has period π 

Cotangent has domain  k , where k is an integer 

Cotangent has range of all real numbers, ( , )−   

 

 

In Section 6.1 we determined that the sine function was an odd function and the cosine 

was an even function by observing the graph and establishing the negative angle 

identities for cosine and sine.  Similarly, you may notice from its graph that the tangent 

function appears to be odd.  We can verify this using the negative angle identities for sine 

and cosine: 

( )
( )
( )

( )
( )

( )







 tan

cos

sin

cos

sin
tan −=

−
=

−

−
=−  

 

The secant, like the cosine it is based on, is an even function, while the cosecant, like the 

sine, is an odd function. 
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Negative Angle Identities Tangent, Cotangent, Secant and Cosecant 

( ) ( ) tantan −=−   ( ) ( ) cotcot −=−  

 

( ) ( ) secsec =−   ( ) ( ) csccsc −=−  

 

 

Example 3 

Prove that ( ) 







−−=

2
cottan


  

 

( )tan    Using the definition of tangent 

( )
( )


cos

sin
=    Using the cofunction identities 









−









−

=







2
sin

2
cos

  Using the definition of cotangent 









−= 



2
cot   Factoring a negative from the inside 

















−−=

2
cot


   Using the negative angle identity for cot 









−−=

2
cot


  

 

 

Important Topics of This Section 

The tangent and cotangent functions 

 Period 

 Domain 

 Range 

The secant and cosecant functions 

 Period 

 Domain 

 Range 

Transformations  

Negative Angle identities 
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Try it Now Answers 

 

1.  

 

 

2.  
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Section 6.2 Exercises 

 

Match each trigonometric function with one of the graphs. 

1. ( ) ( )tanf x x=   2. ( ) ( ) sec xxf =  

3. ( ) csc( )f x x=   4. ( ) ( )cotf x x=  

  I      II  

III    IV  

 

Find the period and horizontal shift of each of the following functions. 

5. ( ) ( )2 tan 4 32f x x= −  

6. ( ) ( )3tan 6 42g x x= +  

7. ( ) ( )2sec 1
4

h x x
 

= + 
 

 

8. ( ) 3sec 2
2

k x x
  

= +  
  

  

9. ( ) 6csc
3

m x x



 

= + 
 

 

10. ( )
5 20

4csc
3 3

n x x
  

= − 
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11. Sketch a graph of #7 above. 

12. Sketch a graph of #8 above. 

13. Sketch a graph of #9 above. 

14. Sketch a graph of #10 above. 

 

15. Sketch a graph of ( ) tan
2

j x x
 

=  
 

. 

16. Sketch a graph of ( ) 2 tan
2

p t t
 

= − 
 

. 

 

Find a formula for each function graphed below. 

  

17. 18.  

 

 

19. 20.  
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21. If tan 1.5x = − , find ( )tan x− . 

22. If tan 3x = , find ( )tan x− . 

23. If sec 2x = , find ( )sec x− . 

24. If sec 4x = − , find ( )sec x− . 

25. If csc 5x = − , find ( )csc x− . 

26. If csc 2x = , find ( )csc x− . 

 

Simplify each of the following expressions completely. 

27. ( ) ( ) ( )cot cos sinx x x− − + −  

28. ( ) ( ) ( )cos tan sinx x x− + − −
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Section 6.3 Inverse Trig Functions 

 

In previous sections, we have evaluated the trigonometric functions at various angles, but 

at times we need to know what angle would yield a specific sine, cosine, or tangent value.  

For this, we need inverse functions.  Recall that for a one-to-one function, if baf =)( , 

then an inverse function would satisfy abf =− )(1
. 

 

You probably are already recognizing an issue – that the sine, cosine, and tangent 

functions are not one-to-one functions.  To define an inverse of these functions, we will 

need to restrict the domain of these functions to yield a new function that is one-to-one.  

We choose a domain for each function that includes the angle zero. 

 

Sine, limited to 







−

2
,

2


 Cosine, limited to  ,0  Tangent, limited to ,

2 2

  
− 
 

 

     
 

On these restricted domains, we can define the inverse sine, inverse cosine, and inverse 

tangent functions. 

 

 

Inverse Sine, Cosine, and Tangent Functions 

For angles in the interval 







−

2
,

2


, if ( ) a=sin , then ( ) =− a1sin  

For angles in the interval  ,0 , if ( ) a=cos , then ( ) =− a1cos  

For angles in the interval 







−

2
,

2


, if ( ) a=tan , then ( ) =− a1tan  

 

( )1sin x−  has domain [-1, 1] and range 







−

2
,

2


 

( )1cos x−  has domain [-1, 1] and range  ,0  

( )1tan x−  has domain of all real numbers and range 







−

2
,

2
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The ( )1sin x−  is sometimes called the arcsine function, and notated ( )aarcsin .  

The ( )1cos x−  is sometimes called the arccosine function, and notated ( )aarccos .  

The ( )1tan x−  is sometimes called the arctangent function, and notated ( )aarctan .  

 

The graphs of the inverse functions are shown here: 

 

( )1sin x−    ( )1cos x−    ( )1tan x−  

                       
 

Notice that the output of each of these inverse functions is an angle.   

 

 

Example 1 

Evaluate 

a)  






−

2

1
sin 1

  b) 












−−

2

2
sin 1

 c) 












−−

2

3
cos 1

 d) ( )1tan 1−
 

 

a) Evaluating 






−

2

1
sin 1

 is the same as asking what angle would have a sine value of 
2

1
.  

In other words, what angle θ would satisfy ( )
2

1
sin = ?   

There are multiple angles that would satisfy this relationship, such as 
6


 and 

6

5
 , but 

we know we need the angle in the range of ( )1sin x− , the interval 







−

2
,

2


, so the 

answer will be 
62

1
sin 1 

=






−
.   

 

Remember that the inverse is a function so for each input, we will get exactly one 

output. 
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b) Evaluating 












−−

2

2
sin 1

, we know that 
4

5
 and 

4

7
 both have a sine value of 

2

2
− , but neither is in the interval 








−

2
,

2


.  For that, we need the negative angle 

coterminal with 
4

7
.  

42

2
sin 1 

−=













−−

. 

 

c) Evaluating 












−−

2

3
cos 1

, we are looking for an angle in the interval  ,0  with a 

cosine value of 
2

3
− .  The angle that satisfies this is 

6

5

2

3
cos 1 

=













−−

. 

 

d) Evaluating ( )1tan 1−
, we are looking for an angle in the interval 








−

2
,

2


 with a 

tangent value of 1.  The correct angle is ( )
4

1tan 1 
=−

. 

 

 

Try It Now 

1. Evaluate  

a) ( )1sin 1 −−
  b) ( )1tan 1 −−

  c) ( )1cos 1 −−
  d) 







−

2

1
cos 1

 

 

 

Example 2 

Evaluate ( )97.0sin 1−
 using your calculator. 

 

Since the output of the inverse function is an angle, your calculator will give you a 

degree value if in degree mode, and a radian value if in radian mode. 

 

In radian mode, 
1sin (0.97) 1.3252−   In degree mode, ( )1sin 0.97 75.93−    

 

 

Try it Now 

2. Evaluate ( )4.0cos 1 −−
 using your calculator. 
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In Section 5.5, we worked with trigonometry on a right triangle to solve for the sides of a 

triangle given one side and an additional angle.  Using the inverse trig functions, we can 

solve for the angles of a right triangle given two sides. 

 

 

Example 3 

Solve the triangle for the angle θ. 

 

Since we know the hypotenuse and the side adjacent to 

the angle, it makes sense for us to use the cosine function. 

 

( )
12

9
cos =   Using the definition of the inverse, 









= −

12

9
cos 1  Evaluating 

7227.0 , or about 41.4096° 

 

 

There are times when we need to compose a trigonometric function with an inverse 

trigonometric function.  In these cases, we can find exact values for the resulting 

expressions 

 

 

Example 4 

Evaluate 














−

6

13
cossin 1 

.  

 

a) Here, we can directly evaluate the inside of the composition.   

2

3

6

13
cos =







 
 

 

Now, we can evaluate the inverse function as we did earlier. 

32

3
sin 1 

=













−

 

 

 

Try it Now 

3. Evaluate 















−−

4

11
sincos 1 

. 

 

 

 

12 

9 

θ 
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Example 5 

Find an exact value for 














−

5

4
cossin 1

. 

 

Beginning with the inside, we can say there is some angle so 







= −

5

4
cos 1 , which 

means ( )
5

4
cos = , and we are looking for ( )sin .  We can use the Pythagorean identity 

to do this.  

  

( ) ( ) 1cossin 22 =+    Using our known value for cosine 

( ) 1
5

4
sin

2

2 =







+    Solving for sine 

( )
25

16
1sin 2 −=  

( )
5

3

25

9
sin ==  

 

Since we know that the inverse cosine always gives an angle on the interval  ,0 , we 

know that the sine of that angle must be positive, so 
1 4 3

sin cos sin( )
5 5

−  
= =  

  
 

 

 

Example 6 

Find an exact value for 














−

4

7
tansin 1

. 

 

While we could use a similar technique as in the last example, we 

will demonstrate a different technique here.  From the inside, we 

know there is an angle so ( )
4

7
tan = .  We can envision this as the 

opposite and adjacent sides on a right triangle. 

 

Using the Pythagorean Theorem, we can find the hypotenuse of 

this triangle: 
222 74 hypotenuse=+  

65=hypotenuse  

 

Now, we can represent the sine of the angle as opposite side divided by hypotenuse. 

7 

4 

θ 



Section 6.3 Inverse Trig Functions      427 

 

( )
65

7
sin =  

 

This gives us our desired composition 

1 7 7
sin tan sin( )

4 65
−  

= =  
  

. 

 

 

Try it Now  

4. Evaluate 














−

9

7
sincos 1

. 

 

 

We can also find compositions involving algebraic expressions 

 

 

Example 7 

Find a simplified expression for 














−

3
sincos 1 x

, for 33 − x . 

 

We know there is an angle θ so that ( )
3

sin
x

= .  Using the Pythagorean Theorem, 

( ) ( ) 1cossin 22 =+    Using our known expression for sine 

( ) 1cos
3

2

2

=+









x
   Solving for cosine 

( )
9

1cos
2

2 x
−=  

( )
3

9

9

9
cos

22 xx −
=

−
=  

Since we know that the inverse sine must give an angle on the interval 







−

2
,

2


, we 

can deduce that the cosine of that angle must be positive.  This gives us 

 

3

9

3
sincos

2
1 xx −

=














−  
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Try it Now 

5. Find a simplified expression for ( )( )x4tansin 1−
, for 

4

1

4

1
− x . 

 

 

Important Topics of This Section 

Inverse trig functions:  arcsine, arccosine and arctangent 

Domain restrictions 

Evaluating inverses using unit circle values and the calculator 

Simplifying numerical expressions involving the inverse trig functions 

Simplifying algebraic expressions involving the inverse trig functions 

 

 

Try it Now Answers 

1. a) 
2


−    b) 

4


−     c)     d) 

3


 

 

2. 1.9823 or 113.578°  

 

3. 
2

2

4

11
sin −=








−


.  

4

3

2

2
cos 1 

=













−−

  

 

4. Let 







= −

9

7
sin 1  so 

9

7
)sin( = .  . 

Using Pythagorean Identity, 1cossin 22 =+  , so 1cos
9

7 2

2

=+







 .   

Solving, ( )
9

24
cos

9

7
sincos 1 ==















−   . 

 

5. Let ( )x4tan 1−= , so x4)tan( = .  We can represent this on a  

triangle as 
1

4
)tan(

x
= . 

The hypotenuse of the triangle would be ( ) 14
2
+x .   

( )( )
116

4
)sin(4tansin

2

1

+
==−

x

x
x   

4x 

1 

θ 



Section 6.3 Inverse Trig Functions      429 

 

Section 6.3 Exercises 

 

Evaluate the following expressions, giving the answer in radians. 

1. 
1 2

sin
2

−
 
  
 

  2. 
1 3

sin
2

−
 
  
 

  3. 
1 1

sin
2

−  
− 
 

   4. 
1 2

sin
2

−
 
−  
 

  

5. 
1 1

cos
2

−  
 
 

   6. 
1 2

cos
2

−
 
  
 

  7. 
1 2

cos
2

−
 
−  
 

 8. 
1 3

cos
2

−
 
−  
 

 

9. ( )1tan 1−    10. ( )1tan 3−   11. ( )1tan 3− −  12. ( )1tan 1− −  

 

 

Use your calculator to evaluate each expression, giving the answer in radians. 

13. ( )4.0cos 1 −−
 14. ( )8.0cos 1−

  15. ( )8.0sin 1 −−
 16. ( )6tan 1−

 

 

Find the angle θ in degrees. 

17.   18.  

 

 

Evaluate the following expressions. 

19. 














−

4
cossin 1 

    20. 














−

6
sincos 1 

 

21. 














−

3

4
cossin 1 

    22. 














−

4

5
sincos 1 

 

23. 














−

7

3
sincos 1

    24. 














−

9

4
cossin 1

 

25. ( )( )4tancos 1−
    26. 















−

3

1
sintan 1

 

 

Find a simplified expression for each of the following. 

27. 














−

5
cossin 1 x

, for 55 − x   28. 














−

2
costan 1 x

, for 22 − x   

29. ( )( )x3tansin 1−
    30. ( )( )x4tancos 1−

 

10 
7 

θ 

12 

19 

θ 
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Section 6.4 Solving Trig Equations 

 

In Section 6.1, we determined the height of a rider on the London Eye Ferris wheel could 

be determined by the equation ( ) 65cos 70
15

h t t
 

= − + 
 

.   

If we wanted to know length of time during which the rider is more than 100 meters 

above ground, we would need to solve equations involving trig functions. 

 

 

Solving using known values 

 

In the last chapter, we learned sine and cosine values at commonly encountered angles.  

We can use these to solve sine and cosine equations involving these common angles. 

 

 

Example 1 

Solve ( )
2

1
sin =t  for all possible values of t. 

 

Notice this is asking us to identify all angles, t, that have a sine value of 
1

2
.  While 

evaluating a function always produces one result, solving for an input can yield multiple 

solutions.  Two solutions should immediately jump to mind from the last chapter: 

6


=t  and 

6

5
=t  because they are the common angles on the unit circle with a sin of 

1

2
. 

 

Looking at a graph confirms that there are more than these two solutions.  While eight 

are seen on this graph, there are an infinite number of solutions! 

 
Remember that any coterminal angle will also have the same sine value, so any angle 

coterminal with these our first two solutions is also a solution.  Coterminal angles can 

be found by adding full rotations of 2π, so we can write the full set of solutions: 

 

kt 


2
6
+=  where k is an integer, and kt 


2

6

5
+=  where k is an integer. 
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Example 2 

A circle of radius 25  intersects the line x = -5 at two points.  Find the angles   on the 

interval  20  , where the circle and line intersect.  

 

The x coordinate of a point on a circle can be found as ( )cosrx = , so the x coordinate 

of points on this circle would be ( )cos25=x .  To find where the line x = -5 

intersects the circle, we can solve for where the x value on the circle would be -5. 

( )cos255 =−   Isolating the cosine 

( )cos
2

1
=

−
   Recall that 

2

2

2

1 −
=

−
, so we are solving 

 

( )
2

2
cos

−
=    

 

We can recognize this as one of our special cosine values 

from our unit circle, and it corresponds with angles 

4

3
 =  and 

4

5
 = . 

 

 

Try it Now 

1. Solve ( )tan 1t =  for all possible values of t. 

 

 

Example 3 

The depth of water at a dock rises and falls with the tide, following the equation 

7
12

sin4)( +







= ttf


, where t is measured in hours after midnight.  A boat requires a 

depth of 9 feet to tie up at the dock.   Between what times will the depth be 9 feet? 

 

To find when the depth is 9 feet, we need to solve f(t) = 9. 

97
12

sin4 =+







t


  Isolating the sine 

2
12

sin4 =







t


  Dividing by 4 

2

1

12
sin =








t


  We know ( )

2

1
sin =  when 

6

5

6





 == or
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While we know what angles have a sine value of 
1

2
, because of the horizontal 

stretch/compression it is less clear how to proceed.   

 

To deal with this, we can make a substitution, defining a new temporary variable u to be 

tu
12


= , so our equation 

2

1

12
sin =








t


becomes  

( )
2

1
sin =u   

 

From earlier, we saw the solutions to this equation were 

ku 


2
6
+=  where k is an integer, and  

ku 


2
6

5
+=  where k is an integer 

 

To undo our substitution, we replace the u in the solutions with tu
12


=  and solve for t.   

 

kt 


2
612
+=  where k is an integer, and  kt 


2

6

5

12
+=  where k is an integer. 

 

Dividing by π/12, we obtain solutions 

 

kt 242+=  where k is an integer, and  

kt 2410 +=  where k is an integer.  

 

The depth will be 9 feet and the boat 

will be able to approach the dock 

between 2am and 10am.  

 

Notice how in both scenarios, the 24k 

shows how every 24 hours the cycle will be repeated. 

 

 

In the previous example, looking back at the original simplified equation 
2

1

12
sin =








t


, 

we can use the ratio of the “normal period” to the stretch factor to find the period:  

24
12

2

12

2
=








=








 





.  Notice that the sine function has a period of 24, which is reflected 

in the solutions: there were two unique solutions on one full cycle of the sine function, 

and additional solutions were found by adding multiples of a full period. 
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Try it Now 

2. Solve 11)5sin(4 =−t  for all possible values of t. 

 

 

Solving using the inverse trig functions 

 

Not all equations involve the “special” values of the trig functions to we have learned.  

To find the solutions to these equations, we need to use the inverse trig functions.  

 

 

Example 4 

Use the inverse sine function to find one solution to ( ) 8.0sin = . 

 

Since this is not a known unit circle value, calculating the inverse, ( )8.0sin 1−= .  This 

requires a calculator and we must approximate a value for this angle.  If your calculator 

is in degree mode, your calculator will give you an angle in degrees as the output.  If 

your calculator is in radian mode, your calculator will give you an angle in radians.  In 

radians, ( ) 927.08.0sin 1 = − , or in degrees, ( )1sin 0.8 53.130 −=   . 

 

 

If you are working with a composed trig function and you are not solving for an angle, 

you will want to ensure that you are working in radians.  In calculus, we will almost 

always want to work with radians since they are unit-less. 

 

Notice that the inverse trig functions do exactly what you would expect of any function – 

for each input they give exactly one output.  While this is necessary for these to be a 

function, it means that to find all the solutions to an equation like ( ) 8.0sin = , we need 

to do more than just evaluate the inverse function. 

 

To find additional solutions, it is good to remember four things: 

• The sine is the y-value of a point on the unit circle 

• The cosine is the x-value of a point on the unit circle 

• The tangent is the slope of a line at a given angle 

• Other angles with the same sin/cos/tan will have the same reference angle 

 

 

Example 5 

Find all solutions to ( ) 8.0sin = . 

 

We would expect two unique angles on one cycle to have this sine value.  In the 

previous example, we found one solution to be ( ) 927.08.0sin 1 = − .  To find the 

other, we need to answer the question “what other angle has the same sine value as an 

angle of 0.927?”   
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We can think of this as finding all the angles where the y-

value on the unit circle is 0.8.  Drawing a picture of the circle 

helps how the symmetry.   

On a unit circle, we would recognize that the second angle 

would have the same reference angle and reside in the second 

quadrant.  This second angle would be located at 

)8.0(sin 1−−=  , or approximately 214.2927.0 =− . 

 

To find more solutions we recall that angles coterminal with 

these two would have the same sine value, so we can add full 

cycles of 2π. 

 

k 2)8.0(sin 1 += −
 and k 2)8.0(sin 1 +−= −

 where k is an integer, 

or approximately, k 2927.0 +=  and k 2214.2 +=  where k is an integer. 

 

 

Example 6 

Find all solutions to ( )
9

8
sin −=x  on the interval  3600 x . 

 

We are looking for the angles with a y-value of -8/9 on the unit 

circle.  Immediately we can see the solutions will be in the 

third and fourth quadrants. 

 

First, we will turn our calculator to degree mode.  Using the 

inverse, we can find one solution −







−= − 734.62

9

8
sin 1x .  

While this angle satisfies the equation, it does not lie in the 

domain we are looking for.  To find the angles in the desired 

domain, we start looking for additional solutions.   

 

First, an angle coterminal with − 734.62 will have the same sine.  By adding a full 

rotation, we can find an angle in the desired domain with the same sine. 

=+−= 266.297360734.62x  

 

There is a second angle in the desired domain that lies in the third quadrant.  Notice that 

734.62  is the reference angle for all solutions, so this second solution would be 

734.62  past 180  

=+= 734.242180734.62x  

 

The two solutions on  3600 x  are x = 266.297 and x = 734.242  

 

 

 

 

 
θ 

0.8 

0.929 

1 

 

 

 

-8/9 

-62.7° 
1 
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Example 7 

Find all solutions to ( ) 3tan =x  on 20  x . 

 

Using the inverse tangent function, we can find one solution ( ) 249.13tan 1 = −x .  

Unlike the sine and cosine, the tangent function only attains any output value once per 

cycle, so there is no second solution in any one cycle. 

 

By adding π, a full period of tangent function, we can find 

a second angle with the same tangent value.  Notice this 

gives another angle where the line has the same slope. 

 

If additional solutions were desired, we could continue to 

add multiples of π, so all solutions would take on the form 

kx += 249.1 , however we are only interested in 

20  x . 

391.4249.1 =+= x  

 

The two solutions on 20  x  are x = 1.249 and x = 4.391. 

 

 

Try it Now 

3. Find all solutions to ( )tan 0.7x =  on  3600 x . 

 

 

Example 8 

Solve ( ) 24cos3 =+t  for all solutions on one cycle, 0 2t    

 

( ) 24cos3 =+t  Isolating the cosine 

( ) 2cos3 −=t  

( )
3

2
cos −=t   Using the inverse, we can find one solution 

301.2
3

2
cos 1 








−= −t  

 

We’re looking for two angles where the x-coordinate on a 

unit circle is -2/3.  A second angle with the same cosine 

would be located in the third quadrant.  Notice that the 

location of this angle could be represented as 301.2−=t . 

To represent this as a positive angle we could find a 

coterminal angle by adding a full cycle. 

2301.2 +−=t  = 3.982 

 

The equation has two solutions between 0 and 2π, at t = 2.301 and t = 3.982. 

1 

1.249 

4.391 

 

 

 

-2.301 

or 3.982 

2.301 

2

3
−

 1 



436  Chapter 6 

 

Example 9 

Solve ( ) 2.03cos =t  for all solutions on two cycles, 
3

4
0


 t . 

 

As before, with a horizontal compression it can be helpful to make a substitution, tu 3=   

Making this substitution simplifies the equation to a form we have already solved.  

( ) 2.0cos =u  

( ) 369.12.0cos 1 = −u  

 

A second solution on one cycle would be located in the fourth quadrant with the same 

reference angle. 

914.4369.12 =−= u  

 

In this case, we need all solutions on two cycles, so we need to find the solutions on the 

second cycle.  We can do this by adding a full rotation to the previous two solutions. 

197.112914.4

653.72369.1

=+=

=+=





u

u
 

 

Undoing the substitution, we obtain our four solutions: 

3t = 1.369, so t = 0.456 

3t = 4.914 so t = 1.638 

3t = 7.653, so t = 2.551 

3t = 11.197, so t = 3.732 

 

 

Example 10 

Solve ( ) 2sin3 −=t  for all solutions. 

 

( ) 2sin3 −=t    Isolating the sine 

( )
3

2
sin −=t    We make the substitution tu =  

( )
3

2
sin −=u     Using the inverse, we find one solution 

730.0
3

2
sin 1 −








−= −u   

 

This angle is in the fourth quadrant.  A second angle with the same sine would be in the 

third quadrant with 0.730 as a reference angle: 

871.3730.0 =+=u  

 

We can write all solutions to the equation ( )
3

2
sin −=u  as 

ku 2730.0 +−=  or ku 2871.3 += , where k is an integer. 
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Undoing our substitution, we can replace u in our solutions with tu =  and solve for t 

 

kt  2730.0 +−=  or  kt  2871.3 +=   Divide by π 

kt 2232.0 +−=  or kt 2232.1 +=  

 

 

Try it Now 

4. Solve 03
2

sin5 =+







t


 for all solutions on one cycle, 40  t . 

 

 

Solving Trig Equations 

1) Isolate the trig function on one side of the equation 

2) Make a substitution for the inside of the sine, cosine, or tangent (or other trig 

function) 

3) Use inverse trig functions to find one solution 

4) Use symmetries to find a second solution on one cycle (when a second exists) 

5) Find additional solutions if needed by adding full periods 

6) Undo the substitution  

 

 

We now can return to the question we began the section with. 

 

 

Example 11 

The height of a rider on the London Eye Ferris wheel can be determined by the equation 

( ) 65cos 70
15

h t t
 

= − + 
 

.  How long is the rider more than 100 meters above ground?   

 

To find how long the rider is above 100 meters, we first find the times at which the rider 

is at a height of 100 meters by solving h(t) = 100. 

100 65cos 70
15

t
 

= − + 
 

  Isolating the cosine 

30 65cos
15

t
 

= −  
 

 

30
cos

65 15
t

 
=  

−  
   We make the substitution tu

15


=  

30
cos( )

65
u=

−
   Using the inverse, we find one solution 
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1 30
cos 2.051

65
u −  
=  

− 
  

  

This angle is in the second quadrant.  A second angle 

with the same cosine would be symmetric in the third 

quadrant.  This angle could be represented as u = -2.051, 

but we need a coterminal positive angle, so we add 2π: 

2 2.051 4.230u = −   

 

Now we can undo the substitution to solve for t 

2.051
15

t


=  so t = 9.793 minutes after the start of the ride 

4.230
15

t


=  so t = 20.197 minutes after the start of the ride 

 

A rider will be at 100 meters after 9.793 minutes, and again after 20.197 minutes.  From 

the behavior of the height graph, we know the rider will be above 100 meters between 

these times.  A rider will be above 100 meters for 20.197 - 9.793 = 10.404 minutes of 

the ride. 

 

 

Important Topics of This Section 

Solving trig equations using known values 

Using substitution to solve equations 

Finding answers in one cycle or period vs. finding all possible solutions 

Method for solving trig equations 

 

 

Try it Now Answers 

1. From our special angles, we know one answer is 
4


=t .  Tangent equations only have 

one unique solution per cycle or period, so additional solutions can be found by 

adding multiples of a full period, π.   kt 

+=

4
. 

 

2. 11)5sin(4 =−t  

2

1
)5sin( =t .  Let tu 5=  so this becomes 

2

1
)sin( =u , which has solutions 

kku 





2
6

5
,2

6
++= . Solving kkut 





2

6

5
,2

6
5 ++==  gives the solutions 

kt
5

2

30


+=         kt

5

2

6


+=      

1 

u = 2.051 

u = -2.051 

or 4.230 
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3. The first solution is = − 992.34)7.0(tan 1x . 

For a standard tangent, the second solution can be found by adding a full period, 

180°, giving =+= 992.21499.34180x . 

 

4. 
5

3

2
sin −=








t


.  Let tu

2


= , so this becomes ( )

5

3
sin −=u . 

Using the inverse, 6435.0
5

3
sin 1 −








−= −u .  Since we want positive solutions, we 

can find the coterminal solution by adding a full cycle: 6397.526435.0 =+−= u . 

 

Another angle with the same sin would be in the third quadrant with the reference 

angle 0.6435.   7851.36435.0 =+=u . 

 

Solving for t, 6397.5
2

== tu


, so 5903.3
2

6397.5 =







=


t  

and 7851.3
2

== tu


, so 4097.2
2

7851.3 =







=


t . 

t = 2.4097 or t = 3.5903. 
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Section 6.4 Exercises 

 

Give all answers in radians unless otherwise indicated. 

 

Find all solutions on the interval 0 2   . 

1. ( )2sin 2 = −   2. ( )2sin 3 =   3. ( )2cos 1 =   4. ( )2cos 2 = −  

5. ( )sin 1 =    6. ( )sin 0 =    7. ( )cos 0 =    8. ( )cos 1 = −  

 

 

Find all solutions. 

9. ( )2cos 2 =  10. ( )2cos 1 = −  11. ( )2sin 1 = −  12. ( )2sin 3 = −  

 

 

Find all solutions. 

13. ( )2sin 3 1 =   14. ( )2sin 2 3 =   15. ( )2sin 3 2 = −   

16. ( )2sin 3 1 = −   17. ( )2cos 2 1 =   18. ( )2cos 2 3 =   

19. ( )2cos 3 2 = −   20. ( )2cos 2 1 = −   21. cos 1
4




 
= − 

 
  

22. sin 1
3




 
= − 

 
  23. ( )2sin 1 = .   24. 2cos 3

5




 
= 

 
  

 

 

Find all solutions on the interval 0 2x   . 

25. ( )sin 0.27x =  26. ( )sin  0.48x =  27. ( )sin   0.58x =−  28. ( )sin 0.34x = −  

29. ( )cos 0.55x = −  30. ( )sin  0.28x =  31. ( )cos  0.71x =  32. ( )cos 0.07x = −  

 

 

Find the first two positive solutions. 

33. ( )7sin 6 2x =   34. ( )7sin 5  6x =  35. ( )5cos 3 3x = −  36. ( )3cos 4 2x =  

37. 3sin 2
4

x
 

= 
 

  38. 7sin 6
5

x
 

= 
 

 39. 5cos 1
3

x
 

= 
 

 40. 3cos 2
2

x
 

= − 
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Section 6.5 Modeling with Trigonometric Functions  

 

Solving right triangles for angles 

 

In Section 5.5, we used trigonometry on a right triangle to solve for the sides of a triangle 

given one side and an additional angle.  Using the inverse trig functions, we can solve for 

the angles of a right triangle given two sides. 

 

 

Example 1 

An airplane needs to fly to an airfield located 300 miles east and 200 miles north of its 

current location.  At what heading should the airplane fly?   In other words, if we ignore 

air resistance or wind speed, how many degrees north of east should the airplane fly? 

 

We might begin by drawing a picture and labeling all of 

the known information.  Drawing a triangle, we see we 

are looking for the angle α.  In this triangle, the side 

opposite the angle α is 200 miles and the side adjacent 

is 300 miles.  Since we know the values for the  

opposite and adjacent sides, it makes sense to use the 

tangent function. 

300

200
)tan( =   Using the inverse, 

588.0
300

200
tan 1 








= − , or equivalently about 33.7 degrees. 

 

The airplane needs to fly at a heading of 33.7 degrees north of east. 

 

 

Example 2 

OSHA safety regulations require that the base of a ladder be placed 1 foot from the wall 

for every 4 feet of ladder length3.  Find the angle such a ladder forms with the ground. 

 

For any length of ladder, the base needs to be one quarter of the distance 

the foot of the ladder is away from the wall.  Equivalently, if the base is    

a feet from the wall, the ladder can be 4a feet long.  Since a is the side 

adjacent to the angle and 4a is the hypotenuse, we use the cosine function. 

4

1

4
)cos( ==

a

a
   Using the inverse 

52.75
4

1
cos 1 








= −  degrees 

The ladder forms a 75.52 degree angle with the ground. 

 
3 http://www.osha.gov/SLTC/etools/construction/falls/4ladders.html 

200 

300 

α 

a 

4a 

θ 
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Try it Now 

1. A cable that anchors the center of the London Eye Ferris wheel to the ground must be 

replaced.  The center of the Ferris wheel is 70 meters above the ground and the 

second anchor on the ground is 23 meters from the base of the wheel. What is the 

angle from the ground up to the center of the Ferris wheel and how long is the cable? 

 

 

Example 3 

In a video game design, a map shows the location of other characters relative to the 

player, who is situated at the origin, and the direction they are facing.  A character 

currently shows on the map at coordinates (-3, 5).  If the player rotates 

counterclockwise by 20 degrees, then the objects in the map will correspondingly rotate 

20 degrees clockwise.  Find the new coordinates of the character. 

 

To rotate the position of the character, we can imagine it as 

a point on a circle, and we will change the angle of the 

point by 20 degrees.  To do so, we first need to find the 

radius of this circle and the original angle. 

 

Drawing a right triangle inside the circle, we can find the 

radius using the Pythagorean Theorem: 

( )
2 2 23 5

9 25 34

r

r

− + =

= + =
 

 

To find the angle, we need to decide first if we are going to find the acute angle of the 

triangle, the reference angle, or if we are going to find the angle measured in standard 

position.  While either approach will work, in this case we will do the latter.  Since for 

any point on a circle we know )cos(rx = , using our given information we get 

)cos(343 =−   

)cos(
34

3
=

−
 








 −
= − 964.120

34

3
cos 1  

While there are two angles that have this cosine value, the angle of 120.964 degrees is 

in the second quadrant as desired, so it is the angle we were looking for. 

 

Rotating the point clockwise by 20 degrees, the angle of the point will decrease to 

100.964 degrees.  We can then evaluate the coordinates of the rotated point 

 

 
 

The coordinates of the character on the rotated map will be (-1.109, 5.725). 

109.1)964.100cos(34 −=x

725.5)964.100sin(34 =y
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Modeling with sinusoidal functions 

 

Many modeling situations involve functions that are periodic.  Previously we learned that 

sinusoidal functions are a special type of periodic function.  Problems that involve 

quantities that oscillate can often be modeled by a sine or cosine function and once we 

create a suitable model for the problem we can use that model to answer various 

questions. 

 

 

Example 4 

The hours of daylight in Seattle oscillate from a low of 8.5 hours in January to a high of 

16 hours in July4.  When should you plant a garden if you want to do it during a month 

where there are 14 hours of daylight? 

 

To model this, we first note that the hours of daylight oscillate with a period of 12 

months.  
2

12 6
B

 
= =  corresponds to the horizontal stretch, found by using the ratio of 

the original period to the new period. 

 

With a low of 8.5 and a high of 16, the midline will be halfway between these values, at 

25.12
2

5.816
=

+
.   

The amplitude will be half the difference 

between the highest and lowest values: 

75.3
2

5.816
=

−
, or equivalently the 

distance from the midline to the high or 

low value, 16-12.25=3.75.   

 

Letting January be t = 0, the graph starts 

at the lowest value, so it can be modeled 

as a flipped cosine graph.  Putting this 

together, we get a model: 

25.12
6

cos75.3)( +







−= tth


 

 

h(t) is our model for hours of day light t months after January.   

 

To find when there will be 14 hours of daylight, we solve h(t) = 14. 

 

25.12
6

cos75.314 +







−= t


  Isolating the cosine 

 
4 http://www.mountaineers.org/seattle/climbing/Reference/DaylightHrs.html 
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−= t

6
cos75.375.1


  Subtracting 12.25 and dividing by -3.75 









=− t

6
cos

75.3

75.1 
   Using the inverse 

0563.2
75.3

75.1
cos

6

1 







−= −t


  multiplying by the reciprocal 

927.3
6

0563.2 ==


t   t=3.927 months past January 

 

There will be 14 hours of daylight 3.927 months into the year, or near the end of April. 

 

While there would be a second time in the year when there are 14 hours of daylight, 

since we are planting a garden, we would want to know the first solution, in spring, so 

we do not need to find the second solution in this case. 

 

 

Try it Now 

2. The author’s monthly  

gas usage (in therms) is  

shown here.  Find a  

function to model the  

data.   

 

 

 

 

Example 6 

An object is connected to the wall with a spring that has a 

natural length of 20 cm.  The object is pulled back 8 cm past 

the natural length and released.  The object oscillates 3 times 

per second.  Find an equation for the horizontal position of the 

object ignoring the effects of friction.  How much time during each cycle is the object 

more than 27 cm from the wall? 

 

If we use the distance from the wall, x, as the desired output, then the object will 

oscillate equally on either side of the spring’s natural length of 20, putting the midline 

of the function at 20 cm.   

 

If we release the object 8 cm past the natural length, the amplitude of the oscillation will 

be 8 cm.   

 

We are beginning at the largest value and so this function can most easily be modeled 

using a cosine function. 
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Since the object oscillates 3 times per second, it has a frequency of 3 and the period of 

one oscillation is 1/3 of second. Using this we find the horizontal compression using the 

ratios of the periods: 


6
3/1

2
= . 

 

Using all this, we can build our model: 

( ) 206cos8)( += ttx   

 

To find when the object is 27 cm from the wall, we can solve x(t) = 27 

( ) 206cos827 += t    Isolating the cosine 

( )t6cos87 =  

( )t6cos
8

7
=    Using the inverse 

505.0
8

7
cos6 1 








= −t   

0268.0
6

505.0
==


t  

 

Based on the shape of the graph, we can conclude 

that the object will spend the first 0.0268 seconds 

more than 27 cm from the wall.  Based on the 

symmetry of the function, the object will spend 

another 0.0268 seconds more than 27 cm from the 

wall at the end of the cycle.  Altogether, the object 

spends 0.0536 seconds each cycle at a distance 

greater than 27 cm from the wall. 

 

 

 

In some problems, we can use trigonometric functions to model behaviors more 

complicated than the basic sinusoidal function. 

 

 

Example 7 

A rigid rod with length 10 cm is attached 

to a circle of radius 4cm at point A as 

shown here.  The point B is able to freely 

move along the horizontal axis, driving a 

piston5.  If the wheel rotates 

counterclockwise at 5 revolutions per 

second, find the location of point B as a 

function of time.  When will the point B 

be 12 cm from the center of the circle? 

 
5 For an animation of this situation, see https://www.desmos.com/calculator/bmc9whd6in  

A 

B 
10 cm 4cm 

θ 

https://www.desmos.com/calculator/bmc9whd6in
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To find the position of point B, we can begin by finding the coordinates of point A.  

Since it is a point on a circle with radius 4, we can express its coordinates as 

))sin(4),cos(4(  , where θ is the angle shown.   

 

The angular velocity is 5 revolutions per second, or equivalently 10π radians per 

second.  After t seconds, the wheel will rotate by 10 t =  radians.  Substituting this, 

we can find the coordinates of A in terms of t.   

))10sin(4),10cos(4( tt   

 

Notice that this is the same value we would have obtained by observing that the period 

of the rotation is 1/5 of a second and calculating the stretch/compression factor:  




10

5
1

2

""

""
=

new

original
. 

 

Now that we have the coordinates of the point A, 

we can relate this to the point B.  By drawing a 

vertical line segment from A to the horizontal 

axis, we can form a right triangle.  The height of 

the triangle is the y coordinate of the point A: 

4sin(10 )t .   

 

Using the Pythagorean Theorem, we can find the base length of the triangle: 

( )
2 2 24sin(10 ) 10t b + =  

2 2100 16sin (10 )b t= −  

2100 16sin (10 )b t= −  

 

Looking at the x coordinate of the point A, we can see that the triangle we drew is 

shifted to the right of the y axis by 4cos(10 )t .  Combining this offset with the length 

of the base of the triangle gives the x coordinate of the point B: 
2( ) 4cos(10 ) 100 16sin (10 )x t t t = + −  

 

To solve for when the point B will be 12 cm from the center of the circle, we need to 

solve x(t) = 12.   
212 4cos(10 ) 100 16sin (10 )t t = + −    Isolate the square root 

212 4cos(10 ) 100 16sin (10 )t t − = −    Square both sides 

( )
2 212 4cos(10 ) 100 16sin (10 )t t − = −    Expand the left side 

2 2144 96cos(10 ) 16cos (10 ) 100 16sin (10 )t t t  − + = −  Move all terms to the left 
2 244 96cos(10 ) 16cos (10 ) 16sin (10 ) 0t t t  − + + =  Factor out 16 

( )2 244 96cos(10 ) 16 cos (10 ) sin (10 ) 0t t t  − + + =  

A 

B 

10 cm 

b 
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At this point, we can utilize the Pythagorean Identity, which tells us that 
2 2cos (10 ) sin (10 ) 1t t + = .   

 

Using this identity, our equation simplifies to 

 

44 96cos(10 ) 16 0t− + =   Combine the constants and move to the right side 

96cos(10 ) 60t− = −   Divide 

60
cos(10 )

96
t =    Make a substitution 

96

60
)cos( =u  

896.0
96

60
cos 1 








= −u   By symmetry we can find a second solution 

388.5896.02 =−= u   Undoing the substitution 

 

10 0.896t = , so t = 0.0285 

10 5.388t = , so t = 0.1715 

 

The point B will be 12 cm from the center of the circle 0.0285 seconds after the process 

begins, 0.1715 seconds after the process begins, and every 1/5 of a second after each of 

those values. 

 

 

Important Topics of This Section 

Modeling with trig equations 

Modeling with sinusoidal functions 

Solving right triangles for angles in degrees and radians 

 

 

Try it Now Answers 

1. Angle of elevation for the cable is 71.81 degrees and the cable is 73.68 m long 

2. Approximately ( ) 66cos ( 1) 87
6

G t t
 

= − + 
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Section 6.5 Exercises 

 

In each of the following triangles, solve for the unknown side and angles. 

 

1.   2.  

 

 

 

 

3.  4.    

   

 

     

 

 

Find a possible formula for the trigonometric function whose values are in the following 

tables. 

5. 
x 0 1 2 3 4 5 6 

y -2 4 10 4 -2 4 10 

 

6.  
x 0 1 2 3 4 5 6 

y 1 -3 -7 -3 1 -3 -7 

 

 

7. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the high temperature for the day is 63 degrees and the low 

temperature of 37 degrees occurs at 5 AM. Assuming t is the number of hours since 

midnight, find an equation for the temperature, D, in terms of t. 

8. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the high temperature for the day is 92 degrees and the low 

temperature of 78 degrees occurs at 4 AM. Assuming t is the number of hours since 

midnight, find an equation for the temperature, D, in terms of t. 

9. A population of rabbits oscillates 25 above and below an average of 129 during the 

year, hitting the lowest value in January (t = 0).  

a. Find an equation for the population, P, in terms of the months since January, t. 

b. What if the lowest value of the rabbit population occurred in April instead? 

 

 

 

A 

5 

8 

B 

c 

B 

7 

3 

A 

c 

A 

b 

7 

15 
B 

B 

a 
10 

12 

A 
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10. A population of elk oscillates 150 above and below an average of 720 during the year, 

hitting the lowest value in January (t = 0).  

a. Find an equation for the population, P, in terms of the months since January, t. 

b. What if the lowest value of the rabbit population occurred in March instead? 

 

11. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the high temperature of 105 degrees occurs at 5 PM and the 

average temperature for the day is 85 degrees. Find the temperature, to the nearest 

degree, at 9 AM. 

 

12. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the high temperature of 84 degrees occurs at 6 PM and the 

average temperature for the day is 70 degrees. Find the temperature, to the nearest 

degree, at 7 AM. 

 

13. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the temperature varies between 47 and 63 degrees during the day 

and the average daily temperature first occurs at 10 AM. How many hours after 

midnight does the temperature first reach 51 degrees? 

 

14. Outside temperature over the course of a day can be modeled as a sinusoidal function. 

Suppose you know the temperature varies between 64 and 86 degrees during the day 

and the average daily temperature first occurs at 12 AM. How many hours after 

midnight does the temperature first reach 70 degrees? 

 

15. A Ferris wheel is 20 meters in diameter and boarded from a platform that is 2 meters 

above the ground. The six o'clock position on the Ferris wheel is level with the 

loading platform. The wheel completes 1 full revolution in 6 minutes. How many 

minutes of the ride are spent higher than 13 meters above the ground? 

  

16. A Ferris wheel is 45 meters in diameter and boarded from a platform that is 1 meter 

above the ground. The six o'clock position on the Ferris wheel is level with the 

loading platform. The wheel completes 1 full revolution in 10 minutes. How many 

minutes of the ride are spent higher than 27 meters above the ground? 

17. The sea ice area around the North Pole fluctuates between about 6 million square 

kilometers in September to 14 million square kilometers in March.  Assuming 

sinusoidal fluctuation, during how many months are there less than 9 million square 

kilometers of sea ice? 

18. The sea ice area around the South Pole fluctuates between about 18 million square 

kilometers in September to 3 million square kilometers in March.  Assuming 

sinusoidal fluctuation, during how many months are there more than 15 million 

square kilometers of sea ice? 
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19. A respiratory ailment called “Cheyne-Stokes Respiration” causes the volume per 

breath to increase and decrease in a sinusoidal manner, as a function of time. For one 

particular patient with this condition, a machine begins recording a plot of volume per 

breath versus time (in seconds). Let ( )b t  be a function of time t that tells us the 

volume (in liters) of a breath that starts at time t. During the test, the smallest volume 

per breath is 0.6 liters and this first occurs for a breath that starts 5 seconds into the 

test. The largest volume per breath is 1.8 liters and this first occurs for a breath 

beginning 55 seconds into the test. [UW] 

a. Find a formula for the function ( )b t  whose graph will model the test data for this 

patient. 

b. If the patient begins a breath every 5 seconds, what are the breath volumes during 

the first minute of the test? 

 

20. Suppose the high tide in Seattle occurs at 1:00 a.m. and 1:00 p.m, at which time the 

water is 10 feet above the height of low tide. Low tides occur 6 hours after high tides. 

Suppose there are two high tides and two low tides every day and the height of the 

tide varies sinusoidally. [UW] 

a. Find a formula for the function     ( )y h t=  that computes the height of the tide above 

low tide at time t. (In other words, y = 0 corresponds to low tide.) 

b. What is the tide height at 11:00 a.m.? 

 

21. A communications satellite orbits the earth t 

miles above the surface. Assume the radius 

of the earth is 3,960 miles. The satellite can 

only “see” a portion of the earth’s surface, 

bounded by what is called a horizon circle. 

This leads to a two-dimensional cross-

sectional picture we can use to study the size 

of the horizon slice: [UW] 

 

a. Find a formula for α in terms of t. 

b. If t = 30,000 miles, what is α? What 

percentage of the circumference of the 

earth is covered by the satellite? What 

would be the minimum number of such 

satellites required to cover the circumference? 

c. If t = 1,000 miles, what is α? What percentage of the circumference of the earth is 

covered by the satellite? What would be the minimum number of such satellites 

required to cover the circumference? 

d. Suppose you wish to place a satellite into orbit so that 20% of the circumference 

is covered by the satellite. What is the required distance t? 
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22. Tiffany is a model rocket enthusiast. She has been working on a pressurized rocket 

filled with nitrous oxide. According to her design, if the atmospheric pressure exerted 

on the rocket is less than 10 pounds/sq.in., the nitrous oxide chamber inside the rocket 

will explode. Tiff worked from a formula 
/1014.7 hp e−=  pounds/sq.in. for the 

atmospheric pressure h miles above sea level. Assume that the rocket is launched at 

an angle of α above level ground at sea level with an initial speed of 1400 feet/sec. 

Also, assume the height (in feet) of the rocket at time t seconds is given by the 

equation ( ) ( )216 1400siny t t t= − + .      [UW] 

a. At what altitude will the rocket explode? 

b. If the angle of launch is α = 12°, determine the minimum atmospheric pressure 

exerted on the rocket during its flight. Will the rocket explode in midair? 

c. If the angle of launch is α = 82°, determine the minimum atmospheric pressure 

exerted on the rocket during its flight. Will the rocket explode in midair? 

d. Find the largest launch angle α so that the rocket will not explode. 
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Chapter 7: Trigonometric 
Equations and Identities 
 

In the last two chapters we have used basic definitions and relationships to simplify 

trigonometric expressions and solve trigonometric equations.  In this chapter we will look 

at more complex relationships.  By conducting a deeper study of trigonometric identities 

we can learn to simplify complicated expressions, allowing us to solve more interesting 

applications. 

 

Section 7.1 Solving Trigonometric Equations with Identities .................................... 453 

Section 7.2 Addition and Subtraction Identities ......................................................... 461 

Section 7.3 Double Angle Identities ........................................................................... 477 

Section 7.4 Modeling Changing Amplitude and Midline ........................................... 488 

 

Section 7.1 Solving Trigonometric Equations with Identities 

In the last chapter, we solved basic trigonometric equations.  In this section, we explore 

the techniques needed to solve more complicated trig equations.  Building from what we 

already know makes this a much easier task.  

 

Consider the function 2( ) 2f x x x= + .  If you were asked to solve 0)( =xf , it requires 

simple algebra: 

02 2 =+ xx   Factor 

0)12( =+xx   Giving solutions 

x = 0  or  x = 
2

1
−   

 

Similarly, for ( ) sin( )g t t= , if we asked you to solve 0)( =tg , you can solve this using 

unit circle values: 

0)sin( =t  for  2,,0=t and so on. 

 

Using these same concepts, we consider the composition of these two functions: 

)sin()(sin2))(sin())(sin(2))(( 22 tttttgf +=+=  

 

This creates an equation that is a polynomial trig function.  With these types of functions, 

we use algebraic techniques like factoring and the quadratic formula, along with 

trigonometric identities and techniques, to solve equations. 

 

As a reminder, here are some of the essential trigonometric identities that we have 

learned so far: 



454  Chapter 7 

 

Identities 

Pythagorean Identities 

1)(sin)(cos 22 =+ tt   )(csc)(cot1 22 tt =+   )(sec)(tan1 22 tt =+  

 

Negative Angle Identities 

)sin()sin( tt −=−   )cos()cos( tt =−   )tan()tan( tt −=−  

)csc()csc( tt −=−   )sec()sec( tt =−   )cot()cot( tt −=−  

 

Reciprocal Identities 

)cos(

1
)sec(

t
t =  

)sin(

1
)csc(

t
t =  

)cos(

)sin(
)tan(

t

t
t =  

)tan(

1
)cot(

t
t =  

 

 

Example 1 

Solve 0)sin()(sin2 2 =+ tt  for all solutions with 20  t . 

 

This equation kind of looks like a quadratic equation, but with sin(t) in place of an 

algebraic variable (we often call such an equation “quadratic in sine”).  As with all 

quadratic equations, we can use factoring techniques or the quadratic formula.  This 

expression factors nicely, so we proceed by factoring out the common factor of sin(t): 

( ) 01)sin(2)sin( =+tt  

 

Using the zero product theorem, we know that the product on the left will equal zero if 

either factor is zero, allowing us to break this equation into two cases: 

0)sin( =t  or 01)sin(2 =+t  

 

We can solve each of these equations independently, using our knowledge of special 

angles. 
0)sin( =t   01)sin(2 =+t   

 t = 0 or t = π  
2

1
)sin( −=t   

   
6

7
=t  or 

6

11
=t  

 

Together, this gives us four solutions to 

the equation on 20  t :   

6

11
,

6

7
,,0


=t   

 

We could check these answers are 

reasonable by graphing the function and comparing the zeros. 
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Example 2 

Solve 02)sec(5)(sec3 2 =−− tt  for all solutions with 20  t . 

 

Since the left side of this equation is quadratic in secant, we can try to factor it, and 

hope it factors nicely. 

 

If it is easier to for you to consider factoring without the trig function present, consider 

using a substitution )sec(tu = , resulting in 0253 2 =−− uu , and then try to factor: 

)2)(13(253 2 −+=−− uuuu  

 

Undoing the substitution, 
0)2))(sec(1)sec(3( =−+ tt  

 

Since we have a product equal to zero, we break it into the two cases and solve each 

separately. 

 

01)sec(3 =+t    Isolate the secant 

3

1
)sec( −=t     Rewrite as a cosine 

3

1

)cos(

1
−=

t
    Invert both sides 

3)cos( −=t  

 

Since the cosine has a range of [-1, 1], the cosine will never take on an output of -3.  

There are no solutions to this case.   

 

Continuing with the second case, 

 

02)sec( =−t    Isolate the secant 

2)sec( =t     Rewrite as a cosine 

2
)cos(

1
=

t
    Invert both sides 

2

1
)cos( =t     This gives two solutions 

3


=t  or 

3

5
=t  

 

These are the only two solutions on the interval.   

By utilizing technology to graph 
2( ) 3sec ( ) 5sec( ) 2f t t t= − − , a look at a graph 

confirms there are only two zeros for this function on 

the interval [0, 2π), which assures us that we didn’t 

miss anything.  
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Try it Now 

1. Solve 01)sin(3)(sin2 2 =++ tt  for all solutions with 20  t . 

 

 

When solving some trigonometric equations, it becomes necessary to first rewrite the 

equation using trigonometric identities.  One of the most common is the Pythagorean 

Identity, 1)(cos)(sin 22 =+   which allows you to rewrite )(sin 2   in terms of )(cos2   

or vice versa, 

 

 

Identities 

Alternate Forms of the Pythagorean Identity 

2 2

2 2

sin ( ) 1 cos ( )

cos ( ) 1 sin ( )

 

 

= −

= −
 

 

 

These identities become very useful whenever an equation involves a combination of sine 

and cosine functions. 

 

 

Example 3 

Solve 1)cos()(sin2 2 =− tt  for all solutions with 20  t . 

 

Since this equation has a mix of sine and cosine functions, it becomes more complicated 

to solve.  It is usually easier to work with an equation involving only one trig function.  

This is where we can use the Pythagorean Identity. 

  

1)cos()(sin2 2 =− tt    Using )(cos1)(sin 22  −=  

( ) 1)cos()(cos12 2 =−− tt   Distributing the 2 

1)cos()(cos22 2 =−− tt    

 

Since this is now quadratic in cosine, we rearrange the equation so one side is zero and 

factor. 

01)cos()(cos2 2 =+−− tt   Multiply by -1 to simplify the factoring 

01)cos()(cos2 2 =−+ tt   Factor 

( )( ) 01)cos(1)cos(2 =+− tt    

 

This product will be zero if either factor is zero, so we can break this into two separate 

cases and solve each independently. 
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01)cos(2 =−t  or 01)cos( =+t  

2

1
)cos( =t   or 1)cos( −=t  

3


=t  or 

3

5
=t  or =t  

 

 

Try it Now 

2. Solve )cos(3)(sin2 2 tt =  for all solutions with 20  t . 

 

 

In addition to the Pythagorean Identity, it is often necessary to rewrite the tangent, secant, 

cosecant, and cotangent as part of solving an equation. 

 

 

Example 4 

Solve )sin(3)tan( xx =  for all solutions with 20  x . 

 

With a combination of tangent and sine, we might try rewriting tangent 
)sin(3)tan( xx =  

)sin(3
)cos(

)sin(
x

x

x
=    Multiplying both sides by cosine 

)cos()sin(3)sin( xxx =  

 

At this point, you may be tempted to divide both sides of the equation by sin(x).  Resist 

the urge.  When we divide both sides of an equation by a quantity, we are assuming the 

quantity is never zero.  In this case, when sin(x) = 0 the equation is satisfied, so we’d 

lose those solutions if we divided by the sine.   

 

To avoid this problem, we can rearrange the equation so that one side is zero1.  

0)cos()sin(3)sin( =− xxx   Factoring out sin(x) from both parts 

( ) 0)cos(31)sin( =− xx    

 

From here, we can see we get solutions when 0)sin( =x  or 0)cos(31 =− x .   

 

Using our knowledge of the special angles of the unit circle,  

0)sin( =x  when x = 0 or x = π.   

 

 

 
1 You technically can divide by sin(x), as long as you separately consider the case where sin(x) = 0.  Since 

it is easy to forget this step, the factoring approach used in the example is recommended. 
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For the second equation, we will need the inverse cosine. 
0)cos(31 =− x  

3

1
)cos( =x     Using our calculator or technology 

231.1
3

1
cos 1 








= −x   Using symmetry to find a second solution 

052.5231.12 =−= x   

 

We have four solutions on 20  x : 

x = 0, 1.231, π, 5.052 

 

 

Try it Now 

3. Solve )cos(2)sec(  =  to find the first four positive solutions. 

 

 

Example 5 

Solve  ( ) ( ) ( )2

4
3cos 2cot tan

sec ( )
  


+ =  for all solutions with 0 2   . 

 

( ) ( ) ( )2

4
3cos 2cot tan

sec ( )
  


+ =  Using the reciprocal identities 

 

)tan(
)tan(

1
2)cos(3)(cos4 2 


 =+  Simplifying 

( ) ( )24cos 3cos 2 + =      Subtracting 2 from each side 

( ) ( )24cos 3cos 2 0 + − =    

 

This does not appear to factor nicely so we use the quadratic formula, remembering that 

we are solving for cos(θ). 

 

8

413

)4(2

)2)(4(433
)cos(

2
−

=
−−−

=  

 

Using the negative square root first, 

175.1
8

413
)cos( −=

−−
=  

 

This has no solutions, since the cosine can’t be less than -1. 
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Using the positive square root, 

425.0
8

413
)cos( =

+−
=  

( ) 131.1425.0cos 1 == −   By symmetry, a second solution can be found 

152.5131.12 =−=   

 

 

Important Topics of This Section 

Review of Trig Identities 

Solving Trig Equations 

 By Factoring 

 Using the Quadratic Formula 

 Utilizing Trig Identities to simplify 

 

 

Try it Now Answers 

1. Factor as ( )( ) 01)sin(1)sin(2 =++ tt   

01)sin(2 =+t  at 
7 11

,
6 6

t
 

=  

01)sin( =+t  at 
3

2
t


=  

7 3 11
, ,

6 2 6
t

  
=   

 

2. ( ) )cos(3)(cos12 2 tt =−  

02)cos(3)(cos2 2 =−+ tt  

( )( ) 02)cos(1)cos(2 =+− tt  

02)cos( =+t  has no solutions 

01)cos(2 =−t  at 
5

,
3 3

t
 

=   

 

3. )cos(2
)cos(

1



=  

)(cos
2

1 2 =  

2

2

2

1
)cos( ==  

3 5 7
, , ,

4 4 4 4

   
 =  
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Section 7.1 Exercises 

 

Find all solutions on the interval 0 2   . 

1. ( )2sin 1 = −  2. ( )2sin   3 =  3. ( )2cos 1 =  4. ( )2cos   2 =−  

 

Find all solutions. 

5. 2sin 1 
4

x
 

= 
 

 6. 2sin  2
3

x
 

= 
 

 7. ( )2cos 2  3t = −  8. ( )2cos 3 1t = −  

9. 3cos  2
5

x
 

= 
 

 10. 8cos 6
2

x
 

= 
 

 11. ( )7sin 3 2t = −  12. ( )4sin 4 1t =  

 

Find all solutions on the interval [0, 2 ) . 

13. ( ) ( ) ( )10sin cos 6cosx x x=   14. ( ) ( ) ( )3sin 15cos sint t t− =  

15. ( )csc 2 9 0x − =     16. ( )sec 2 3 =  

17. ( ) ( ) ( )sec sin 2sin  0x x x− =   18. ( ) ( ) ( )tan sin sin 0x x x− =  

19. 2 1
sin

4
x =      20. 2 1

cos
2

 =  

21. 2sec 7x =      22. 2csc 3t =  

23. 22sin 3sin 1 0w w+ + =     24. ( )28sin 6sin 1 0x x+ + =  

25. ( )22cos cos 1t t+ =     26. ( ) ( )28cos 3 2cos = −  

27. ( )24cos ( ) 4 15cosx x− =     28. ( ) 29sin 2 4sin ( )w w− =  

29. ( ) ( )212sin cos 6 0t t+ − =   30. ( ) ( )26cos 7sin 8 0x x+ − =  

31. 2cos 6sin = −     32. 2sin cost t=  

33. ( ) ( )3tan 3tanx x=    34. ( ) ( )3cos cost t= −  

35. ( ) ( )5tan tanx x=     36. ( ) ( )5tan 9 tan 0x x− =  

37. ( ) ( ) ( ) ( )4sin cos 2sin 2cos 1 0x x x x+ − − =  

38. ( ) ( ) ( ) ( )2sin cos sin 2cos 1 0x x x x− + − =  

39. ( ) ( )tan 3sin  0x x− =    40. ( ) ( )3cos cotx x=  

41. ( ) ( )22 tan 3sect t=    42. ( ) ( )21 2 tan tanw w− =  
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Section 7.2 Addition and Subtraction Identities 

In this section, we begin expanding our repertoire of trigonometric identities.   

 

 

Identities 

The sum and difference identities 

)sin()sin()cos()cos()cos(  +=−  

)sin()sin()cos()cos()cos(  −=+  

)sin()cos()cos()sin()sin(  +=+  

)sin()cos()cos()sin()sin(  −=−  

 

 

We will prove the difference of angles identity for cosine.  The rest of the identities can 

be derived from this one. 

 

Proof of the difference of angles identity for cosine 

Consider two points on a unit circle: 

P at an angle of α from the positive x axis 

with coordinates ( ))sin(),cos(  , and Q at 

an angle of β with coordinates 

( ))sin(),cos(  . 

 

Notice the measure of angle POQ is α – β.  

Label two more points: 

C at an angle of α – β, with coordinates 

( ))sin(),cos(  −− , 

D at the point (1, 0). 

 

Notice that the distance from C to D is the 

same as the distance from P to Q because 

triangle COD is a rotation of triangle POQ. 

 

Using the distance formula to find the distance from P to Q yields 

( ) ( )22
)sin()sin()cos()cos(  −+−      

 

Expanding this 

)(sin)sin()sin(2)(sin)(cos)cos()cos(2)(cos 2222  +−++−  

 

β 

α - β α 

P 

Q 

C 

D 

O 
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Applying the Pythagorean Identity and simplifying 

)sin()sin(2)cos()cos(22  −−  

 

Similarly, using the distance formula to find the distance from C to D  

( ) ( )22
0)sin(1)cos( −−+−−   

 

Expanding this 

)(sin1)cos(2)(cos 22  −++−−−  

 

Applying the Pythagorean Identity and simplifying 

2)cos(2 +−−   

 

Since the two distances are the same we set these two formulas equal to each other and 

simplify 

2)cos(2)sin()sin(2)cos()cos(22 +−−=−−   

2)cos(2)sin()sin(2)cos()cos(22 +−−=−−   

)cos()sin()sin()cos()cos(  −=+    

 

This establishes the identity. 

 

 

Try it Now 

1. By writing )cos(  +  as ( )( ) −−cos , show the sum of angles identity for cosine 

follows from the difference of angles identity proven above. 

 

 

The sum and difference of angles identities are often used to rewrite expressions in other 

forms, or to rewrite an angle in terms of simpler angles. 

 

 

Example 1 

Find the exact value of )75cos(  . 

 

Since += 453075 , we can evaluate )75cos(   as 

)4530cos()75cos( +=    Apply the cosine sum of angles identity 

)45sin()30sin()45cos()30cos( −=  Evaluate 

2

2

2

1

2

2

2

3
−=     Simply 

4

26 −
=  
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Try it Now 

2. Find the exact value of 








12
sin


. 

 

 

Example 2 

Rewrite 







−

4
sin


x  in terms of sin(x) and cos(x). 

 









−

4
sin


x     Use the difference of angles identity for sine 

= ( ) ( ) 







−









4
sincos

4
cossin


xx  Evaluate the cosine and sine and rearrange 

( ) ( )xx cos
2

2
sin

2

2
−=  

 

 

Additionally, these identities can be used to simplify expressions or prove new identities 

 

 

Example 3 

Prove 
)tan()tan(

)tan()tan(

)sin(

)sin(

ba

ba

ba

ba

−

+
=

−

+
. 

 

As with any identity, we need to first decide which side to begin with.  Since the left 

side involves sum and difference of angles, we might start there 

 

)sin(

)sin(

ba

ba

−

+
    Apply the sum and difference of angle identities 

)sin()cos()cos()sin(

)sin()cos()cos()sin(

baba

baba

−

+
=   

 

Since it is not immediately obvious how to proceed, we might start on the other side, 

and see if the path is more apparent. 

 

)tan()tan(

)tan()tan(

ba

ba

−

+
   Rewriting the tangents using the tangent identity 
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)cos(

)sin(

)cos(

)sin(

)cos(

)sin(

)cos(

)sin(

b

b

a

a

b

b

a

a

−

+

=    Multiplying the top and bottom by cos(a)cos(b) 

 

)cos()cos(
)cos(

)sin(

)cos(

)sin(

)cos()cos(
)cos(

)sin(

)cos(

)sin(

ba
b

b

a

a

ba
b

b

a

a









−









+

=  Distributing and simplifying 

 

)cos()sin()cos()sin(

)cos()sin()cos()sin(

abba

abba

−

+
=   From above, we recognize this 

 

)sin(

)sin(

ba

ba

−

+
=      Establishing the identity 

 

 

These identities can also be used to solve equations. 

 

 

Example 4 

Solve 
2

3
)2cos()cos()2sin()sin( =+ xxxx . 

 

By recognizing the left side of the equation as the result of the difference of angles 

identity for cosine, we can simplify the equation 

2

3
)2cos()cos()2sin()sin( =+ xxxx  Apply the difference of angles identity 

2

3
)2cos( =− xx  

2

3
)cos( =−x     Use the negative angle identity 

2

3
)cos( =x  

 

Since this is a special cosine value we recognize from the unit circle, we can quickly 

write the answers: 

kx

kx







2
6

11

2
6

+=

+=

, where k is an integer 
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Combining Waves of Equal Period 

 

A sinusoidal function of the form )sin()( CBxAxf +=  can be rewritten using the sum of 

angles identity. 

 

 

Example 5 

Rewrite 







+=

3
3sin4)(


xxf  as a sum of sine and cosine. 

 









+

3
3sin4


x     Using the sum of angles identity 

( ) ( ) 















+








=

3
sin3cos

3
cos3sin4


xx  Evaluate the sine and cosine 

( ) ( )













+=

2

3
3cos

2

1
3sin4 xx   Distribute and simplify 

( ) ( )xx 3cos323sin2 +=  

 

 

Notice that the result is a stretch of the sine added to a different stretch of the cosine, but 

both have the same horizontal compression, which results in the same period. 

 

We might ask now whether this process can be reversed – can a combination of a sine 

and cosine of the same period be written as a single sinusoidal function?  To explore this, 

we will look in general at the procedure used in the example above. 

 

)sin()( CBxAxf +=     Use the sum of angles identity 

( ))sin()cos()cos()sin( CBxCBxA +=   Distribute the A 

)sin()cos()cos()sin( CBxACBxA +=  Rearrange the terms a bit 

)cos()sin()sin()cos( BxCABxCA +=  

 

Based on this result, if we have an expression of the form )cos()sin( BxnBxm + , we 

could rewrite it as a single sinusoidal function if we can find values A and C so that  

)cos()sin( BxnBxm + )cos()sin()sin()cos( BxCABxCA += , which will require that: 

)sin(

)cos(

CAn

CAm

=

=
  which can be rewritten as   

)sin(

)cos(

C
A

n

C
A

m

=

=

  

 

To find A,  
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( ) ( )2222 )sin()cos( CACAnm +=+  

)(sin)(cos 2222 CACA +=  

( ))(sin)(cos 222 CCA +=   Apply the Pythagorean Identity and simplify 
2A=  

 

 

Rewriting a Sum of Sine and Cosine as a Single Sine 

To rewrite )cos()sin( BxnBxm +  as )sin( CBxA +  

222 nmA += , 
A

m
C =)cos( , and 

A

n
C =)sin(  

 

You can use either of the last two equations to solve for possible values of C.  Since 

there will usually be two possible solutions, we will need to look at both to determine 

which quadrant C is in and determine which solution for C satisfies both equations. 

 

 

Example 6 

Rewrite )2cos(4)2sin(34 xx −  as a single sinusoidal function. 

 

Using the formulas above, ( ) ( ) 6416316434
22

2 =+=−+=A , so A = 8.   

 

Solving for C, 

2

3

8

34
)cos( ==C , so 

6


=C  or 

6

11
=C .   

However, notice 
2

1

8

4
)sin( −=

−
=C . Sine is negative in the third and fourth quadrant, 

so the angle that works for both is 
6

11
=C . 

 

Combining these results gives us the expression 









+

6

11
2sin8


x  

 

 

Try it Now 

3. Rewrite )5cos(23)5sin(23 xx +−  as a single sinusoidal function. 

 

 

Rewriting a combination of sine and cosine of equal periods as a single sinusoidal 

function provides an approach for solving some equations. 
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Example 7 

Solve 1)2cos(4)2sin(3 =+ xx  to find two positive solutions. 

 

Since the sine and cosine have the same period, we can rewrite them as a single 

sinusoidal function.   

( ) ( ) 2543
222 =+=A , so A = 5 

 

5

3
)cos( =C , so 927.0

5

3
cos 1 








= −C  or 356.5927.02 =−= C  

Since 
5

4
)sin( =C , a positive value, we need the angle in the first quadrant, C = 0.927. 

 

Using this, our equation becomes 

( ) 1927.02sin5 =+x    Divide by 5 

( )
5

1
927.02sin =+x    Make the substitution u = 2x + 0.927 

( )
5

1
sin =u     The inverse gives a first solution 

201.0
5

1
sin 1 








= −u   By symmetry, the second solution is 

940.2201.0 =−=u   A third solution would be 

485.6201.02 =+= u     

 

Undoing the substitution, we can find two positive solutions for x. 

201.0927.02 =+x  or  940.2927.02 =+x    or 485.6927.02 =+x  

726.02 −=x    013.22 =x    558.52 =x  

363.0−=x    007.1=x    779.2=x  

 

Since the first of these is negative, we eliminate it and keep the two positive solutions, 

007.1=x  and 779.2=x . 
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The Product-to-Sum and Sum-to-Product Identities 

 

 

Identities 

The Product-to-Sum Identities 

( )

( )

( ))cos()cos(
2

1
)cos()cos(

)cos()cos(
2

1
)sin()sin(

)sin()sin(
2

1
)cos()sin(







−++=

+−−=

−++=

 

 

 

We will prove the first of these, using the sum and difference of angles identities from the 

beginning of the section.  The proofs of the other two identities are similar and are left as 

an exercise. 

 

Proof of the product-to-sum identity for sin(α)cos(β)  

 

Recall the sum and difference of angles identities from earlier  
)sin()cos()cos()sin()sin(  +=+  

)sin()cos()cos()sin()sin(  −=−  

 

Adding these two equations, we obtain 
)cos()sin(2)sin()sin(  =−++  

 

Dividing by 2, we establish the identity 

( ))sin()sin(
2

1
)cos()sin(  −++=  

 

 

Example 8 

Write )4sin()2sin( tt  as a sum or difference. 

 

Using the product-to-sum identity for a product of sines 

( ))42cos()42cos(
2

1
)4sin()2sin( tttttt +−−=  

( ))6cos()2cos(
2

1
tt −−=    If desired, apply the negative angle identity 

( ))6cos()2cos(
2

1
tt −=    Distribute 

)6cos(
2

1
)2cos(

2

1
tt −=  
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Try it Now 

4. Evaluate 
















12
cos

12

11
cos


. 

 

 

Identities 

The Sum-to-Product Identities 

( ) ( ) 






 −







 +
=+

2
cos

2
sin2sinsin

vuvu
vu  

( ) ( ) 






 +







 −
=−

2
cos

2
sin2sinsin

vuvu
vu  

( ) ( ) 






 −







 +
=+

2
cos

2
cos2coscos

vuvu
vu  

( ) ( ) 






 −







 +
−=−

2
sin

2
sin2coscos

vuvu
vu  

 

 

We will again prove one of these and leave the rest as an exercise.   

 

Proof of the sum-to-product identity for sine functions 

We define two new variables: 





−=

+=

v

u
 

 

Adding these equations yields 2=+ vu , giving 
2

vu +
=  

Subtracting the equations yields 2=− vu , or 
2

vu −
=  

 

Substituting these expressions into the product-to-sum identity 

( ))sin()sin(
2

1
)cos()sin(  −++=  gives 

( ) ( )( )vu
vuvu

sinsin
2

1

2
cos

2
sin +=







 −







 +
  Multiply by 2 on both sides 

( ) ( )vu
vuvu

sinsin
2

cos
2

sin2 +=






 −







 +
  Establishing the identity 
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Try it Now 

5. Notice that, using the negative angle identity, ( ) ( ) )sin()sin(sinsin vuvu −+=− .  Use 

this along with the sum of sines identity to prove the sum-to-product identity for 

( ) ( )vu sinsin − . 

 

 

Example 9 

Evaluate )75cos()15cos( − . 

 

Using the sum-to-product identity for the difference of cosines, 

 
)75cos()15cos( −  








 −







 +
−=

2

7515
sin

2

7515
sin2    Simplify 

 

( ) ( )−−= 30sin45sin2     Evaluate 

2

2

2

1

2

2
2 =

−
−=  

 

 

Example 10 

Prove the identity )tan(
)2sin()4sin(

)2cos()4cos(
t

tt

tt
−=

+

−
. 

 

Since the left side seems more complicated, we can start there and simplify. 

 

)2sin()4sin(

)2cos()4cos(

tt

tt

+

−
   Use the sum-to-product identities 








 −







 +








 −







 +
−

=

2

24
cos

2

24
sin2

2

24
sin

2

24
sin2

tttt

tttt

 Simplify 

( ) ( )
( ) ( )tt

tt

cos3sin2

sin3sin2−
=     Simplify further 

( )
( )t

t

cos

sin−
=     Rewrite as a tangent 

)tan(t−=     Establishing the identity 
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Example 11 

Solve ( ) ( )sin sin 3 cos( )t t t  + =  for all solutions with 20  t . 

 

In an equation like th is, it is not immediately obvious how to proceed.  One option 

would be to combine the two sine functions on the left side of the equation.  Another 

would be to move the cosine to the left side of the equation, and combine it with one of 

the sines.  For no particularly good reason, we’ll begin by combining the sines on the 

left side of the equation and see how things work out. 

 

( ) ( )sin sin 3 cos( )t t t  + =   Apply the sum to product identity on the left 

3 3
2sin cos cos( )

2 2

t t t t
t

   


+ −   
=   

   
 Simplify 

( ) ( )2sin 2 cos cos( )t t t  − =   Apply the negative angle identity 

( ) ( )2sin 2 cos cos( )t t t  =   Rearrange the equation to be 0 on one side 

( ) ( )2sin 2 cos cos( ) 0t t t  − =   Factor out the cosine 

( ) ( )( )cos 2sin 2 1 0t t  − =     

 

Using the Zero Product Theorem we know that at least one of the two factors must be 

zero.  The first factor, ( )cos t , has period 2
2

==



P , so the solution interval of 

20  t  represents one full cycle of this function. 

 

( )cos 0t =      Substitute u t=  

( ) 0cos =u      On one cycle, this has solutions 

2


=u  or 

2

3
=u     Undo the substitution 

 

2
t


 = , so 

2

1
=t  

3

2
t


 = , so 

2

3
=t  

 

The second factor, ( )2sin 2 1t − , has period of 1
2

2
==




P , so the solution interval 

20  t  contains two complete cycles of this function. 

 

( )2sin 2 1 0t − =     Isolate the sine 

( )
1

sin 2
2

t =     Substitute 2u t=  
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2

1
)sin( =u      On one cycle, this has solutions 

6


=u  or 

6

5
=u     On the second cycle, the solutions are 

6

13

6
2


 =+=u  or 

6

17

6

5
2


 =+=u  Undo the substitution 

 

2
6

t


 = , so 
12

1
=t  

5
2

6
t


 = , so 

12

5
=t  

13
2

6
t


 = , so 

12

13
=t  

17
2

6
t


 = , so 

12

17
=t  

 

Altogether, we found six solutions on 

20  t , which we can confirm by 

looking at the graph. 

12

17
,

2

3
,

12

13
,

2

1
,

12

5
,

12

1
=t  

 

 

 

Important Topics of This Section 

The sum and difference identities 

Combining waves of equal periods 

Product-to-sum identities 

Sum-to-product identities 

Completing proofs 

 

 

Try it Now Answers 

1. 

)sin()sin()cos()cos(

))sin()(sin()cos()cos(

)sin()sin()cos()cos(

))(cos()cos(









−

−+

−+−

−−=+
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2. 















−















=








−=









4
sin

3
cos

4
cos

3
sin

43
sin

12
sin


 

2

2

2

1

2

2

2

3
−=

4

26 −
 

 

3. ( ) ( ) 362323
22

2 =+−=A .  A = 6 

2

2

6

23
)cos(

−
=

−
=C , 

2

2

6

23
)sin( ==C .  

4

3
=C  









+

4

3
5sin6


x  

 

4. 















−+








+=

















1212

11
cos

1212

11
cos

2

1

12
cos

12

11
cos


 

( )













−−=
















+=

2

3
1

2

1

6

5
coscos

2

1 
  

=
4

32 −−
 

 

5. )sin()sin( vu −     Use negative angle identity for sine 

          Use sum-to-product identity for sine 

        Eliminate the parenthesis 

         Establishing the identity 

 

)sin()sin( vu −+

( ) ( )







 −−







 −+

2
cos

2
sin2

vuvu








 +







 −

2
cos

2
sin2

vuvu
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Section 7.2 Exercises 

 

Find an exact value for each of the following. 

1. ( )sin 75   2.  ( )sin 195   3. cos(165 )    4. cos(345 )    

5. 
7

cos
12

 
 
 

  6. cos
12

 
 
 

  7. 
5

sin
12

 
 
 

  8. 
11

sin
12

 
 
 

 

 

Rewrite in terms of ( )sin x  and ( )cos x . 

9. 
11

sin
6

x
 

+ 
 

 10. 
3

sin
4

x
 

− 
 

 11. 
5

cos
6

x
 

− 
 

  12. 
2

cos
3

x
 

+ 
 

 

 

Simplify each expression. 

13. csc  
2

t
 
− 

 
 14. sec

2
w

 
− 

 
 15. cot

2
x

 
− 

 
 16. tan

2
x

 
− 

 
 

 

Rewrite the product as a sum. 

17. ( ) ( )16sin 16 sin 11x x    18. ( ) ( )20cos 36 cos 6t t  

19. ( ) ( )2sin 5 cos 3x x     20. ( ) ( )10cos 5 sin 10x x  

 

Rewrite the sum as a product. 

21. ( ) ( )cos 6 cos 4t t+     22. ( ) ( )cos 2 cos 6u u+  

23. ( ) ( )sin 3 sin 7x x+     24. ( ) ( )sin sin 3h h+  

 

25. Given ( )
2

sin
3

a =  and ( )
1

cos
4

b = − , with a and b both in the interval ,
2




 


 
: 

 a. Find ( )sin a b+    b. Find ( )cos a b−  

 

26. Given ( )
4

sin
5

a =  and ( )
1

cos
3

b = , with a and b both in the interval 0,
2

 


 
: 

 a. Find ( )sin a b−    b. Find ( )cos a b+  

 

Solve each equation for all solutions. 

27. ( ) ( ) ( ) ( )sin 3 cos 6 cos 3 sin 6   0.9x x x x− =−  

28. ( ) ( ) ( ) ( )sin 6 cos 11 cos 6 sin 11   0.1x x x x− =−  

29. ( ) ( ) ( ) ( )cos 2 cos sin 2 sin 1x x x x+ =  

30. ( ) ( ) ( ) ( )
3

cos 5 cos 3 sin 5 sin 3
2

x x x x− =  
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Solve each equation for all solutions. 

31. ( ) ( )cos 5 cos 2x x= −  

32. ( ) ( )sin 5 sin 3x x=  

33. ( ) ( ) ( )cos 6 cos 2 sin 4  − =  

34. ( ) ( ) ( )cos 8 cos 2 sin 5  − =  

 

Rewrite as a single function of the form sin( ) A Bx C+ . 

35. ( ) ( )4sin 6cosx x−    36. ( ) ( )sin 5cosx x− −  

37. ( ) ( )5sin 3 2cos 3x x+    38. ( ) ( )3sin 5 4cos 5x x− +  

 

Solve for the first two positive solutions. 

39. ( ) ( )5sin 3cos 1x x− + =    40. ( ) ( )3sin cos 2x x+ =  

41. ( ) ( )3sin 2 5cos 2 3x x− =    42. ( ) ( )3sin 4 2cos 4 1x x− − =  

 

Simplify. 

43. 
( ) ( )

( ) ( )

sin 7 sin 5

cos 7 cos 5

t t

t t

+

+
    44. 

( ) ( )

( ) ( )

sin 9 sin 3

cos 9 cos 3

t t

t t

−

+
 

 

Prove the identity. 

44. 
( )

( )

tan 1
tan

4 1 tan

x
x

x

 + 
+ = 

− 
 

45. 
( )

( )

1 tan
tan

4 1 tan

t
t

t

 − 
− = 

+ 
 

46. ( ) ( ) ( ) ( )cos cos 2cos cosa b a b a b+ + − =  

47. 
( )

( )

( ) ( )

( ) ( )

cos 1 tan tan

cos 1 tan tan

a b a b

a b a b

+ −
=

− +
 

48. 
( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

tan sin cos sin cos

tan sin cos sin cos

a b a a b b

a b a a b b

+ +
=

− −
 

49. ( ) ( ) ( )2sin sin cos 2 cos(2 )a b a b b a+ − = −  

50. 
( ) ( )

( ) ( )
( )

sin sin 1
tan

cos cos 2

x y
x y

x y

+  
= + 

+  
 

 

Prove the identity. 
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51. 
( )

( ) ( )
( ) ( )

cos
1 tan tan

cos cos

a b
a b

a b

+
= −  

52. ( ) ( ) 2 2cos cos cos sinx y x y x y+ − = −  

 

 

53.  Use the sum and difference identities to establish the product-to-sum identity

( ))cos()cos(
2

1
)sin()sin(  +−−=   

 

54.  Use the sum and difference identities to establish the product-to-sum identity 

( ))cos()cos(
2

1
)cos()cos(  −++=  

 

55.  Use the product-to-sum identities to establish the sum-to-product identity 

( ) ( ) 






 −







 +
=+

2
cos

2
cos2coscos

vuvu
vu  

 

56.  Use the product-to-sum identities to establish the sum-to-product identity 

( ) ( ) 






 −







 +
−=−

2
sin

2
sin2coscos

vuvu
vu  
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Section 7.3 Double Angle Identities 

 

Two special cases of the sum of angles identities arise often enough that we choose to 

state these identities separately. 

 

 

Identities 

The double angle identities 

)cos()sin(2)2sin(  =  

1)(cos2

)(sin21

)(sin)(cos)2cos(

2

2

22

−=

−=

−=







 

 

 

These identities follow from the sum of angles identities. 

 

Proof of the sine double angle identity  
)2sin(   

)sin(  +=     Apply the sum of angles identity 

)sin()cos()cos()sin(  +=  Simplify 

)cos()sin(2 =    Establishing the identity 

 

 

Try it Now 

1. Show )(sin)(cos)2cos( 22  −=  by using the sum of angles identity for cosine. 

 

 

For the cosine double angle identity, there are three forms of the identity stated because 

the basic form, )(sin)(cos)2cos( 22  −= , can be rewritten using the Pythagorean 

Identity.   Rearranging the Pythagorean Identity results in the equality

)(sin1)(cos 22  −= , and by substituting this into the basic double angle identity, we 

obtain the second form of the double angle identity. 

 

)(sin)(cos)2cos( 22  −=   Substituting using the Pythagorean identity 

)(sin)(sin1)2cos( 22  −−=  Simplifying  

)(sin21)2cos( 2  −=  
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Example 1 

If 
5

3
)sin( =  and θ is in the second quadrant, find exact values for )2sin(   and 

)2cos(  . 

 

To evaluate )2cos(  , since we know the value for sin( )  we can use the version of the 

double angle that only involves sine. 

25

7

25

18
1

5

3
21)(sin21)2cos(

2

2 =−=







−=−=   

 

Since the double angle for sine involves both sine and cosine, we’ll need to first find 

)cos( , which we can do using the Pythagorean Identity. 

1)(cos)(sin 22 =+   

1)(cos
5

3 2

2

=+







  

25

9
1)(cos 2 −=  

5

4

25

16
)cos( ==    

 

Since θ is in the second quadrant, we know that cos(θ) < 0, so 

5

4
)cos( −=  

 

Now we can evaluate the sine double angle 

25

24

5

4

5

3
2)cos()sin(2)2sin( −=








−








==   

 

 

Example 2 

Simplify the expressions 

a) ( ) 112cos2 2 −   b) ( ) ( )xx 3cos3sin8  

 

a) Notice that the expression is in the same form as one version of the double angle 

identity for cosine:  1)(cos2)2cos( 2 −=  .  Using this, 

( ) ( ) ( )==− 24cos122cos112cos2 2  

 

b) This expression looks similar to the result of the double angle identity for sine. 

( ) ( )xx 3cos3sin8   Factoring a 4 out of the original expression 

( ) ( )xx 3cos3sin24    Applying the double angle identity 

)6sin(4 x  



  Section 7.3 Double Angle Identities    479 

 

We can use the double angle identities to simplify expressions and prove identities. 

 

 

Example 2 

Simplify 
)sin()cos(

)2cos(

tt

t

−
. 

 

With three choices for how to rewrite the double angle, we need to consider which will 

be the most useful.  To simplify this expression, it would be great if the denominator 

would cancel with something in the numerator, which would require a factor of 

)sin()cos( tt −  in the numerator, which is most likely to occur if we rewrite the 

numerator with a mix of sine and cosine. 

 

)sin()cos(

)2cos(

tt

t

−
    Apply the double angle identity 

=
)sin()cos(

)(sin)(cos 22

tt

tt

−

−
    Factor the numerator 

( )( )
)sin()cos(

)sin()cos()sin()cos(

tt

tttt

−

+−
=   Cancelling the common factor 

)sin()cos( tt +=     Resulting in the most simplified form 

 

 

Example 3 

Prove 
)(sec2

)(sec
)2sec(

2

2






−
= . 

 

Since the right side seems a bit more complicated than the left side, we begin there. 

)(sec2

)(sec
2

2





−
    Rewrite the secants in terms of cosine 

)(cos

1
2

)(cos

1

2

2





−

=     

 

At this point, we could rewrite the bottom with common denominators, subtract the 

terms, invert and multiply, then simplify.  Alternatively, we can multiple both the top 

and bottom by )(cos 2  , the common denominator: 

)(cos
)(cos

1
2

)(cos
)(cos

1

2

2

2

2















−



=   Distribute on the bottom 
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−

=

)(cos

)(cos
)(cos2

)(cos

)(cos

2

2
2

2

2










  Simplify 

1)(cos2

1
2 −

=


   Rewrite the denominator as a double angle 

)2cos(

1


=     Rewrite as a secant 

)2sec( =     Establishing the identity 

 

 

Try it Now 

2. Use an identity to find the exact value of ( ) ( )− 75sin75cos 22 . 

 

 

As with other identities, we can also use the double angle identities for solving equations. 

 

 

Example 4 

Solve )cos()2cos( tt =  for all solutions with 20  t . 

 

In general when solving trig equations, it makes things more complicated when we have 

a mix of sines and cosines and when we have a mix of functions with different periods.  

In this case, we can use a double angle identity to rewrite the cos(2t).  When choosing 

which form of the double angle identity to use, we notice that we have a cosine on the 

right side of the equation.  We try to limit our equation to one trig function, which we 

can do by choosing the version of the double angle formula for cosine that only 

involves cosine. 

)cos()2cos( tt =    Apply the double angle identity 

)cos(1)(cos2 2 tt =−   This is quadratic in cosine, so make one side 0 

01)cos()(cos2 2 =−− tt   Factor 

( )( ) 01)cos(1)cos(2 =−+ tt   Break this apart to solve each part separately 

 

01)cos(2 =+t  or 01)cos( =−t  

2

1
)cos( −=t   or 1)cos( =t  

3

2
=t  or 

3

4
=t  or 0=t  

 

Looking at a graph of cos(2t) and cos(t) shown 

together, we can verify that these three solutions on [0, 2π) seem reasonable. 
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Example 5 

A cannonball is fired with velocity of 100 meters per second.  If it is launched at an 

angle of θ, the vertical component of the velocity will be )sin(100   and the horizontal 

component will be )cos(100  .  Ignoring wind resistance, the height of the cannonball 

will follow the equation ttth )sin(1009.4)( 2 +−=  and horizontal position will follow 

the equation ttx )cos(100)( = .   If you want to hit a target 900 meters away, at what 

angle should you aim the cannon? 

 

To hit the target 900 meters away, we want 900)( =tx at the time when the cannonball 

hits the ground, when 0)( =th .  To solve this problem, we will first solve for the time, 

t, when the cannonball hits the ground.  Our answer will depend upon the angle .  

  
0)( =th  

0)sin(1009.4 2 =+− tt     Factor 

( ) 0)sin(1009.4 =+− tt    Break this apart to find two solutions 

 

0=t     or 0)sin(1009.4 =+− t  Solve for t 

)sin(1009.4 −=− t  

9.4

)sin(100 
=t  

 

This shows that the height is 0 twice, once at t = 0 when the cannonball is fired, and 

again when the cannonball hits the ground after flying through the air.  This second 

value of t gives the time when the ball hits the ground in terms of the angle  .  We 

want the horizontal distance x(t) to be 900 when the ball hits the ground, in other words 

when 
9.4

)sin(100 
=t .  

 

Since the target is 900 m away we start with  

 

900)( =tx     Use the formula for x(t) 

900)cos(100 =t    Substitute the desired time, t from above 

900
9.4

)sin(100
)cos(100 =


   Simplify 

900)sin()cos(
9.4

100 2

=   Isolate the cosine and sine product 

2100

)9.4(900
)sin()cos( =  
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The left side of this equation almost looks like the result of the double angle identity for 

sine: ( ) ( ) cossin2)2sin( = .   

Multiplying both sides of our equation by 2, 

 

2100

)9.4)(900(2
)sin()cos(2 =   Using the double angle identity on the left 

2100

)9.4)(900(2
)2sin( =    Use the inverse sine 

080.1
100

)9.4)(900(2
sin2

2

1 







= −  Divide by 2 

540.0
2

080.1
== , or about 30.94 degrees  

 

 

Power Reduction and Half Angle Identities 

 

Another use of the cosine double angle identities is to use them in reverse to rewrite a 

squared sine or cosine in terms of the double angle.  Starting with one form of the cosine 

double angle identity: 

1)(cos2)2cos( 2 −=    Isolate the cosine squared term 

)(cos21)2cos( 2  =+   Add 1 

2

1)2cos(
)(cos 2 +
=


     Divide by 2 

2

1)2cos(
)(cos 2 +
=


   This is called a power reduction identity 

 

 

Try it Now 

3.  Use another form of the cosine double angle identity to prove the identity 

2

)2cos(1
)(sin 2 


−

= . 

 

 

The cosine double angle identities can also be used in reverse for evaluating angles that 

are half of a common angle.  Building from our formula 
2

1)2cos(
)(cos 2 +
=


 , if we let 

 2= , then 
2


 =  this identity becomes 

2

1)cos(

2
cos 2 +

=






 
.  Taking the square 

root, we obtain 

2

1)cos(

2
cos

+
=







 
, where the sign is determined by the quadrant.   
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This is called a half-angle identity. 

 

Try it Now 

4.  Use your results from the last Try it Now to prove the identity 

2

)cos(1

2
sin

 −
=









. 

 

 

Identities 

Half-Angle Identities 

2

1)cos(

2
cos

+
=







 
  

2

)cos(1

2
sin

 −
=








 

 

Power Reduction Identities 

2

1)2cos(
)(cos 2 +
=


   

2

)2cos(1
)(sin 2 


−

=  

 

 

Since these identities are easy to derive from the double-angle identities, the power 

reduction and half-angle identities are not ones you should need to memorize separately. 

 

 

Example 6 

Rewrite )(cos 4 x  without any powers. 

 

( )224 )(cos)(cos xx =     Using the power reduction formula 

2

2

1)2cos(







 +
=

x
    Square the numerator and denominator 

( )
2

cos(2 ) 1

4

x +
=     Expand the numerator 

4

1)2cos(2)2(cos 2 ++
=

xx
   Split apart the fraction 

4

1

4

)2cos(2

4

)2(cos 2

++=
xx

   Apply the formula above to )2(cos 2 x  

         
2 cos(2 2 ) 1

cos (2 )
2

x
x

 +
=  
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4

1

4

)2cos(2

4

2

1)4cos(

++








 +

=
x

x

  Simplify 

4

1
)2cos(

2

1

8

1

8

)4cos(
+++= x

x
  Combine the constants 

8

3
)2cos(

2

1

8

)4cos(
++= x

x
 

 

 

Example 7 

Find an exact value for ( )15cos .   

 

Since 15 degrees is half of 30 degrees, we can use our result from above: 

2

1)30cos(

2

30
cos)15cos(

+
=







 
=    

 

We can evaluate the cosine.  Since 15 degrees is in the first quadrant, we need the 

positive result. 

2

1
2

3

2

1)30cos(
+

=
+

  

2

1

4

3
+=  

 

 

Important Topics of This Section 

Double angle identity 

Power reduction identity 

Half angle identity 

Using identities 

 Simplify equations 

 Prove identities 

 Solve equations 
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Try it Now Answers 

1. 

( )

)(sin)(cos

)sin()sin()cos()cos(

)cos(2cos

22 





−

−

+=

 

 

2. ( ) ( ) )752cos(75sin75cos 22 =−  = 
2

3
)150cos(

−
=  

 

 

3. 

( )2 2

2 2

2 2

2
2

1 cos(2 )

2

1 cos ( ) sin ( )

2

1 cos ( ) sin ( )

2

sin ( ) sin ( )

2

2sin ( )
sin ( )

2



 

 

 




−

− −

− +

+

=

 

 

 

4. 

2

)cos(1

2
sin

2

2
2cos1

2
sin

2

2

)2cos(1
)sin(

2

)2cos(1
)(sin 2
















−
=

























−

=








=

−
=

−
=

 

 

 



486  Chapter 7 

 

Section 7.3 Exercises 

 

1. If ( )
1

sin
8

x =  and x is in quadrant I, then find exact values for (without solving for x): 

a. ( )sin 2x  b. ( )cos 2x  c. ( )tan 2x   

 

2. If ( )
2

cos
3

x =  and x is in quadrant I, then find exact values for (without solving for x): 

a. ( )sin 2x  b. ( )cos 2x  c. ( )tan 2x   

 

Simplify each expression. 

3. ( )2 2cos 28 sin (28 ) −      4. ( )22cos 37 1 −  

5. 21 2sin (17 )−      6. ( )2 2cos 37 sin (37 ) −   

7. ( )2 2cos 9 sin (9 )x x−     8. ( )2 2cos 6 sin (6 )x x−  

9. ( )4sin 8 cos(8 )x x     10. ( )6sin 5 cos(5 )x x  

 

Solve for all solutions on the interval [0, 2 ) . 

11. ( ) ( )6sin 2 9sin 0t t+ =     12. ( ) ( )2sin 2 3cos 0t t+ =  

13. ( ) ( )29cos 2 9cos 4 = −    14. ( ) ( )28cos 2 8cos 1 = −  

15. ( ) ( )sin 2 cost t=     16. ( ) ( )cos 2 sint t=  

17. ( ) ( )cos 6 cos 3 0x x− =    18. ( ) ( )sin 4 sin 2 0x x− =  

 

Use a double angle, half angle, or power reduction formula to rewrite without exponents. 

19. 2cos (5 )x       20. 2cos (6 )x    

21. 4sin (8 )x      22. ( )4sin 3x  

23. 2 4cos sinx x     24. 4 2cos sinx x  

 

25. If ( )csc 7x =  and 90 180x    , then find exact values for (without solving for x): 

a. sin
2

x 
 
 

  b. cos
2

x 
 
 

  c. tan
2

x 
 
 

 

 

26. If ( )sec 4x =  and 270 360x    , then find exact values for (without solving for x): 

a. sin
2

x 
 
 

  b. cos
2

x 
 
 

  c. tan
2

x 
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Prove the identity. 

 

27. ( ) ( )
2

sin cos 1 sin 2t t t− = −  

28. ( ) ( )
2

2 4sin 1 cos 2 sinx x x− = +  

29. ( )
( )

( )2

2 tan
sin 2

1 tan

x
x

x
=

+
 

30. ( )
( ) ( )

( )2

2sin cos
tan 2

2cos 1

x x
x

x
=

−
 

31. ( ) ( ) ( )cot tan 2cot 2x x x− =  

32. 
( )

( )
( )

sin 2
tan

1 cos 2





=

+
 

33. ( )
( )

( )

2

2

1 tan
cos 2

1 tan






−
=

+
 

34. 
( )

( ) ( )

( )

( )

1 cos 2 2cos

sin 2 cos 2sin 1

t t

t t t

+
=

− −
 

35. ( ) ( ) ( )2 3sin 3 3sin cos sin ( )x x x x= −  

36. ( ) ( )3 2cos 3 cos ( ) 3sin ( ) cosx x x x= −  
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Section 7.4 Modeling Changing Amplitude and Midline 

 

While sinusoidal functions can model a variety of behaviors, it is often necessary to 

combine sinusoidal functions with linear and exponential curves to model real 

applications and behaviors.  We begin this section by looking at changes to the midline of 

a sinusoidal function.  Recall that the midline describes the middle, or average value, of 

the sinusoidal function. 

 

 

Changing Midlines 

 

 

Example 1 

A population of elk currently averages 2000 elk, and that average has been growing by 

4% each year.  Due to seasonal fluctuation, the population oscillates from 50 below 

average in the winter up to 50 above average in the summer.  Find a function that 

models the number of elk after t years, starting in the winter. 

 

There are two components to the behavior of the elk population:  the changing average, 

and the oscillation.  The average is an exponential growth, starting at 2000 and growing 

by 4% each year.  Writing a formula for this: 

(1 ) 2000(1 0.04)t taverage initial r= + = +  

 

For the oscillation, since the population oscillates 50 above and below average, the 

amplitude will be 50.  Since it takes one year for the population to cycle, the period is 1.  

We find the value of the horizontal stretch coefficient
original period 2

2
new period 1

B


= = = . 

 

The function starts in winter, so the shape of the function will be a negative cosine, 

since it starts at the lowest value.   

 

Putting it all together, the equation would be: 
( ) 50cos(2 )P t t midline= − +  

 

Since the midline represents the average population, we substitute in the exponential 

function into the population equation to find our final equation: 

( ) 50cos(2 ) 2000(1 0.04)tP t t= − + +  

 

 

This is an example of changing midline – in this case an exponentially changing midline. 
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Changing Midline 

A function of the form )()sin()( tgBtAtf +=  will oscillate above and below the 

average given by the function g(t). 

 

 

Changing midlines can be exponential, linear, or any other type of function.   Here are 

some examples: 

 

  Linear midline  Exponential midline  Quadratic midline 

  

( )( ) sin ( )f t A Bt mt b= + +    ( )( ) sin ( )tf t A Bt ab= +  ( ) 2( ) sin ( )f t A Bt at= +  

 

 

Example 2 

Find a function with linear midline of the form bmttAtf ++







=

2
sin)(


 that will pass 

through the points given below.   

 

 
 

Since we are given the value of the horizontal compression coefficient we can calculate 

the period of this function: 
original period 2

new period 4

2
B




= = = . 

 

Since the sine function is at the midline at the beginning of a cycle and halfway through 

a cycle, we would expect this function to be at the midline at t = 0 and t = 2, since 2 is 

half the full period of 4.  Based on this, we expect the points (0, 5) and (2, 9) to be 

points on the midline. We can clearly see that this is not a constant function and so we 

use the two points to calculate a linear function: bmtmidline += .  From these two 

points we can calculate a slope: 

2
2

4

02

59
==

−

−
=m  

 

Combining this with the initial value of 5, we have the midline: 52 += tmidline . 

t 0 1 2 3 

f(t) 5 10 9 8 
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The full function will have form 52
2

sin)( ++







= ttAtf


.  To find the amplitude, we 

can plug in a point we haven’t already used, such as (1, 10). 

5)1(2)1(
2

sin10 ++







=


A    Evaluate the sine and combine like terms 

710 += A  

3=A  

 

A function of the form given fitting the data would be  

52
2

sin3)( ++







= tttf


 

 

Alternative Approach 

Notice we could have taken an alternate approach by plugging points (0, 5) and (2, 9) 

into the original equation.  Substituting (0, 5), 

bmA ++







= )0()0(

2
sin5


   Evaluate the sine and simplify 

b=5  

 

Substituting (2, 9) 

5)2()2(
2

sin9 ++







= mA


   Evaluate the sine and simplify 

529 += m  

m24 =  

2=m , as we found above.  Now we can proceed to find A the same way we did before. 

 

 

Example 3 

The number of tourists visiting a ski and hiking resort 

averages 4000 people annually and oscillates 

seasonally, 1000 above and below the average.  Due to 

a marketing campaign, the average number of tourists 

has been increasing by 200 each year.  Write an 

equation for the number of tourists after t years, 

beginning at the peak season. 

 

Again there are two components to this problem:  the 

oscillation and the average.  For the oscillation, the 

number of tourists oscillates 1000 above and below average, giving an amplitude of 

1000.  Since the oscillation is seasonal, it has a period of 1 year.  Since we are given a 

starting point of “peak season”, we will model this scenario with a cosine function.   

So far, this gives an equation in the form ( ) 1000cos(2 )N t t midline= + . 
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The average is currently 4000, and is increasing by 200 each year.  This is a constant 

rate of change, so this is linear growth, taverage 2004000 += .  This function will act 

as the midline. 

 

Combining these two pieces gives a function for the number of tourists: 
( ) 1000cos(2 ) 4000 200N t t t= + +  

 

 

Try it Now 

1. Given the function 2( ) ( 1) 8cos( )g x x x= − + , describe the midline and amplitude 

using words. 

 

 

Changing Amplitude 

 

There are also situations in which the amplitude of a sinusoidal function does not stay 

constant.  Back in Chapter 6, we modeled the motion of a spring using a sinusoidal 

function, but had to ignore friction in doing so.  If there were friction in the system, we 

would expect the amplitude of the oscillation to decrease over time.  In the equation 

kBtAtf += )sin()( , A gives the amplitude of the oscillation, we can allow the amplitude 

to change by replacing this constant A with a function A(t). 

 

 

Changing Amplitude 

A function of the form kBttAtf += )sin()()(  will oscillate above and below the 

midline with an amplitude given by A(t). 

 

 

Here are some examples: 

  Linear amplitude  Exponential amplitude Quadratic amplitude 

  

( )( ) ( )sinf t mt b Bt k= + +    ( )( ) ( )sintf t ab Bt k= +  ( )2( ) ( ) sinf t at Bt k= +  

 

 

 

 

 



492  Chapter 7 

 

When thinking about a spring with amplitude decreasing 

over time, it is tempting to use the simplest tool for the job 

– a linear function.  But if we attempt to model the 

amplitude with a decreasing linear function, such as 

ttA −= 10)( , we quickly see the problem when we graph 

the equation )4sin()10()( tttf −= . 

 

While the amplitude decreases at first as intended, the 

amplitude hits zero at t = 10, then continues past the intercept, increasing in absolute 

value, which is not the expected behavior.  This behavior and function may model the 

situation on a restricted domain and we might try to chalk 

the rest of it up to model breakdown, but in fact springs 

just don’t behave like this.   

 

A better model, as you will learn later in physics and 

calculus, would show the amplitude decreasing by a fixed 

percentage each second, leading to an exponential decay 

model for the amplitude.  

 

 

Damped Harmonic Motion 

Damped harmonic motion, exhibited by springs subject to friction, follows a model 

of the form 

kBtabtf t += )sin()(   or   kBtaetf rt += )sin()( . 

 

 

Example 4 

A spring with natural length of 20 feet is pulled back 6 feet and released.  It oscillates 

once every 2 seconds.  Its amplitude decreases by 20% each second.  Find a function 

that models the position of the spring t seconds after being released. 

 

Since the spring will oscillate on either side of the natural length, the midline will be at 

20 feet.  The oscillation has a period of 2 seconds, and so the horizontal compression 

coefficient is B = . Additionally, it begins at the furthest distance from the wall, 

indicating a cosine model. 

 

Meanwhile, the amplitude begins at 6 feet, 

and decreases by 20% each second, giving 

an amplitude function of ttA )20.01(6)( −= .   

 

Combining this with the sinusoidal 

information gives a function for the position 

of the spring: 

20)cos()80.0(6)( += ttf t   
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Example 5 

A spring with natural length of 30 cm is pulled out 10 cm and released.  It oscillates 4 

times per second.  After 2 seconds, the amplitude has decreased to 5 cm.  Find a 

function that models the position of the spring. 

 

The oscillation has a period of 
1

4
 second, so 

2
8

1
4

B


= = .  Since the spring will 

oscillate on either side of the natural length, the midline will be at 30 cm.  It begins at 

the furthest distance from the wall, suggesting a cosine model.  Together, this gives  

( ) ( ) cos(8 ) 30f t A t t= + . 

 

For the amplitude function, we notice that the amplitude starts at 10 cm, and decreases 

to 5 cm after 2 seconds.  This gives two points (0, 10) and (2, 5) that must be satisfied 

by an exponential function:  10)0( =A  and 5)2( =A .  Since the function is exponential, 

we can use the form tabtA =)( .  Substituting the first point, 010 ab= , so a = 10.  

Substituting in the second point, 
2105 b=   Divide by 10 

2

2

1
b=   Take the square root 

707.0
2

1
=b  

 

This gives an amplitude function of ttA )707.0(10)( = .  Combining this with the 

oscillation, 

( ) 10(0.707) cos(8 ) 30tf t t= +  

 

 

Try it Now 

2. A certain stock started at a high value of $7 per share, oscillating monthly above and 

below the average value, with the oscillation decreasing by 2% per year. However, the 

average value started at $4 per share and has grown linearly by 50 cents per year.  

 a. Find a formula for the midline and the amplitude. 

 b. Find a function S(t) that models the value of the stock after t years.   

 

 

Example 6 

In AM (Amplitude Modulated) radio, a carrier wave with a high frequency is used to 

transmit music or other signals by applying the to-be-transmitted signal as the amplitude 

of the carrier signal.  A musical note with frequency 110 Hz (Hertz = cycles per second) 

is to be carried on a wave with frequency of 2 KHz (KiloHertz = thousands of cycles 

per second).  If the musical wave has an amplitude of 3, write a function describing the 

broadcast wave. 
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The carrier wave, with a frequency of 2000 cycles per second, would have period 
2000

1
 

of a second, giving an equation of the form sin(4000 )t .  Our choice of a sine function 

here was arbitrary – it would have worked just was well to use a cosine. 

 

The musical tone, with a frequency of 110 cycles per second, would have a period of 

110

1
 of a second.  With an amplitude of 3, this would correspond to a function of the 

form 3sin(220 )t .  Again our choice of using a sine function is arbitrary. 

 

The musical wave is acting as the amplitude of the carrier wave, so we will multiply the 

musical tone’s function by the carrier wave function, resulting in the function 
( ) 3sin(220 )sin(4000 )f t t t =  

 

 
 

 

Important Topics of This Section 

Changing midline 

Changing amplitude 

 Linear Changes 

 Exponential Changes 

 Damped Harmonic Motion 

 

 

Try it Now Answers 

1. The midline follows the path of the quadratic 2 1x − and the amplitude is a constant 

value of 8. 

 

2. 
( ) 4 0.5

( ) 7(0.98)t

m t t

A t

= +

=
 

      S(t)= ( ) ttt 5.0424cos)98.0(7 ++  
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Section 7.4 Exercises 

 

Find a possible formula for the trigonometric function whose values are given in the 

following tables. 

1. x 0 3 6 9 12 15 18 

y -4 -1 2 -1 -4 -1 2 
 

2.  x 0 2 4 6 8 10 12 

y 5 1 -3 1 5 1 -3 
 

 

3. The displacement ( )h t , in centimeters, of a mass suspended by a spring is modeled 

by the function ( ) 8sin(6 )h t t= , where t is measured in seconds.  Find the 

amplitude, period, and frequency of this displacement. 

 

4. The displacement ( )h t , in centimeters, of a mass suspended by a spring is modeled 

by the function ( ) 11sin(12 )h t t= , where t is measured in seconds.  Find the 

amplitude, period, and frequency of this displacement. 

 

5. A population of rabbits oscillates 19 above and below average during the year, 

reaching the lowest value in January. The average population starts at 650 rabbits and 

increases by 160 each year. Find a function that models the population, P, in terms of 

the months since January, t. 

 

6. A population of deer oscillates 15 above and below average during the year, reaching 

the lowest value in January. The average population starts at 800 deer and increases 

by 110 each year. Find a function that models the population, P, in terms of the 

months since January, t. 

 

7. A population of muskrats oscillates 33 above and below average during the year, 

reaching the lowest value in January. The average population starts at 900 muskrats 

and increases by 7% each month. Find a function that models the population, P, in 

terms of the months since January, t. 

 

8. A population of fish oscillates 40 above and below average during the year, reaching 

the lowest value in January. The average population starts at 800 fish and increases 

by 4% each month. Find a function that models the population, P, in terms of the 

months since January, t. 

  

9. A spring is attached to the ceiling and pulled 10 cm down from equilibrium and 

released. The amplitude decreases by 15% each second. The spring oscillates 18 

times each second. Find a function that models the distance, D, the end of the spring 

is below equilibrium in terms of seconds, t, since the spring was released. 
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10. A spring is attached to the ceiling and pulled 7 cm down from equilibrium and 

released. The amplitude decreases by 11% each second. The spring oscillates 20 

times each second. Find a function that models the distance, D, the end of the spring 

is below equilibrium in terms of seconds, t, since the spring was released. 

 

11. A spring is attached to the ceiling and pulled 17 cm down from equilibrium and 

released. After 3 seconds the amplitude has decreased to 13 cm. The spring oscillates 

14 times each second.  Find a function that models the distance, D the end of the 

spring is below equilibrium in terms of seconds, t, since the spring was released. 

 

12. A spring is attached to the ceiling and pulled 19 cm down from equilibrium and 

released. After 4 seconds the amplitude has decreased to 14 cm. The spring oscillates 

13 times each second.  Find a function that models the distance, D the end of the 

spring is below equilibrium in terms of seconds, t, since the spring was released. 

 

  

Match each equation form with one of the graphs.  

13. a. ( )sin 5xab x+   b. ( )sin 5x mx b+ +    

14. a. ( )sin 5xab x   b. ( )sin(5 )mx b x+  

I   II  III   IV  

  

Find a function of the form sin
2

xy ab c x
 

= +  
 

 that fits the data given. 

15. x 0 1 2 3 

y 6 29 96 379 
 

16.  x 0 1 2 3 

y 6 34 150 746 
 

 

Find a function of the form sin
2

y a x m bx
 

= + + 
 

 that fits the data given. 

17. x 0 1 2 3 

y 7 6 11 16 
 

18.  x 0 1 2 3 

y -2 6 4 2 
 

 

Find a function of the form cxaby x +







=

2
cos


 that fits the data given. 

19. x 0 1 2 3 

y 11 3 1 3 
 

20.  x 0 1 2 3 

y 4 1 -11 1 
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Chapter 8: Further 
Applications of 
Trigonometry 
In this chapter, we will explore additional applications of trigonometry.  We will begin 

with an extension of the right triangle trigonometry we explored in Chapter 5 to situations 

involving non-right triangles.  We will explore the polar coordinate system and 

parametric equations as new ways of describing curves in the plane.  In the process, we 

will introduce vectors and an alternative way of writing complex numbers, two important 

mathematical tools we use when analyzing and modeling the world around us. 
 

Section 8.1 Non-Right Triangles: Laws of Sines and Cosines ................................... 497 

Section 8.2 Polar Coordinates ..................................................................................... 514 
Section 8.3 Polar Form of Complex Numbers ............................................................ 527 
Section 8.4 Vectors ..................................................................................................... 540 

Section 8.5 Dot Product .............................................................................................. 554 
Section 8.6 Parametric Equations ............................................................................... 563 

 

Section 8.1 Non-Right Triangles: Laws of Sines and Cosines 

 

Although right triangles allow us to solve many applications, it is more common to find 

scenarios where the triangle we are interested in does not have a right angle. 

 

Two radar stations located 20 miles apart 

both detect a UFO located between them.  

The angle of elevation measured by the 

first station is 35 degrees.  The angle of 

elevation measured by the second station 

is 15 degrees.  What is the altitude of the 

UFO? 

 

We see that the triangle formed by the UFO and the two stations is not a right triangle.  

Of course, in any triangle we could draw an altitude, a perpendicular line from one 

vertex to the opposite side, forming two right triangles, but it would be nice to have 

methods for working directly with non-right triangles.  In this section, we will expand 

upon the right triangle trigonometry we learned in Chapter 5, and adapt it to non-right 

triangles. 

 

 

 

15° 35° 

20 miles 
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Law of Sines 

 

Given an arbitrary non-right triangle, we can drop an altitude, which we temporarily label 

h, to create two right triangles.   

 

Using the right triangle relationships,  

b

h
=)sin(  and 

a

h
=)sin(  .   

 

Solving both equations for h, we get hb =)sin(  and 

ha =)sin(  .  Since the h is the same in both equations, 

we establish )sin()sin(  ab = .  Dividing both sides by 

ab, we conclude that 

ba

)sin()sin( 
=  

 

Had we drawn the altitude to be perpendicular to side b or a, we could similarly establish  

ca

)sin()sin( 
=  and 

cb

)sin()sin( 
=  

 

Collectively, these relationships are called the Law of Sines. 

 

 

Law of Sines 

Given a triangle with angles and sides opposite labeled as shown, the ratio of sine of 

angle to length of the opposite side will always be equal, or, symbolically, 

cba

)sin()sin()sin( 
==  

 

For clarity, we call side a the corresponding side of angle α. 

Similarly, we call angle α, the corresponding angle of side a.   

Likewise for side b and angle β, and for side c and angle γ. 

 

 

When we use the law of sines, we use any pair of ratios as an equation.  In the most 

straightforward case, we know two angles and one of the corresponding sides. 

 

 

 

 

 

 

 

α β 

a b 

c 

γ 

α β 

a b 
h 

γ 

c 
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Example 1 

In the triangle shown here, solve for the 

unknown sides and angle. 

 

Solving for the unknown angle is relatively 

easy, since the three angles must add to 180 

degrees.   

 

From this, we can determine that  

γ = 180° – 50° – 30° = 100°. 

 

To find an unknown side, we need to know the corresponding angle, and we also need 

another known ratio. 

 

Since we know the angle 50° and its corresponding side, we can use this for one of the 

two ratios.  To look for side b, we would use its corresponding angle, 30°. 

 

b

)30sin(

10

)50sin( 
=


   Multiply both sides by b 

)30sin(
10

)50sin(
=


b   Divide, or multiply by the reciprocal, to solve for b 

527.6
)50sin(

10
)30sin( 


=b  

 

Similarly, to solve for side c, we set up the equation 

 
c

)100sin(

10

)50sin( 
=


  

856.12
)50sin(

10
)100sin( 


=c  

 

 

Example 2 

Find the elevation of the UFO from the beginning of the section. 

 

To find the elevation of the UFO, we first 

find the distance from one station to the 

UFO, such as the side a in the picture, 

then use right triangle relationships to 

find the height of the UFO, h. 

 

Since the angles in the triangle add to 180 degrees, the unknown angle of the triangle 

must be 180° – 15° – 35° = 130°.  This angle is opposite the side of length 20, allowing 

us to set up a Law of Sines relationship: 

 

50° 

10 b 

30° 

c 

γ 

15° 35° 

20 miles 

h 
a 
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a

)35sin(

20

)130sin( 
=


  Multiply by a 

)35sin(
20

)130sin(
=


a   Divide, or multiply by the reciprocal, to solve for a 

975.14
)130sin(

)35sin(20





=a   Simplify 

 

The distance from one station to the UFO is about 15 miles.  Now that we know a, we 

can use right triangle relationships to solve for h. 

975.14
)15sin(

h

a

h

hypotenuse

opposite
===   Solve for h 

 

876.3)15sin(975.14 =h  

 

The UFO is at an altitude of 3.876 miles. 

 

 

In addition to solving triangles in which two angles are known, the law of sines can be 

used to solve for an angle when two sides and one corresponding angle are known. 

 

 

Example 3 

In the triangle shown here, solve for the unknown sides and 

angles. 

 

In choosing which pair of ratios from the Law of Sines to 

use, we always want to pick a pair where we know three of 

the four pieces of information in the equation.  In this case, 

we know the angle 85° and its corresponding side, so we 

will use that ratio.  Since our only other known information 

is the side with length 9, we will use that side and solve for its corresponding angle. 

 

9

)sin(

12

)85sin( 
=


   Isolate the unknown 

)sin(
12

)85sin(9
=


   Use the inverse sine to find a first solution 

 

Remember when we use the inverse function that there are two possible answers. 








 
= − 3438.48

12

)85sin(9
sin 1  By symmetry we find the second possible solution 

=−= 6562.1313438.48180  

 

9 

12 

a 

85° 

β 

α 
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In this second case, if β ≈ 132°, then α would be α = 180° – 85° – 132° = –37°, which 

doesn’t make sense, so the only possibility for this triangle is β = 48.3438°. 

With a second angle, we can now easily find the third angle, since the angles must add 

to 180°, so α = 180° – 85° – 48.3438° = 46.6562°.  

 

Now that we know α, we can proceed as in earlier examples to find the unknown side a. 

a

)6562.46sin(

12

)85sin( 
=


  

7603.8
)85sin(

)6562.46sin(12





=a  

 

 

Notice that in the problem above, when we use Law of Sines to solve for an unknown 

angle, there can be two possible solutions.  This is called the ambiguous case, and can 

arise when we know two sides and a non-included angle. In the ambiguous case we may 

find that a particular set of given information can lead to 2, 1 or no solution at all.  

However, when an accurate picture of the triangle or suitable context is available, we can 

determine which angle is desired.  

 

 

Try it Now 

1. Given 121 and ,120,80 === ba , find the corresponding and missing side and 

angles.  If there is more than one possible solution, show both. 

 

 

Example 4 

Find all possible triangles if one side has length 4 opposite an angle of 50° and a second 

side has length 10. 

 

Using the given information, we can look for the angle opposite the side of length 10.   

10

)sin(

4

)50sin( 
=


 

915.1
4

)50sin(10
)sin( 


=  

 

Since the range of the sine function is [-1, 1], it is impossible for the sine value to be 

1.915.  There are no triangles that can be drawn with the provided dimensions. 
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Example 5 

Find all possible triangles if one side has length 6 opposite an angle of 50° and a second 

side has length 4. 

 

Using the given information, we can look for the angle opposite the side of length 4.   

4

)sin(

6

)50sin( 
=


 

511.0
6

)50sin(4
)sin( 


=   Use the inverse to find one solution 

( ) = − 710.30511.0sin 1   By symmetry there is a second possible solution 

=−= 290.149710.30180  

 

If we use the angle 710.30 , the third angle would be =−− 290.99710.3050180 .  

We can then use Law of Sines again to find the third side. 

c

)290.99sin(

6

)50sin( 
=


  Solve for c 

c  = 7.730 

 

If we used the angle α = 149.290°, the third angle would be 180° – 50° – 149.290° =  

–19.29°, which is impossible, so the previous triangle is the only possible one. 

 

 

Try it Now 

2. Given 10 and ,100,80 === ba find the missing side and angles.  If there is more 

than one possible solution, show both. 

 

 

Law of Cosines 

 

Suppose a boat leaves port, travels 10 miles, turns 20 degrees, and travels 

another 8 miles.  How far from port is the boat?   

 

Unfortunately, while the Law of Sines lets us address many non-right 

triangle cases, it does not allow us to address triangles where the one 

known angle is included between two known sides, which means it is not 

a corresponding angle for a known side.  For this, we need another tool. 

 

Given an arbitrary non-right triangle, we can 

drop an altitude, which we temporarily label 

h, to create two right triangles.  We will 

divide the base b into two pieces, one of 

which we will temporarily label x.   

 

α γ 

a c 
h 

β 

x b - x 
b 

20° 

10 mi 

8 mi 
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From this picture, we can establish the right triangle relationship 

c

x
=)cos( , or equivalently, ( )coscx =  

 

Using the Pythagorean Theorem, we can establish 

( ) 222
ahxb =+−    and   

222 chx =+  

 

Both of these equations can be solved for 
2h  

( )222 xbah −−=  and  
222 xch −=  

 

Since the left side of each equation is 
2h , the right sides must be equal 

( )2222 xbaxc −−=−    Multiply out the right 

( )22222 2 xbxbaxc +−−=−   Simplify 
22222 2 xbxbaxc −+−=−  

bxbac 2222 +−=     Isolate 
2a  

bxbca 2222 −+=     Substitute in xc =)cos(  from above 

)cos(2222 bcbca −+=  

 

This result is called the Law of Cosines.  Depending upon which side we dropped the 

altitude down from, we could have established this relationship using any of the angles.  

The important thing to note is that the right side of the equation involves an angle and the 

sides adjacent to that angle – the left side of the equation involves the side opposite that 

angle. 

 

 

Law of Cosines 

Given a triangle with angles and opposite sides labeled as shown, 

)cos(2222 bcbca −+=  

)cos(2222 accab −+=  

)cos(2222 abbac −+=  

 

 

Notice that if one of the angles of the triangle is 90 degrees, cos(90°) = 0, so the formula 

)90cos(2222 −+= abbac   Simplifies to 
222 bac +=     

 

You should recognize this as the Pythagorean Theorem.  Indeed, the Law of Cosines is 

sometimes called the Generalized Pythagorean Theorem, since it extends the 

Pythagorean Theorem to non-right triangles. 

 

α β 

a b 

c 

γ 
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Example 6 

Returning to our question from earlier, suppose a boat leaves port, 

travels 10 miles, turns 20 degrees, and travels another 8 miles.  How far 

from port is the boat? 

 

The boat turned 20 degrees, so the obtuse angle of the non-right triangle 

shown in the picture is the supplemental angle, 180° - 20° = 160°. 

 

With this, we can utilize the Law of Cosines to find the missing side of 

the obtuse triangle – the distance from the boat to port. 

 

)160cos()10)(8(2108 222 −+=x   Evaluate the cosine and simplify 

3508.3142 =x     Square root both sides 

730.173508.314 ==x  

 

The boat is 17.73 miles from port. 

 

 

Example 7 

Find the unknown side and angles of this 

triangle. 

 

Notice that we don’t have both pieces of 

any side/angle pair, so the Law of Sines 

would not work with this triangle.   

 

Since we have the angle included between the two known sides, we can turn to Law of 

Cosines.   

 

Since the left side of any of the Law of Cosines equations involves the side opposite the 

known angle, the left side in this situation will involve the side x.  The other two sides 

can be used in either order. 

 

)30cos()12)(10(21210 222 −+=x   Evaluate the cosine 

2

3
)12)(10(21210 222 −+=x   Simplify 

31202442 −=x     Take the square root 

013.63120244 −=x  

 

Now that we know an angle and its corresponding side, we can use the Law of Sines to 

fill in the remaining angles of the triangle.  Solving for angle θ, 

 

θ 

10 x 

30° 

12 

φ

φ 

20° 

10 mi 

8 mi 
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10

)sin(

013.6

)30sin( 
=


 

013.6

)30sin(10
)sin(


=     Use the inverse sine 








 
= − 256.56

013.6

)30sin(10
sin 1  

 

The other possibility for θ would be θ = 180° – 56.256° = 123.744°.  In the original 

picture, θ is an acute angle, so 123.744° doesn’t make sense if we assume the picture is 

drawn to scale. 

 

Proceeding with θ = 56.256°, we can then find the third angle of the triangle: 

=−−= 744.93256.5630180 . 

 

 

In addition to solving for the missing side opposite one known angle, the Law of Cosines 

allows us to find the angles of a triangle when we know all three sides. 

 

 

Example 8 

Solve for the angle α in the triangle shown. 

 

Using the Law of Cosines, 

)cos()25)(18(2251820 222 −+=   Simplify 

)cos(900949400 −=  

)cos(900549 −=−  

)cos(
900

549
=

−

−
 










−

−
= − 410.52

900

549
cos 1  

 

 

Try it Now 

3. Given 20 and ,10,25 === cb find the missing side and angles.   

 

 

Notice that since the inverse cosine can return any angle between 0 and 180 degrees, 

there will not be any ambiguous cases when using Law of Cosines to find an angle. 

 

 

 

18 

25 

20 
α 
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Example 9 

On many cell phones with GPS, an approximate location can be given before the GPS 

signal is received.  This is done by a process called triangulation, which works by using 

the distance from two known points.  Suppose there are two cell phone towers within 

range of you, located 6000 feet apart along a straight highway that runs east to west, and 

you know you are north of the highway.  Based on the signal delay, it can be 

determined you are 5050 feet from the first tower, and 2420 feet from the second.  

Determine your position north and east of the first tower, and determine how far you are 

from the highway. 

 

For simplicity, we start by drawing a picture and 

labeling our given information.  Using the Law 

of Cosines, we can solve for the angle θ.  

 

)cos()6000)(5050(2505060002420 222 −+=  

)cos(60600000615015005856400 −=  

)cos(60600000554646100 −=−  

9183.0
60600000

554646100
)cos( =

−

−
=  

== − 328.23)9183.0(cos 1  

 

Using this angle, we could then use right 

triangles to find the position of the cell phone 

relative to the western tower. 

 

5050
)328.23cos(

x
=  

2.4637)328.23cos(5050 =x  feet 

5050
)328.23sin(

y
=  

8.1999)328.23sin(5050 =y  feet 

 

You are 5050 ft from the tower and 328.23  north of east (or, equivalently, 66.672° east 

of north).  Specifically, you are about 4637 feet east and 2000 feet north of the first 

tower. 

 

Note that if you didn’t know whether you were north or south of the towers, our 

calculations would have given two possible locations, one north of the highway and one 

south. To resolve this ambiguity in real world situations, locating a position using 

triangulation requires a signal from a third tower.  

 

 

 

2420 ft 5050 ft 

6000 ft 

θ 

5050 ft 

23.3° 
y 

x 
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Example 10 

To measure the height of a hill, a woman measures the angle of elevation to the top of 

the hill to be 24 degrees.  She then moves back 200 feet and measures the angle of 

elevation to be 22 degrees.  Find the height of the hill. 

 

As with many problems of this nature, it will be helpful to draw a picture. 

 
Notice there are three triangles formed here – the right triangle including the height h 

and the 22 degree angle, the right triangle including the height h and the 24 degree 

angle, and the (non-right) obtuse triangle including the 200 ft side.  Since this is the 

triangle we have the most information for, we will begin with it.  It may seem odd to 

work with this triangle since it does not include the desired side h, but we don’t have 

enough information to work with either of the right triangles yet. 

 

We can find the obtuse angle of the triangle, since it and the angle of 24 degrees 

complete a straight line – a 180 degree angle.  The obtuse angle must be 180° - 24° = 

156°.  From this, we can determine that the third angle is 2°.  We know one side is 200 

feet, and its corresponding angle is 2°, so by introducing a temporary variable x for one 

of the other sides (as shown below), we can use Law of Sines to solve for this length x. 

 

)2sin(

200

)22sin( 
=



x
   Setting up the Law of Sines 

)2sin(

200
)22sin(


=x    isolating the x value 

77.2146=x ft 

 

Now that we know x, we can use right triangle properties to solve for h. 

77.2146hypotenuse

opposite
)24sin(

h

x

h
===  

 

17.873)24sin(77.2146 ==h ft.   The hill is 873 feet high. 

 

24° 22° 
200 ft 

h 

24° 
22° 

200 ft 

h 

156° 

2° 

x 
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Important Topics of This Section 

Law of Sines 

 Solving for sides 

 Solving for angles 

 Ambiguous case, 0, 1 or 2 solutions 

Law of Cosines 

 Solving for sides 

 Solving for angles 

Generalized Pythagorean Theorem 

 

 

Try it Now Answers 

1. 
( ) ( )

121

sin

120

80sin 
=


 

1st possible solution

2.35

8.16

2.83

=

=

=

c





 2nd solution 

9.6

2.3

8.96

=

=

=

c





 

     If we were given a picture of the triangle it may be possible to eliminate one of these 

 

2. 
( ) ( )

10

sin

120

80sin 
=


.  = 65.5  or = 35.174 ; only the first is reasonable. 

=−−= 35.948065.5180  

( ) ( )
c


=

 35.94sin

120

80sin
 

25.101,35.94,65.5 === c  

 

3. )25cos()20)(10(22010 222 −+=a .  a = 11.725 

( ) ( )
10

sin

725.11

25sin 
=


.  = 1.21  or = 9.158 ;  

          only the first is reasonable since 25° + 158.9° would exceed 180°. 

=−−= 9.133251.21180  

725.11,9.133,1.21 === a  
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Section 8.1 Exercises 

 

Solve for the unknown sides and angles of the triangles shown. 

1.    2.  

3.    4.  

5.    6.  

7.    8.  

Assume   is opposite side a,   is opposite side b, and   is opposite side c.  Solve each 

triangle for the unknown sides and angles if possible.  If there is more than one possible 

solution, give both. 

9. 20, 69, 43 === b     10. 19, 73, 35 === b  

11. 14, 26, 119 === ba     12. 32, 10, 113 === cb  

13. 45,105, 50 === ba     14. 38,49, 67 === ba  

15. 8.242,2.184, 1.43 === ba    16. 2.242,2.186, 6.36 === ba  

70° 50° 

10 

40° 110° 

18 

120° 

6 

25° 

75° 

45° 

15 

65° 

5 6 

70° 

90 

100 

18 

40° 

25 

30 

50 30° 
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Solve for the unknown sides and angles of the triangles shown. 

17.    18.  

19.    20.  

 

Assume   is opposite side a,   is opposite side b, and   is opposite side c.  Solve each 

triangle for the unknown sides and angles if possible.  If there is more than one possible 

solution, give both. 

21. 13.3, 49.2, 2.41 === ba    22. 7.15, 6.10, 7.58 === ca  

23. 7, 6, 120 === cb     24. 23,18, 115 === ba  

25. Find the area of a triangle with sides of length 18, 21, and 32. 

 

26. Find the area of a triangle with sides of length 20, 26, and 37. 

 

27. To find the distance across a small lake, a surveyor has 

taken the measurements shown. Find the distance across 

the lake. 

 

 

28. To find the distance between two cities, a satellite 

calculates the distances and angle shown (not to 

scale). Find the distance between the cities. 

 

 

60° 

20 28 30° 16 
10 

13 

11 

20 

5 

8 

10 

800 ft 900 ft 
70° 

350 km 
370 km 

2.1° 
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29. To determine how far a boat is from shore, two radar 

stations 500 feet apart determine the angles out to the 

boat, as shown.  Find the distance of the boat from the 

station A, and the distance of the boat from shore. 

 

 

 

30. The path of a satellite orbiting the earth causes it to 

pass directly over two tracking stations A and B, 

which are 69 mi apart. When the satellite is on one 

side of the two stations, the angles of elevation at A 

and B are measured to be 86.2° and 83.9°, 

respectively.  How far is the satellite from station A 

and how high is the satellite above the ground? 

 

 

31. A communications tower is located at the top of 

a steep hill, as shown. The angle of inclination of 

the hill is 67°. A guy-wire is to be attached to the 

top of the tower and to the ground, 165 m 

downhill from the base of the tower. The angle 

formed by the guy-wire and the hill is 16°. Find 

the length of the cable required for the guy wire. 

 

 

32. The roof of a house is at a 20° angle.  An 8 foot 

solar panel is to be mounted on the roof, and 

should be angled 38° relative to the horizontal 

for optimal results.  How long does the vertical 

support holding up the back of the panel need to 

be? 

 

 

33. A 127 foot tower is located on a hill that is 

inclined 38° to the horizontal.  A guy-wire is to 

be attached to the top of the tower and anchored 

at a point 64 feet downhill from the base of the 

tower.  Find the length of wire needed. 

70° 
A 

60° 

B 

86.2° 83.9° 

A B 

67° 

16° 

165m 

38° 

64 ft 

127 ft 

20° 

38° 

8 ft 
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34. A 113 foot tower is located on a hill that is 

inclined 34° to the horizontal.  A guy-wire is to 

be attached to the top of the tower and anchored 

at a point 98 feet uphill from the base of the 

tower.  Find the length of wire needed. 

 

 

35. A pilot is flying over a straight highway. He 

determines the angles of depression to two 

mileposts, 6.6 km apart, to be 37° and 44°, as 

shown in the figure.  Find the distance of the plane 

from point A, and the elevation of the plane. 

 

 

36. A pilot is flying over a straight highway. He 

determines the angles of depression to two 

mileposts, 4.3 km apart, to be 32° and 56°, as 

shown in the figure.  Find the distance of the 

plane from point A, and the elevation of the plane. 

 

37. To estimate the height of a building, two students find the angle of elevation from a 

point (at ground level) down the street from the building to the top of the building is 

39°. From a point that is 300 feet closer to the building, the angle of elevation (at 

ground level) to the top of the building is 50°. If we assume that the street is level, use 

this information to estimate the height of the building. 

 

38. To estimate the height of a building, two students find the angle of elevation from a 

point (at ground level) down the street from the building to the top of the building is 

35°. From a point that is 300 feet closer to the building, the angle of elevation (at 

ground level) to the top of the building is 53°. If we assume that the street is level, use 

this information to estimate the height of the building. 

 

39. A pilot flies in a straight path for 1 hour 30 min. She then makes a course correction, 

heading 10 degrees to the right of her original course, and flies 2 hours in the new 

direction. If she maintains a constant speed of 680 miles per hour, how far is she from 

her starting position? 

 

34° 

98 ft 

113 ft 

A B 

37° 44° 

A B 

32° 
56° 
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40. Two planes leave the same airport at the same time.  One flies at 20 degrees east of 

north at 500 miles per hour.  The second flies at 30 east of south at 600 miles per 

hour.  How far apart are the planes after 2 hours? 

 

41. The four sequential sides of a quadrilateral have lengths 4.5 cm, 7.9 cm, 9.4 cm, and 

12.9 cm.  The angle between the two smallest sides is 117°.  What is the area of this 

quadrilateral? 

 

42. The four sequential sides of a quadrilateral have lengths 5.7 cm, 7.2 cm, 9.4 cm, and 

12.8 cm.  The angle between the two smallest sides is 106°.  What is the area of this 

quadrilateral? 

 

 

43. Three circles with radii 6, 7, and 8, all touch as shown.  Find the 

shaded area bounded by the three circles. 

 

 

44. A rectangle is inscribed in a circle of radius 10 cm as shown.  

Find the shaded area, inside the circle but outside the rectangle. 

 

 

 

55° 
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Section 8.2 Polar Coordinates 

 

The coordinate system we are most familiar with is called the Cartesian coordinate 

system, a rectangular plane divided into four quadrants by horizontal and vertical axes. 

 

In earlier chapters, we often found the Cartesian coordinates of a 

point on a circle at a given angle from the positive horizontal axis.  

Sometimes that angle, along with the point’s distance from the 

origin, provides a more useful way of describing the point’s 

location than conventional Cartesian coordinates. 

 

 

Polar Coordinates 

Polar coordinates of a point consist of an ordered pair, ),( r , where r is the distance 

from the point to the origin, and θ is the angle measured in standard position. 

 

 

Notice that if we were to “grid” the plane for polar coordinates, it 

would look like the graph to the right, with circles at incremental 

radii, and rays drawn at incremental angles.   

 

 

Example 1 

Plot the polar point 








6

5
,3


. 

 

This point will be a distance of 3 from the origin, at an angle of 

6

5
.  Plotting this, 

 

 

Example 2 

Plot the polar point 







−

4
,2


. 

 

Typically we use positive r values, but occasionally we run into 

cases where r is negative.  On a regular number line, we measure 

positive values to the right and negative values to the left.  We 

will plot this point similarly.  To start, we rotate to an angle of 
4


.  

Moving this direction, into the first quadrant, would be positive r 

values.  For negative r values, we move the opposite direction, 

into the third quadrant.  Plotting this: 
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Note the resulting point is the same as the polar point 
5

2,
4

 
 
 

.  In fact, any Cartesian 

point can be represented by an infinite number of different polar coordinates by adding or 

subtracting full rotations to these points.  For example, same point could also be 

represented as 
13

2,
4

 
 
 

. 

 

Try it Now 

1. Plot the following points given in polar coordinates and label them. 

a. 3,
6

A
 

=  
 

   b. 2,
3

B
 

= − 
 

 c. 
3

4,
4

C
 

=  
 

 

 

 

Converting Points 

 

To convert between polar coordinates and Cartesian coordinates, we recall the 

relationships we developed back in Chapter 5. 

 

 

Converting Between Polar and Cartesian Coordinates 

To convert between polar ),( r and Cartesian (x, y) coordinates, 

we use the relationships 

r

x
=)cos(   )cos(rx =  

r

y
=)sin(   )sin(ry =  

x

y
=)tan(   222 ryx =+  

 

 

From these relationship and our knowledge of the unit circle, if r = 1 and 
3


 = , the 

polar coordinates would be ( , ) 1,
3

r



 

=  
 

, and the corresponding Cartesian coordinates

1 3
( , ) ,

2 2
x y

 
=   
 

. 

 

Remembering your unit circle values will come in very handy as you convert between 

Cartesian and polar coordinates. 

(x, y) 

r 

θ 

y 

x 
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Example 3 

Find the Cartesian coordinates of a point with polar coordinates 







=

3

2
,5),(


r . 

 

To find the x and y coordinates of the point, 

2

5

2

1
5

3

2
cos5)cos( −=








−=








==


rx  

2

35

2

3
5

3

2
sin5)sin( =














=








==


ry  

The Cartesian coordinates are 













−

2

35
,

2

5
. 

 

 

Example 4 

Find the polar coordinates of the point with Cartesian coordinates )4,3( −− . 

 

We begin by finding the distance r using the Pythagorean relationship 222 ryx =+  
222 )4()3( r=−+−  

29 16 r+ =  

252 =r  

5=r  

 

Now that we know the radius, we can find the angle using any of the three trig 

relationships.  Keep in mind that any of the relationships will produce two solutions on 

the circle, and we need to consider the quadrant to determine which solution to accept.  

Using the cosine, for example: 

5

3
)cos(

−
==

r

x
  

214.2
5

3
cos 1 







 −
= −   By symmetry, there is a second possibility at 

069.4214.22 =−=   

 

Since the point (-3, -4) is located in the 3rd quadrant, we can determine that the second 

angle is the one we need.  The polar coordinates of this point are )069.4,5(),( =r . 

 

 

Try it Now 

2. Convert the following. 

a. Convert polar coordinates ( ) ,2),( =r  to ),( yx . 

b. Convert Cartesian coordinates )4,0(),( −=yx  to ),( r . 
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Polar Equations 

 

Just as a Cartesian equation like 2xy =  describes a relationship between x and y values 

on a Cartesian grid, a polar equation can be written describing a relationship between r 

and θ values on the polar grid.   

 

 

Example 5 

Sketch a graph of the polar equation =r . 

 

The equation =r  describes all the points for which the radius r is equal to the angle.  

To visualize this relationship, we can create a table of values. 

 
 

We can plot these points on the plane, and then sketch a 

curve that fits the points.  The resulting graph is a spiral. 

 

Notice that the resulting graph cannot be the result of a 

function of the form y = f(x), as it does not pass the vertical 

line test, even though it resulted from a function giving r in 

terms of θ. 

 

 

 

Although it is nice to see polar equations on polar grids, it 

is more common for polar graphs to be graphed on the 

Cartesian coordinate system, and so, the remainder of the 

polar equations will be graphed accordingly.   

 

The spiral graph above on a Cartesian grid is shown here. 

 

 

 

Example 6 

Sketch a graph of the polar equation 3=r . 

 

Recall that when a variable does not show up in the 

equation, it is saying that it does not matter what value that 

variable has; the output for the equation will remain the 

same.  For example, the Cartesian equation y = 3 describes 

all the points where y = 3, no matter what the x values are, 

producing a horizontal line.  Likewise, this polar equation is 

describing all the points at a distance of 3 from the origin, no 

matter what the angle is, producing the graph of a circle. 

 

θ 0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π 

r 0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π 
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The normal settings on graphing calculators and software graph on the Cartesian 

coordinate system with y being a function of x, where the graphing utility asks for f(x), or 

simply y =. 

 

To graph polar equations, you may need to change the mode of your calculator to Polar.  

You will know you have been successful in changing the mode if you now have r as a 

function of θ, where the graphing utility asks for r(θ), or simply r =. 

 

 

Example 7 

Sketch a graph of the polar equation )cos(4 =r , and find an 

interval on which it completes one cycle. 

 

While we could again create a table, plot the corresponding 

points, and connect the dots, we can also turn to technology to 

directly graph it.  Using technology, we produce the graph 

shown here, a circle passing through the origin.  

 

Since this graph appears to close a loop and repeat itself, we might ask what interval of 

θ values yields the entire graph.  At θ = 0, 4)0cos(4 ==r , yielding the point (4, 0).  We 

want the next θ value when the graph returns to the point (4, 0).  Solving for when x = 4 

is equivalent to solving 4)cos( =r . 

 

4)cos( =r       Substituting the equation for r gives 

4)cos()cos(4 =    Dividing by 4 and simplifying 

1)(cos2 =     This has solutions when 

1)cos( =  or 1)cos( −=   Solving these gives solutions 

0= or  =  

 

This shows us at 0 radians we are at the point (0, 4), and again at  radians we are at the 

point (0, 4) having finished one complete revolution. 

 

The interval  0 yields one complete iteration of the circle. 

 

 

Try it Now 

3. Sketch a graph of the polar equation 3sin( )r = , and find an interval on which it 

completes one cycle. 
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The last few examples have all been circles.  Next, we will consider two other “named” 

polar equations, limaçons and roses.   

 

 

Example 8 

Sketch a graph of the polar equation 2)sin(4 += r .  What interval of θ values 

corresponds to the inner loop?  

 

This type of graph is called a limaçon.   

Using technology, we can draw the graph.  The inner loop 

begins and ends at the origin, where r = 0.  We can solve for 

the θ values for which r = 0. 

 

2)sin(40 +=   

)sin(42 =−  

2

1
)sin( −=  

6

7
 =  or 

6

11
 =  

 

This tells us that r = 0, so the graph passes through the 

origin, twice on the interval [0, 2π). 

The inner loop arises from the interval 
6

11

6

7 



 .  

This corresponds to where the function 2)sin(4 += r  

takes on negative values, as we could see if we graphed 

the function in the r  plane. 

 

 

Example 9 

Sketch a graph of the polar equation )3cos( =r .  What interval 

of θ values describes one small loop of the graph? 

 

This type of graph is called a 3 leaf rose. 

 

We can use technology to produce a graph.  The interval [0, π) 

yields one cycle of this function.  As with the last problem, we 

can note that there is an interval on which one loop of this graph 

begins and ends at the origin, where r = 0.  Solving for θ, 

 

)3cos(0 =     Substitute u = 3θ 

)cos(0 u=  

2


=u  or 

2

3
=u  or 

2

5
=u    
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Undo the substitution, 

 

2
3


 =  or  

2

3
3


 =  or 

2

5
3


 =  

6


 =  or 

2


 =   or 

6

5
 =  

 

There are 3 solutions on  0  which correspond to the 3 times the graph returns to 

the origin, but the first two solutions we solved for above are enough to conclude that 

one loop corresponds to the interval 
26





 .    

 

If we wanted to get an idea of how the computer drew this graph, consider when θ = 0. 

cos(3 ) cos(0) 1r = = = , so the graph starts at (1,0).  As we found above, at 
6


 =  and 

2


 = , the graph is at the origin.  Looking at the equation, 

notice that any angle in between 
6


 and 

2


, for example at 

3


 = , produces a negative r: ( )cos 3 cos 1

3
r




 
=  = = − 

 
.   

 

Notice that with a negative r value and an angle with terminal 

side in the first quadrant, the corresponding Cartesian point 

would be in the third quadrant.  Since )3cos( =r  is negative 

on 
26





 , this interval corresponds to the loop of the graph in the third quadrant. 

 

 

Try it Now 

4. Sketch a graph of the polar equation sin(2 )r = .  Would you call this function a 

limaçon or a rose? 

 

 

Converting Equations 

 

While many polar equations cannot be expressed nicely in Cartesian form (and vice 

versa), it can be beneficial to convert between the two forms, when possible.  To do this 

we use the same relationships we used to convert points between coordinate systems. 

 

 

θ  r x y 

0 1 1 0 

6


 0 0 0 

3


 -1 

1

2
−  

3

2
−  

2


 0 0 0 
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Example 10 

Rewrite the Cartesian equation yyx 622 =+  as a polar equation. 

 

We wish to eliminate x and y from the equation and introduce r and θ.  Ideally, we 

would like to write the equation with r isolated, if possible, which represents r as a 

function of θ. 

yyx 622 =+    Remembering 
222 ryx =+  we substitute  

yr 62 =     )sin(ry =  and so we substitute again 

)sin(62 rr =    Subtract )sin(6 r  from both sides 

0)sin(62 =− rr    Factor 

( ) 0)sin(6 =− rr    Use the zero factor theorem 

)sin(6 =r   or  r = 0  Since r = 0 is only a point, we reject that solution. 

 

The solution )sin(6 =r  is fairly similar to the one we graphed in Example 7.  In fact, 

this equation describes a circle with bottom at the origin and top at the point (0, 6). 

 

 

Example 11 

Rewrite the Cartesian equation 23 += xy  as a polar equation. 

 

23 += xy     Use )sin(ry =  and )cos(rx =  

2)cos(3)sin( +=  rr   Move all terms with r to one side 

2)cos(3)sin( =−  rr   Factor out r 

( ) 2)cos(3)sin( =− r   Divide 

)cos(3)sin(

2

 −
=r  

 

In this case, the polar equation is more unwieldy than the Cartesian equation, but there 

are still times when this equation might be useful. 

 

 

Example 12 

Rewrite the polar equation 
)cos(21

3

−
=r  as a Cartesian equation. 

 

We want to eliminate θ and r and introduce x and y.  It is usually easiest to start by 

clearing the fraction and looking to substitute values that will eliminate θ. 
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)cos(21

3

−
=r    Clear the fraction 

( ) 3)cos(21 =− r    Use 
r

x
=)cos(  to eliminate θ  

321 =







−

r

x
r    Distribute and simplify 

32 =− xr     Isolate the r 

xr 23+=     Square both sides 

( )22 23 xr +=    Use 
222 ryx =+  

( )222 23 xyx +=+  

 

When our entire equation has been changed from r and θ to x and y we can stop unless 

asked to solve for y or simplify. 

 

In this example, if desired, the right side of the equation could be expanded and the 

equation simplified further.  However, the equation cannot be written as a function in 

Cartesian form. 

 

 

Try it Now 

5. a. Rewrite the Cartesian equation in polar form: 23y x=  −  

    b. Rewrite the polar equation in Cartesian form: 2sin( )r =  

 

 

Example 13 

Rewrite the polar equation )2sin( =r  in Cartesian form. 

 

)2sin( =r     Use the double angle identity for sine 

)cos()sin(2 =r    Use 
r

x
=)cos(  and 

r

y
=)sin(  

r

y

r

x
r = 2     Simplify 

2

2

r

xy
r =     Multiply by r2 

xyr 23 =     Since 222 ryx =+ , 
22 yxr +=  

( ) xyyx 2
3

22 =+  

 

This equation could also be written as  

( ) xyyx 2
2/322 =+   or  ( ) 3/222 2xyyx =+  
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Important Topics of This Section 

Cartesian coordinate system 

Polar coordinate system 

Plotting points in polar coordinates 

Converting coordinates between systems 

Polar equations: Spirals, circles, limaçons and roses 

Converting equations between systems 

 

 

Try it Now Answers 

1.  

 

2. a. ( )( , ) 2,r  = converts to  ( )( , ) 2cos( ), 2sin( ) ( 2,0)x y  = = −  

    b. ( )( , ) 0, 4x y = −  converts to 
3

( , ) 4, 4,
2 2

r or
 


   

= −   
   

 

 

3.  3sin( ) 0 =  at 0=  and  = . 

It completes one cycle on the interval  0 . 

 

 

 

 

 

 

 

4.  This is a 4-leaf rose. 

 

 

 

5. a. 23y x=  −  can be rewritten as 2 2 3x y+ = , and becomes 3r =  

    b. 2sin( )r = .  2
y

r
r

= .  2 2r y= .  2 2 2x y y+ =  

A 

B 

C 
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Section 8.2 Exercises 

 

Convert the given polar coordinates to Cartesian coordinates. 

1. 
7

7,
6

 
 
 

  2. 
3

6,
4

 
 
 

  3. 
7

4,
4

 
 
 

  4. 
4

9,
3

 
 
 

  

5. 







−

4
, 6


  6. 12,
3

 
− 

 
  7. 3,

2

 
 
 

  8. ( )5,   

9. 3,
6

 
− 
 

  10. 
2

2,
3

 
− 
 

  11. (3, 2)   12. (7,1)  

 

Convert the given Cartesian coordinates to polar coordinates. 

13. (4, 2)   14. (8, 8)   15. ( 4, 6)−   16. ( 5,1  )−   

17. (3,  5)−   18. (6,  5)−   19. ( )10,  13− −   20. ( 4,  7)− −  

 

Convert the given Cartesian equation to a polar equation. 

21. 3x =   22. 4y =   23. 24y x=   24. 42y x=  

25. 2 2 4x y y+ =  26. 2 2 3x y x+ =  27. 2 2x y x− =  28. 2 2 3x y y− =  

 

Convert the given polar equation to a Cartesian equation. 

29. ( )3sinr =     30. ( )4cosr =   

31. 
( ) ( )

4

sin 7cos
r

 
=

+
   32. 

( ) ( )
6

cos 3sin
r

 
=

+
 

33. ( )2secr =     34. ( )3cscr =    

35. ( )cos 2r r = +     36. ( ) ( )2 4sec cscr  =  
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Match each equation with one of the graphs shown. 

 

37. ( )2 2cosr = +   38. ( )2 2sinr = +    39. ( )4 3cosr = +   

40. ( )3 4cosr = +   41. 5r =    42. ( )2sinr =  

A   B   C   

D   E    F  

 

Match each equation with one of the graphs shown.   

43. ( )logr =   44. ( )cosr  =    45. cos
2

r
 

=  
 

  

46. ( ) ( )2sin cosr  =  47. ( )1 2sin 3r = +   48. ( )1 sin 2r = +  

A   B   C  

D    E    F  
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Sketch a graph of the polar equation. 

 

49. ( )3cosr =   50. ( )4sinr =   51. ( )3sin 2r =   

52. ( )4sin 4r =   53. ( )5sin 3r =   54. ( )4sin 5r =    

55. ( )3cos 2r =   56. ( )4cos 4r =   57. ( )2 2cosr = +   

58. ( )3 3sinr = +   59. ( )1 3sinr = +   60. ( )2 4cosr = +  

61. 2r =    62. 
1

r


=     

63. ( )3 secr = + , a conchoid  64. 


1
=r , a lituus1 

65. ( ) ( )2sin tanr  = , a cissoid   66. ( )22 1 sinr = − , a hippopede   

 
1 This curve was the inspiration for the artwork featured on the cover of this book. 
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Section 8.3 Polar Form of Complex Numbers 

  

From previous classes, you may have encountered “imaginary numbers” – the square 

roots of negative numbers – and, more generally, complex numbers which are the sum of 

a real number and an imaginary number.  While these are useful for expressing the 

solutions to quadratic equations, they have much richer applications in electrical 

engineering, signal analysis, and other fields.  Most of these more advanced applications 

rely on properties that arise from looking at complex numbers from the perspective of 

polar coordinates. 

 

We will begin with a review of the definition of complex numbers. 

 

 

Imaginary Number i 

The most basic complex number is i, defined to be 1−=i , commonly called an 

imaginary number.  Any real multiple of i is also an imaginary number. 

 

 

Example 1 

Simplify 9− . 

 

We can separate 9−  as 19 − .  We can take the square root of 9, and write the 

square root of -1 as i.   

9− = i319 =−  

 

 

A complex number is the sum of a real number and an imaginary number. 

 

 

Complex Number 

A complex number is a number biaz += , where a and b are real numbers 

a  is the real part of the complex number 

b  is the imaginary part of the complex number 

1−=i  

 

 

Plotting a complex number 

We can plot real numbers on a number line.  For example, if we wanted to show the 

number 3, we plot a point: 
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To plot a complex number like i43− , we need more than 

just a number line since there are two components to the 

number.  To plot this number, we need two number lines, 

crossed to form a complex plane.   

 

 

 

Complex Plane 

In the complex plane, the horizontal axis is the real axis and the vertical axis is the 

imaginary axis. 

 

 

Example 2 

Plot the number i43−  on the complex plane. 

 

The real part of this number is 3, and the imaginary part is -

4.  To plot this, we draw a point 3 units to the right of the 

origin in the horizontal direction and 4 units down in the 

vertical direction. 

 

Because this is analogous to the Cartesian coordinate system 

for plotting points, we can think about plotting our complex 

number biaz +=  as if we were plotting the point (a, b) in 

Cartesian coordinates.  Sometimes people write complex 

numbers as z x yi= +  to highlight this relation. 

 

 

Arithmetic on Complex Numbers 

 

Before we dive into the more complicated uses of complex numbers, let’s make sure we 

remember the basic arithmetic involved.  To add or subtract complex numbers, we simply 

add the like terms, combining the real parts and combining the imaginary parts. 

 

 

Example 3 

Add i43−  and i52+ . 

 

Adding )52()43( ii ++− , we add the real parts and the imaginary parts 

ii 5423 +−+  

i+5  

 

 

Try it Now 

1. Subtract i52+  from i43− . 

real 

imaginary 
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We can also multiply and divide complex numbers. 

 

 

Example 4 

Multiply:  )52(4 i+ . 

 

To multiply the complex number by a real number, we simply distribute as we would 

when multiplying polynomials. 

 

)52(4 i+    Distribute 

= i5424 +    Simplify 

i208+=  

 

 

Example 5 

Multiply:  )41)(32( ii +− . 

 

To multiply two complex numbers, we expand the product as we would with 

polynomials (the process commonly called FOIL – “first outer inner last”).   

)41)(32( ii +−   Expand 

=
212382 iii −−+   Since 1−=i , 12 −=i  

= )1(12382 −−−+ ii   Simplify 

= i514 +  

 

 

Example 6 

Divide 
(2 5 )

(4 )

i

i

+

−
. 

 

To divide two complex numbers, we have to devise a way to write this as a complex 

number with a real part and an imaginary part.   

 

We start this process by eliminating the complex number in the denominator.  To do 

this, we multiply the numerator and denominator by a special complex number so that 

the result in the denominator is a real number.  The number we need to multiply by is 

called the complex conjugate, in which the sign of the imaginary part is changed.  

Here, 4+i  is the complex conjugate of 4–i.  Of course, obeying our algebraic rules, we 

must multiply by 4+i  on both the top and bottom. 

(2 5 ) (4 )

(4 ) (4 )

i i

i i

+ +


− +
   

 

In the numerator, 
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(2 5 )(4 )i i+ +    Expand 
28 20 2 5i i i= + + +    Since 1−=i , 12 −=i  

8 20 2 5( 1)i i= + + + −   Simplify 

3 22i= +  

 

Multiplying the denominator  

(4 )(4 )i i− +     Expand 

2(16 4 4 )i i i− + −    Since 1−=i , 12 −=i  

(16 ( 1))− −   

=17 
 

Combining this we get 
3 22 3 22

17 17 17

i i+
= +   

 

 

Try it Now 

2.  Multiply i43−  and 2 3i+ . 

 

 

With the interpretation of complex numbers as points in a plane, which can be related to 

the Cartesian coordinate system, you might be starting to guess our next step – to refer to 

this point not by its horizontal and vertical components, but using its polar location, given 

by the distance from the origin and an angle. 

 

 

Polar Form of Complex Numbers 

 

Remember, because the complex plane is analogous to the Cartesian plane that we can 

think of a complex number z x yi= +  as analogous to the Cartesian point (x, y) and recall 

how we converted from (x, y) to polar (r, θ) coordinates in the last section. 

 

Bringing in all of our old rules we remember the following:  

 

r

x
=)cos(   )cos(rx =  

r

y
=)sin(   )sin(ry =  

x

y
=)tan(   

222 ryx =+  

 

 

With this in mind, we can write cos( ) sin( )z x yi r ir = + = + . 

 

x + yi 

r 

θ 

y 

x 
real 

imaginary 
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Example 7 

Express the complex number i4  using polar coordinates.  

 

On the complex plane, the number 4i is a distance of 4 from 

the origin at an angle of 
2


, so 








+








=

2
sin4

2
cos44


ii   

 

Note that the real part of this complex number is 0.  

 

 

In the 18th century, Leonhard Euler demonstrated a relationship between exponential and 

trigonometric functions that allows the use of complex numbers to greatly simplify some 

trigonometric calculations.  While the proof is beyond the scope of this class, you will 

likely see it in a later calculus class.  

 

 

Polar Form of a Complex Number and Euler’s Formula 

The polar form of a complex number is )sin()cos(  irrz += .  

An alternate form, which will be the primary one used, is 
irez =  

 

Euler’s Formula states )sin()cos(  irrrei +=  

 

Similar to plotting a point in the polar coordinate system we need r and   to find the 

polar form of a complex number. 

 

 

Example 8 

Find the polar form of the complex number -8. 

 

Treating this is a complex number, we can write it as -8+0i. 

 

Plotted in the complex plane, the number -8 is on the negative 

horizontal axis, a distance of 8 from the origin at an angle of π 

from the positive horizontal axis.   

 

The polar form of the number -8 is 
ie8 . 

 

Plugging r = 8 and θ = π back into Euler’s formula, we have:  

808)sin(8)cos(88 −=+−=+= iie i 
 as desired. 
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Example 9 

Find the polar form of i44+− . 

 

On the complex plane, this complex number would correspond to the point (-4, 4) on a 

Cartesian plane.  We can find the distance r and angle θ as we did in the last section. 

 
222 yxr +=  

222 4)4( +−=r  

2432 ==r  

 

To find θ, we can use 
r

x
=)cos(   

2

2

24

4
)cos( −=

−
=  

This is one of known cosine values, and since the point is 

in the second quadrant, we can conclude that 
4

3
 = . 

The polar form of this complex number is 
i

e 4

3

24



. 

 

 

Example 10 

Find the polar form of i53−− . 

 

On the complex plane, this complex number would correspond to the point (-3, -5) on a 

Cartesian plane.  First, we find r. 
222 yxr +=  

222 )5()3( −+−=r  

34=r   
 

To find θ, we might use 
x

y
=)tan(  

3

5
)tan(

−

−
=  

0304.1
3

5
tan 1 =








= −  

 

This angle is in the wrong quadrant, so we need to find a second solution.  For tangent, 

we can find that by adding π. 

1720.40304.1 =+=   

 

The polar form of this complex number is ie 1720.434 . 
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Try it Now 

3.  Write 3 i+  in polar form. 

 

 

Example 11 

Write 
i

e 63



 in complex a bi+  form. 

 









+








=

6
sin3

6
cos33 6




ie
i

   Evaluate the trig functions 

2

1
3

2

3
3 += i      Simplify 

2

3

2

33
i+=  

 

 

The polar form of a complex number provides a powerful way to compute powers and 

roots of complex numbers by using exponent rules you learned in algebra.  To compute a 

power of a complex number, we: 

1) Convert to polar form 

2) Raise to the power, using exponent rules to simplify 

3) Convert back to a + bi form, if needed 

 

 

Example 12 

Evaluate ( )644 i+− . 

 

While we could multiply this number by itself five times, that would be very tedious.  

To compute this more efficiently, we can utilize the polar form of the complex number.  

In an earlier example, we found that 
i

ei 4

3

2444



=+− .  Using this, 

 

( )644 i+−    Write the complex number in polar form 
6

4

3

24













=

i

e



  Utilize the exponent rule 
mmm baab =)(  

( )
6

4

3
6

24













=

i

e



  On the second factor, use the rule 
mnnm aa =)(  

( ) 6
4

3
6

24


=
i

e



  Simplify 

i

e 2

9

32768



=    
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At this point, we have found the power as a complex number in polar form.  If we want 

the answer in standard a + bi form, we can utilize Euler’s formula. 

 









+








=

2

9
sin32768

2

9
cos3276832768 2

9




ie
i

 

 

Since 
2

9
 is coterminal with 

2


, we can use our special angle knowledge to evaluate the 

sine and cosine. 









+









2

9
sin32768

2

9
cos32768


i ii 32768)1(32768)0(32768 =+=  

 

We have found that ( ) ii 3276844
6
=+− . 

 

 

The result of the process can be summarized by DeMoivre’s Theorem.  This is a 

shorthand to using exponent rules. 

 

 

DeMoivre’s Theorem 

If ( ) ( )( )cos sinz r i = + , then for any integer n, ( ) ( )( )cos sinn nz r n i n = +  

 

 

We omit the proof, but note we can easily verify it holds in one case using Example 12: 

( ) iiii 32768
2

9
sin

2

9
cos32768

4

3
6sin

4

3
6cos24)44(

6
6 =
















+








=
















+








=+−


 

 

Example 13 

Evaluate i9 . 

 

To evaluate the square root of a complex number, we can first note that the square root 

is the same as having an exponent of 
2

1
:  2/1)9(9 ii = . 

 

To evaluate the power, we first write the complex number in polar form.  Since 9i has 

no real part, we know that this value would be plotted along the vertical axis, a distance 

of 9 from the origin at an angle of 
2


.  This gives the polar form:  

i

ei 299



= . 

 

Then, to evaluate the square root, 

 



  Section 8.3 Polar Form of Complex Numbers    535 

 

2/1)9(9 ii =    Use the polar form 

=

2/1

29












 i

e



   Use exponent rules to simplify 

2/1

22/19













=

i

e



 

2

1

22/19


=
i

e



   Simplify 

i

e 43



=    Rewrite using Euler’s formula if desired 









+








=

4
sin3

4
cos3


i  Evaluate the sine and cosine 

2

2
3

2

2
3 i+=  

 

Using the polar form, we were able to find a square root of a complex number. 

ii
2

23

2

23
9 +=  

 

Alternatively, using DeMoivre’s Theorem we could write  
2/1

29












 i

e



= 
1/2 1 1

9 cos sin 3 cos sin
2 2 2 2 4 4

i i
             
 +  = +          

          
 and simplify 

 

 

Try it Now 

4.  Evaluate ( )
6

3 i+  using polar form. 

 

 

You may remember that equations like 42 =x have two solutions, 2 and -2 in this case, 

though the square root 4  only gives one of those solutions.  Likewise, the square root 

we found in Example 11 is only one of two complex numbers whose square is 9i.  

Similarly, the equation 
3 8z =  would have three solutions where only one is given by the 

cube root.  In this case, however, only one of those solutions, z = 2, is a real value.  To 

find the others, we can use the fact that complex numbers have multiple representations 

in polar form. 
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Example 14 

Find all complex solutions to 
3 8z = . 

 

Since we are trying to solve 
3 8z = , we can solve for z as 

1/38z = .  Certainly one of 

these solutions is the basic cube root, giving z = 2.  To find others, we can turn to the 

polar representation of 8.   

 

Since 8 is a real number, is would sit in the complex plane on the horizontal axis at an 

angle of 0, giving the polar form 
ie 08 .  Taking the 1/3 power of this gives the real 

solution: 

( ) ( ) 2)0sin(2)0cos(2288 03/103/13/10 =+=== ieee ii  

 

However, since the angle 2π is coterminal with the angle of 0, we could also represent 

the number 8 as 
ie 28 .  Taking the 1/3 power of this gives a first complex solution: 

( ) ( ) iiieee
i

ii 31
2

3
2

2

1
2

3

2
sin2

3

2
cos2288 3

2
3/123/13/12 +−=














+








−=








+








===




  

For the third root, we use the angle of 4π, which is also coterminal with an angle of 0. 

8e4pi( )
1/3

= 81/3 e4pi( )
1/3

= 2e
4p

3
i

= 2cos
4p

3

æ

è
ç

ö

ø
÷+ i2sin

4p

3

æ

è
ç

ö

ø
÷ = 2 -

1

2

æ

è
ç

ö

ø
÷+ i2 -

3

2

æ

è
ç

ö

ø
÷ = -1- 3i

Altogether, we found all three complex solutions to 
3 8z = , 

2, 1 3 , 1 3z i i= − + − −  

 

Graphed, these three numbers would be equally spaced on a 

circle about the origin at a radius of 2.  

 

 

 

 

 

 

Important Topics of This Section 

Complex numbers 

Imaginary numbers 

Plotting points in the complex coordinate system 

Basic operations with complex numbers  

Euler’s Formula 

DeMoivre’s Theorem 

Finding complex solutions to equations 
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Try it Now Answers 

1. (3 4 ) (2 5 ) 1 9i i i− − + = −   

2. (3 4 )(2 3 ) 18i i i− + = +   

3. 3 i+  would correspond with the point ( )3,1  in the first quadrant. 

2
23 1 4 2r = + = =  

( )
1

sin
2

 = , so 
6


 =  

3 i+  in polar form is 62
i

e


 

4. ( )
6

3 i+ = ( )
6

662 2 64cos( ) 64sin( ) 64
i

ie e i


  = = + = −  
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Section 8.3 Exercises 

Simplify each expression to a single complex number. 

1. 9−    2. 16−    3. 6 24− −    

4. 3 75− −    5. 
2 12

2

+ −
   6. 

4 20

2

+ −
 

 

Simplify each expression to a single complex number. 

7. ( )3 2 (5 3 )i i+ + −     8. ( ) ( )2 4 1 6i i− − + +  

9. ( )5 3 (6 )i i− + − −     10. ( )2 3 (3 2 )i i− − +  

11. ( )2 3 (4 )i i+     12. ( )5 2 (3 )i i−  

13. ( )6 2 (5)i−     14. ( )( )2 4 8i− +  

15. ( )2 3 (4 )i i+ −     16. ( )1 2 ( 2 3 )i i− + − +  

17. ( )4 2 (4 2 )i i− +     18. ( )( )3 4 3 4i i+ −  

19. 
3 4

2

i+
     20. 

6 2

3

i−
 

21. 
5 3

2

i

i

− +
     22. 

6 4i

i

+
 

23. 
2 3

4 3

i

i

−

+
     24. 

3 4

2

i

i

+

−
 

25. 
6i    26. 

11i    27. 
17i    28. 

24i  

 

Rewrite each complex number from polar form into a bi+  form. 

29. 
23 ie   30. 

44 ie   31. 66
i

e


  32. 38
i

e


   

33. 
5

43
i

e


  34. 
7

45
i

e


 

 

Rewrite each complex number into polar 
ire 

 form. 

35. 6    36. 8−    37. 4i−   38. 6i    

39. 2 2i+   40. 4 4i+   41. 3 3i− +   42. 4 4i− −   

43. 5 3i+   44. 4 7i+   45. 3 i− +   46. 2 3i− +  

47. 1 4i− −   48. 3 6i− −   49. 5 i−   50. 1 3i−   
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Compute each of the following, leaving the result in polar 
ire 

 form. 

51. 6 43 2  
i i

e e
   

  
  

  52. 

2 5

3 32 4
i i

e e
   

  
  

   53. 

3

4

6

6

3

i

i

e

e




   

54. 

4

3

2

24

6

i

i

e

e




   55. 

10

42
i

e
 

 
 

   56. 

4

63
i

e
 

 
 

    

57. 

2

316  
i

e


   58.

3

29
i

e


 

 

Compute each of the following, simplifying the result into a bi+  form. 

59. ( )
8

2 2i+    60. ( )
6

4 4i+    61. 3 3i− +    

62. 4 4i− −    63. 3 5 3i+    64. 4 4 7i+  

 

Solve each of the following equations for all complex solutions. 

65. 
5 2z =   66. 

7 3z =   67. 
6 1z =   68. 

8 1z =  



540  Chapter 8 

 

Section 8.4 Vectors 

 

A woman leaves home, walks 3 miles north, then 2 miles southeast.  How far is she from 

home, and in which direction would she need to walk to return home?  How far has she 

walked by the time she gets home? 

 

This question may seem familiar – indeed we did a similar problem with a boat in the 

first section of this chapter.  In that section, we solved the problem using triangles.  In 

this section, we will investigate another way to approach the problem using vectors, a 

geometric entity that indicates both a distance and a direction.  We will begin our 

investigation using a purely geometric view of vectors. 

 

A Geometric View of Vectors 

 

 

Vector 

A vector is an object that has both a length and a direction. 

 

Geometrically, a vector can be represented by an arrow that has a fixed length and 

indicates a direction.  If, starting at the point A, a vector, which means “carrier” in 

Latin, moves toward point B, we write AB  to represent the vector. 

 

A vector may also be indicated using a single letter in boldface type, like u, or by 

capping the letter representing the vector with an arrow, like u


. 

 

 

Example 1 

Draw a vector that represents the movement from the point P(-1, 2) to the point Q(3,3) 

 

By drawing an arrow from the first point to the second, 

we can construct a vector PQ .  

 

 

 

 

 

 

Try it Now 

1. Draw a vector, , that travels from the origin to the point (3, 5). 

 

 

v
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Using this geometric representation of vectors, we can visualize the addition and scaling 

of vectors.   

 

To add vectors, we envision a sum of two movements.  To find vu


+ , we first draw the 

vector u


, then from the end of u


 we drawn the vector v


.  This corresponds to the 

notion that first we move along the first vector, and then from that end position we move 

along the second vector.  The sum vu


+  is the new vector that travels directly from the 

beginning of u


 to the end of v


in a straight path. 

 

 

Adding Vectors Geometrically 

To add vectors geometrically, draw v


 starting from the end of  

.  The sum vu


+  is the vector from the beginning of  to the  

end of v


. 

 

 

 

 

Example 2 

Given the two vectors shown below, draw  

 

 

 

 

 

 

We draw v


 starting from the end of , then draw in the sum 

vu


+  from the beginning of  to the end of v


. 

 

 

 

Notice that path of the walking woman from the beginning of the section could be 

visualized as the sum of two vectors.  The resulting sum vector would indicate her end 

position relative to home. 

 

Although vectors can exist anywhere in the plane, if we put the starting point at the origin 

it is easy to understand its size and direction relative to other vectors. 

 

To scale vectors by a constant, such as u


3 , we can imagine adding uuu


++ .  The result 

will be a vector three times as long in the same direction as the original vector.  If we 

were to scale a vector by a negative number, such as u


− , we can envision this as the 

opposite of u


; the vector so that )( uu


−+  returns us to the starting point.  This vector 

u


−  would point in the opposite direction as u


 but have the same length. 

 

u


u


vu


+

u


u


u


 

v


 

vu


+  

u


 
v


 

u


 

v


 

vu


+  
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Another way to think about scaling a vector is to maintain its direction and multiply its 

length by a constant, so that u


3 would point in the same direction but will be 3 times as 

long. 

 

 

Scaling a Vector Geometrically 

To geometrically scale a vector by a constant, scale the length of the vector by the 

constant. 

 

Scaling a vector by a negative constant will reverse the direction of the vector. 

 

 

Example 3 

Given the vector shown, draw u


3 , u


− , and u


2− . 

 

 

The vector u


3  will be three times as long.  The vector u


−  will have the same length 

but point in the opposite direction.  The vector  will point in the opposite direction 

and be twice as long. 

 

 

 

 

 

 

 

 

By combining scaling and addition, we can find the difference between vectors 

geometrically as well, since )( vuvu


−+=− . 

 

 

Example 4 

Given the vectors shown, draw  

 

 

 

 

 

 

From the end of u


 we draw , then draw in the result.  

 

 

 

 

 

u


2−

vu


−

v


−

u


 

u


3  
u


−  

u


2−  

u


 

v


−  

vu


−  

u


 
v
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Notice that the sum and difference of two vectors are the two 

diagonals of a parallelogram with the vectors u


 and  as edges. 

 

 

 

 

Try it Now 

2. Using vector v


from Try it Now #1, draw . 

 

 

Component Form of Vectors 

 

While the geometric interpretation of vectors gives us an intuitive understanding of 

vectors, it does not provide us a convenient way to do calculations.  

For that, we need a handy way to represent vectors.  Since a vector 

involves a length and direction, it would be logical to want to represent 

a vector using a length and an angle θ, usually measured from standard 

position.   

 

 

Magnitude and Direction of a Vector 

A vector u


 can be described by its magnitude, or length, u


, and an angle θ. 

A vector with length 1 is called unit vector. 

 

 

While this is very reasonable, and a common way to describe vectors, it is often more 

convenient for calculations to represent a vector by horizontal and vertical components. 

 

 

Component Form of a Vector 

The component form of a vector represents the vector using two components.  

yxu ,=


 indicates the vector represents a displacement of x units horizontally and y 

units vertically.   

 

Notice how we can see the magnitude of the vector as the length of the hypotenuse of 

a right triangle, or in polar form as the radius, r. 

 

 

 

v


v


2−

u


 

θ 

x
x 

y 

u


 

v


 
vu


−  

u


 
v


 

vu


+  

u


 

θ 
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Alternate Notation for Vector Components 

Sometimes you may see vectors written as the combination of unit vectors  and j


, 

where  i


 points the right and j


 points up.  In other words, 0,1=i


 and . 

 

In this notation, the vector 4,3 −=u


 would be written as jiu


43 −=  since both 

indicate a displacement of 3 units to the right, and 4 units down. 

 

 

While it can be convenient to think of the vector yxu ,=


 as an arrow from the origin to 

the point (x, y), be sure to remember that most vectors can be situated anywhere in the 

plane, and simply indicate a displacement (change in position) rather than a position. 

It is common to need to convert from a magnitude and angle to the component form of 

the vector and vice versa.  Happily, this process is identical to converting from polar 

coordinates to Cartesian coordinates, or from the polar form of complex numbers to the 

a+bi form. 

 

 

Example 5 

Find the component form of a vector with length 7 at an angle of 135 degrees. 

 

Using the conversion formulas )cos(rx =  and )sin(ry = , we can find the 

components 

2

27
)135cos(7 −==x  

2

27
)135sin(7 ==y  

 

This vector can be written in component form as 
2

27
,

2

27
− . 

 

 

Example 6 

Find the magnitude and angle   representing the vector 2,3 −=u


. 

 

First we can find the magnitude by remembering the relationship between x, y and r: 

13)2(3 222 =−+=r  

13=r  

 

Second we can find the angle.  Using the tangent, 

i


1,0=j
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3

2
)tan(

−
=  

−







−= − 69.33

3

2
tan 1 , or written as a coterminal positive angle, 326.31°.  This 

angle is in the 4th quadrant as desired. 

 

 

Try it Now 

3. Using vector v


from Try it Now #1, the vector that travels from the origin to the point 

(3, 5), find the components, magnitude and angle   that represent this vector. 

 

 

In addition to representing distance movements, vectors are commonly used in physics 

and engineering to represent any quantity that has both direction and magnitude, 

including velocities and forces.  

 

 

Example 7 

An object is launched with initial velocity 200 meters per second at an angle of 30 

degrees.  Find the initial horizontal and vertical velocities.  

 

By viewing the initial velocity as a vector, we can resolve the vector into horizontal and 

vertical components.     

205.173
2

3
200)30cos(200 ==x  m/sec 

100
2

1
200)30sin(200 ===y  m/sec 

 

This tells us that, absent wind resistance, the object will travel horizontally at about 173 

meters each second.  Gravity will cause the vertical velocity to change over time – we’ll 

leave a discussion of that to physics or calculus classes. 

 

 

Adding and Scaling Vectors in Component Form 

 

To add vectors in component form, we can simply add the corresponding components.  

To scale a vector by a constant, we scale each component by that constant. 

 

 

 

 

 

 

 

200 m/s 

30° 

173 m/s 

100 m/s 
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Combining Vectors in Component Form 

To add, subtract, or scale vectors in component form 

If 1 2,u u u= , 1 2,v v v= , and c is any constant, then 

2211 , vuvuvu ++=+


 

2211 , vuvuvu −−=−


 

21 ,cucuuc =


 

 

 

Example 8 

Given 2,3 −=u


 and 4,1−=v


, find a new vector vuw


23 −=  

 

Using the vectors given, 

vuw


23 −=  

    4,122,33 −−−=   Scale each vector 

    8,26,9 −−−=    Subtract corresponding components 

    14,11 −=  

 

 

By representing vectors in component form, we can find the resulting displacement 

vector after a multitude of movements without needing to draw a lot of complicated non-

right triangles.  For a simple example, we revisit the problem from the opening of the 

section.  The general procedure we will follow is: 

1) Convert vectors to component form 

2) Add the components of the vectors  

3) Convert back to length and direction if needed to suit the context of the question 

 

 

Example 9 

A woman leaves home, walks 3 miles north, then 2 miles southeast.  How far is she 

from home, and what direction would she need to walk to return home?  How far has 

she walked by the time she gets home? 

 

Let’s begin by understanding the question in a little more depth.  

When we use vectors to describe a traveling direction, we often 

position things so north points in the upward direction, east 

points to the right, and so on, as pictured here. 

 

Consequently, travelling NW, SW, NE or SE, means we are 

travelling through the quadrant bordered by the given directions 

at a 45 degree angle. 

N 
NE 

E 

SE 
S 

SW 

W 

NW 
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With this in mind, we begin by converting each vector to components.   

A walk 3 miles north would, in components, be 3,0 .   

 

A walk of 2 miles southeast would be at an angle of 45° South of East.  Measuring from 

standard position the angle would be 315°.   

 

Converting to components, we choose to use the standard position angle so that we do 

not have to worry about whether the signs are negative or positive; they will work out 

automatically. 

414.1,414.1
2

2
2,

2

2
2)315sin(2),315cos(2 −

−
=  

 

Adding these vectors gives the sum of the movements in component form 

586.1,414.1414.1,414.13,0 =−+  

 

To find how far she is from home and the direction she would need to walk to return 

home, we could find the magnitude and angle of this vector. 

Length = 125.2586.1414.1 22 =+  

 

To find the angle, we can use the tangent 

414.1

586.1
)tan( =  

=







= − 273.48

414.1

586.1
tan 1  north of east 

 

Of course, this is the angle from her starting point to her ending point.  To return home, 

she would need to head the opposite direction, which we could either describe as 

180°+48.273° = 228.273° measured in standard position, or as 48.273° south of west (or 

41.727° west of south).   

 

She has walked a total distance of 3 + 2 + 2.125 = 7.125 miles.  

 

Keep in mind that total distance travelled is not the same as the length of the resulting 

displacement vector or the “return” vector. 

 

 

Try it Now 

4. In a scavenger hunt, directions are given to find a buried treasure.  From a starting 

point at a flag pole you must walk 30 feet east, turn 30 degrees to the north and travel 

50 feet, and then turn due south and travel 75 feet.  Sketch a picture of these vectors, 

find their components, and calculate how far and in what direction you must travel to 

go directly to the treasure from the flag pole without following the map. 

3 

2 
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While using vectors is not much faster than using law of cosines with only two 

movements, when combining three or more movements, forces, or other vector 

quantities, using vectors quickly becomes much more efficient than trying to use 

triangles. 

 

 

Example 10 

Three forces are acting on an object as shown below, each measured in Newtons (N).  

What force must be exerted to keep the object in equilibrium (where the sum of the 

forces is zero)? 

   
 

We start by resolving each vector into components. 

 

The first vector with magnitude 6 Newtons at an angle of 30 degrees will have 

components 

3,33
2

1
6,

2

3
6)30sin(6),30cos(6 ==  

 

The second vector is only in the horizontal direction, so can be written as 0,7− . 

 

The third vector with magnitude 4 Newtons at an angle of 300 degrees will have 

components 

32,2
2

3
4,

2

1
4)300sin(4),300cos(4 −=

−
=  

 

To keep the object in equilibrium, we need to find a force vector yx,  so the sum of 

the four vectors is the zero vector, 0,0 .   

3 3, 3 7, 0 2, 2 3 , 0, 0x y+ − + − + =  Add component-wise 

3 3 7 2, 3 0 2 3 , 0, 0x y− + + − + =   Simplify 

3 3 5, 3 2 3 , 0, 0x y− − + =    Solve 

, 0, 0 3 3 5, 3 2 3x y = − − −  

, 3 3 5, 3 2 3 0.196, 0.464x y = − + − +  −  

 

30° 

6 N 

7 N 

4 N 

300° 
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This vector gives in components the force that would need to be applied to keep the 

object in equilibrium.  If desired, we could find the magnitude of this force and 

direction it would need to be applied in. 

Magnitude = 504.0464.0)196.0( 22 =+− N 

 

Angle: 

196.0

464.0
)tan(

−
=  

−=








−
= − 089.67

196.0

464.0
tan 1 .   

 

This is in the wrong quadrant, so we adjust by finding the next angle with the same 

tangent value by adding a full period of tangent: 

=+−= 911.112180089.67  

 

To keep the object in equilibrium, a force of 0.504 Newtons would need to be applied at 

an angle of 112.911°. 

 

 

Important Topics of This Section 

Vectors, magnitude (length) & direction 

Addition of vectors 

Scaling of vectors 

Components of vectors 

Vectors as velocity 

Vectors as forces 

Adding & Scaling vectors in component form 

Total distance travelled vs. total displacement 

 

 

Try it Now Answers 

1.     2.  
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3. =







=== − 04.59

3

5
tan34magnitude5,3 1v


 

 

4.  

 

 

 

 

 

 

 

 

50,301.7375)30sin(50),30cos(5030

75,0)30sin(50),30cos(500,30 321

−=−+=

−===

fv

vvv




 

Magnitude = 88.73 feet at an angle of 34.3° south of east.

75 ft 

50 ft 
30 ft 
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Section 8.4 Exercises 

 

Write the vector shown in component form. 

1.   2.  

 

Given the vectors shown, sketch vu


+ , vu


− , and u


2 . 

3.   4.  

 

Write each vector below as a combination of the vectors u


 and v


 from question #3. 

5.   6.  

 

From the given magnitude and direction in standard position, write the vector in 

component form. 

7. Magnitude: 6, Direction: 45°  8. Magnitude: 10, Direction: 120°   

9. Magnitude: 8, Direction: 220°  10. Magnitude: 7, Direction: 305° 

 

Find the magnitude and direction of the vector. 

11. 4,0   12. 0,3−   13. 5,6   14. 7,3    

15. 1,2−   16. 13,10−   17. 5,2 −   18. 4,8 −    

19. 6,4 −−   20. 9,1−   

 

Using the vectors given, compute vu


+ , vu


− , and vu


32 − . 

21. 5,1, 3,2 =−= vu


   22. 1,2, 4,3 −=−= vu
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23. A woman leaves home and walks 3 miles west, then 2 miles southwest.  How far 

from home is she, and in what direction must she walk to head directly home? 

 

24. A boat leaves the marina and sails 6 miles north, then 2 miles northeast.  How far 

from the marina is the boat, and in what direction must it sail to head directly back to 

the marina? 

 

25. A person starts walking from home and walks 4 miles east, 2 miles southeast, 5 miles 

south, 4 miles southwest, and 2 miles east.  How far have they walked?  If they 

walked straight home, how far would they have to walk? 

 

26. A person starts walking from home and walks 4 miles east, 7 miles southeast, 6 miles 

south, 5 miles southwest, and 3 miles east.  How far have they walked?  If they 

walked straight home, how far would they have to walk? 

 

27. Three forces act on an object: 7,4,1,0, 5,8 321 −==−−= FFF


.  Find the net 

force acting on the object. 

 

28. Three forces act on an object: 7,0,3,8, 5,2 321 −=== FFF


.  Find the net force 

acting on the object. 

 

29. A person starts walking from home and walks 3 miles at 20° north of west, then 5 

miles at 10° west of south, then 4 miles at 15° north of east.  If they walked straight 

home, how far would they have to walk, and in what direction? 

 

30. A person starts walking from home and walks 6 miles at 40° north of east, then 2 

miles at 15° east of south, then 5 miles at 30° south of west.  If they walked straight 

home, how far would they have to walk, and in what direction? 

 

31. An airplane is heading north at an airspeed of 600 km/hr, but there is a wind blowing 

from the southwest at 80 km/hr.  How many degrees off course will the plane end up 

flying, and what is the plane’s speed relative to the ground? 

 

32. An airplane is heading north at an airspeed of 500 km/hr, but there is a wind blowing 

from the northwest at 50 km/hr.  How many degrees off course will the plane end up 

flying, and what is the plane’s speed relative to the ground? 

 

33. An airplane needs to head due north, but there is a wind blowing from the southwest 

at 60 km/hr.  The plane flies with an airspeed of 550 km/hr.  To end up flying due 

north, the pilot will need to fly the plane how many degrees west of north? 
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34. An airplane needs to head due north, but there is a wind blowing from the northwest 

at 80 km/hr.  The plane flies with an airspeed of 500 km/hr.  To end up flying due 

north, the pilot will need to fly the plane how many degrees west of north? 

 

35. As part of a video game, the point (5, 7) is rotated counterclockwise about the origin 

through an angle of 35 degrees.  Find the new coordinates of this point. 

 

36. As part of a video game, the point (7, 3) is rotated counterclockwise about the origin 

through an angle of 40 degrees.  Find the new coordinates of this point. 

 

37. Two children are throwing a ball back and forth straight across the back seat of a car. 

The ball is being thrown 10 mph relative to the car, and the car is travelling 25 mph 

down the road.  If one child doesn't catch the ball and it flies out the window, in what 

direction does the ball fly (ignoring wind resistance)? 

 

38. Two children are throwing a ball back and forth straight across the back seat of a car. 

The ball is being thrown 8 mph relative to the car, and the car is travelling 45 mph 

down the road.  If one child doesn't catch the ball and it flies out the window, in what 

direction does the ball fly (ignoring wind resistance)? 
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Section 8.5 Dot Product 

 

Now that we can add, subtract, and scale vectors, you might be wondering whether we 

can multiply vectors.  It turns out there are two different ways to multiply vectors, one 

which results in a number, and one which results in a vector.  In this section, we'll focus 

on the first, called the dot product or scalar product, since it produces a single numeric 

value (a scalar).  We'll begin with some motivation. 

 

In physics, we often want to know how much of a force is acting in the direction of 

motion.  To determine this, we need to know the angle between direction of force and the 

direction of motion.  Likewise, in computer graphics, the lighting system determines how 

bright a triangle on the object should be based on the angle between object and the 

direction of the light.  In both applications, we're interested in the angle between the 

vectors, so let's start there. 

 

Suppose we have two vectors, 21 , aaa =


 and 21 ,bbb =


.   Using our polar coordinate 

conversions, we could write )sin(),cos(  aaa


=  and )sin(),cos(  bbb


= .  

Now, if we knew the angles α and β, we wouldn't have much work to do - 

the angle between the vectors would be  −= .  While we certainly 

could use some inverse tangents to find the two angles, it would be great 

if we could find a way to determine the angle between the vector just 

from the vector components. 

 

To help us manipulate  −= , we might try introducing a trigonometric function: 

( ) ( ) −= coscos     

 

Now we can apply the difference of angles identity 

( ) ( ) ( ) ( ) ( ) sinsincoscoscos +=  

 

Now )cos(1 aa


= , so 
a

a

1)cos( = , and likewise for the other three components.  

Making those substitutions, 

( )
ba

baba

b

b

a

a

b

b

a

a


22112211cos
+

=+=    

( ) 2211cos bababa +=


 

 

Notice the expression on the right is a very simple calculation based on the components 

of the vectors.  It comes up so frequently we define it to be the dot product of the two 

vectors, notated by a dot.  This gives us two definitions of the dot product. 

 

β 

θ 

α 
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Definitions of the Dot Product 

2211 bababa +=


  Component definition 

( )cosbaba


=   Geometric definition 

 

 

The first definition, 2211 bababa +=


, gives us a simple way to calculate the dot product 

from components.  The second definition, ( )cosbaba


= , gives us a geometric 

interpretation of the dot product, and gives us a way to find the angle between two 

vectors, as we desired. 

 

 

Example 1 

Find the dot product 1,52,3 − . 

 

Using the first definition, we can calculate the dot product by multiplying the x 

components and adding that to the product of the y components. 

 

13215)1)(2()5)(3(1,52,3 =−=−+=−  

 

 

Example 2 

Find the dot product of the two vectors shown. 

 

We can immediately see that the magnitudes of the 

two vectors are 7 and 6.  We can quickly calculate 

that the angle between the vectors is 150°.  Using the geometric definition of the dot 

product, 

( ) ( )( )
3

cos 6 7 cos(150 ) 42 21 3
2

a b a b 
−

 = =  =  = − . 

 

 

Try it Now  

1.  Calculate the dot product  6,23,7 −−−  

 

 

Now we can return to our goal of finding the angle between vectors. 

 

 

 

 

30° 

6  

7  
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Example 3 

An object is being pulled up a ramp in the direction 1,5  by a 

rope pulling in the direction 2,4 .  What is the angle between 

the rope and the ramp? 

 

Using the component form, we can easily calculate the dot product. 

22220)2)(1()4)(5(2,41,5 =+=+==ba


 

 

We can also calculate the magnitude of each vector. 

2615 22 =+=a


,   2024 22 =+=b


 

 

Substituting these values into the geometric definition, we can solve for the angle 

between the vectors. 

( )cosbaba


=  

( )cos202622 =  









= − 255.15

2026

22
cos 1 . 

 

 

Example 4 

Calculate the angle between the vectors 4,6  and 3,2− . 

 

Calculating the dot product, 01212)3)(4()2)(6(3,24,6 =+−=+−=−  

 

We don't even need to calculate the magnitudes in this case since the dot product is 0. 

( )cosbaba


=  

( )cos0 ba


=  

( ) ==














= −− 900cos
0

cos 11

ba
  

 

 

With the dot product equaling zero, as in the last example, the angle between the vectors 

will always be 90°, indicating that the vectors are orthogonal, a more general way of 

saying perpendicular.  This gives us a quick way to check if vectors are orthogonal.  

Also, if the dot product is positive, then the inside of the inverse cosine will be positive, 

giving an angle less than 90°.  A negative dot product will then lead to an angle larger 

than 90° 
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Sign of the Dot Product 

If the dot product is: 

Zero  The vectors are orthogonal (perpendicular). 

Positive The angle between the vectors is less than 90° 

Negative The angle between the vectors is greater than 90° 

 

 

Try it Now  

2.  Are the vectors  3,7−  and 6,2 −−  orthogonal?  If not, find the angle between 

them. 

 

 

Projections 

 

In addition to finding the angle between vectors, sometimes we 

want to know how much one vector points in the direction of 

another.  For example, when pulling an object up a ramp, we 

might want to know how much of the force is exerted in the direction of motion.  To 

determine this we can use the idea of a projection. 

 
 

In the picture above, u


 is a projection of a


 onto b


.  In other words, it is the portion of 

a


 that points in the same direction as b


.   

 

To find the length of u


, we could notice that it is one side of a right triangle.  If we 

define θ to be the angle between a


 and u


, then 
a

u



=)cos( ,  so  ua


=)cos( .   

 

While we could find the angle between the vectors to determine this magnitude, we could 

skip some steps by using the dot product directly.  Since )cos(baba


= , 

b

ba
a 


 

=)cos( .  Using this, we can rewrite )cos(au


=  as 
b

ba
u 


 
= .  This gives us 

the length of the projection, sometimes denoted as 
b

ba
uacomp

b








== . 

 

a


 a


 

b


 b


 

u


 

v
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To find the vector u


 itself, we could first scale b


 to a unit vector with length 1: 
b

b




.  

Multiplying this by the length of the projection will give a vector in the direction of b


 

but with the correct length. 

b

b

ba

b

b

b

ba

b

b
uaproj

b




































=















==
2

 

 

Projection Vector 

The projection of vector a


 onto b


 is b

b

ba
aproj

b


























=
2

 

The magnitude of the projection is 
b

ba
acomp

b








=  

 

 

Example 5 

Find the projection of the vector 2,3 −  onto the vector 6,8 . 

 

We will need to know the dot product of the vectors and the 

magnitude of the vector we are projecting onto. 

121224)6)(2()8)(3(6,82,3 =−=−+=−  

101003664686,8 22 ==+=+=  

 

The magnitude of the projection will be 
5

6

10

12

6,8

6,82,3
==

−
. 

 

To find the projection vector itself, we would multiply that magnitude by 6,8  scaled 

to a unit vector. 

25

18
,

25

24

50

36
,

50

48
6,8

50

6

10

6,8

5

6

6,8

6,8

5

6
==== . 

 

Based on the sketch above, this answer seems reasonable. 
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Try it Now 

3. Find the component of the vector  4,3−  that is orthogonal to the vector 4,8−  

 

 

Work 

 

In physics, when a constant force causes an object to move, the mechanical work done 

by that force is the product of the force and the distance the object is moved.  However, 

we only consider the portion of force that is acting in the direction of motion. 

 

This is simply the magnitude of the projection of the force 

vector onto the distance vector, 
d

dF





.  The work done is the 

product of that component of force times the distance moved, 

the magnitude of the distance vector. 

dFd
d

dF
Work






=















=  

 

It turns out that work is simply the dot product of the force vector and the distance vector. 

 

 

Work 

When a force F


 causes an object to move some distance d


, the work done is 

dFWork

=  

 

 

Example 6 

A cart is pulled 20 feet by applying a force of 30 

pounds on a rope held at a 30 degree angle.  How 

much work is done? 

 

Since work is simply the dot product, we can take 

advantage of the geometric definition of the dot product in this case. 

615.519)30cos()20)(30()cos( === dFdFWork


ft-lbs. 

 

 

Try it Now 

4.  Find the work down moving an object from the point (1, 5) to (9, 14) by the force 

vector 2,3=F


  

30° 

30 pounds  

20 feet 

F


 

d


 

u
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Important Topics of This Section 

Calculate Dot Product 

   Using component definition 

   Using geometric definition 

Find the angle between two vectors 

Sign of the dot product 

Projections 

Work 

 

 

Try it Now Answers 

1.  41814)6)(3()2)(7(6,23,7 −=−=−+−−=−−−  

 

2.  In the previous Try it Now, we found the dot product was -4, so the vectors are not 

orthogonal.  The magnitudes of the vectors are ( ) 5837 22
=+−  and 

( ) 4062 22
=+− .  The angle between the vectors will be 








 −
= − 764.94

4058

4
cos 1  

 

3. We want to find the component of 4,3−  that is orthogonal to the 

vector 4,8− .  In the picture to the right, that component is vector 

v


.  Notice that avu


=+ , so if we can find the projection vector, 

we can find v


. 

( )
2,44,8

80

40
4,8

4)8(

4,84,3
2

22
2

−=−=−
















+−

−−
=


















== b

b

ba
aproju

b







 . 

 

Now we can solve avu


=+  for v


.   

2,12,44,3 =−−−=−= uav


 

 

4. The distance vector is 9,8514,19 =−− .   

The work is the dot product:  4218249,82,3 =+=== dFWork


a


 
b


 
u


 

v
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Section 8.5 Exercises 

 

Two vectors are described by their magnitude and direction in standard position.  Find 

the dot product of the vectors. 

 

1. Magnitude: 6, Direction: 45°;  Magnitude: 10, Direction: 120°   

2. Magnitude: 8, Direction: 220°;  Magnitude: 7, Direction: 305° 

 

Find the dot product of each pair of vectors.   

3. 4,0 ; 0,3−    4. 5,6 ; 7,3    

5. 1,2− ; 13,10−    6. 5,2 − ; 4,8 −  

 

Find the angle between the vectors 

7. 4,0 ; 0,3−    8. 5,6 ; 7,3  

9. 4,2 ; 3,1 −    10. 1,4− ; 2,8 −  

11. 2,4 ; 4,8    12. 3,5 ; 10,6−   

 

13.  Find a value for k so that  7,2  and 4,k  will be orthogonal. 

14.  Find a value for k so that  5,3−  and k,2  will be orthogonal. 

 

15.  Find the magnitude of the projection of 4,8 −  onto 3,1 − . 

16.  Find the magnitude of the projection of 7,2  onto 5,4 . 

17.  Find the projection of 10,6−  onto 3,1 − . 

18.  Find the projection of 4,0  onto 7,3 . 

 

19.  A scientist needs to determine the angle of reflection when a laser hits a mirror.  The 

picture shows the vector representing the laser beam, and a vector that is orthogonal 

to the mirror.  Find the acute angle between these, the angle of reflection. 

 

20. A triangle has coordinates at A: (1,4), B: (2,7), and C: (4,2).  Find the angle at point B. 

 

21.  A boat is trapped behind a log lying parallel to the 

dock.  It only requires 10 pounds of force to pull 

the boat directly towards you, but because of the 

log, you'll have to pull at a 45° angle.  How much 

force will you have to pull with?  (We're going to 

assume that the log is very slimy and doesn't 

contribute any additional resistance.) 
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22.  A large boulder needs to be dragged to a new position.  

If pulled directly horizontally, the boulder would 

require 400 pounds of pulling force to move.  We 

need to pull the boulder using a rope tied to the back 

of a large truck, forming a 15° angle from the ground.  How much force will the 

truck need to pull with? 

 

23.  Find the work done against gravity by pushing a 20 pound cart 10 feet up a ramp that 

is 10° above horizontal.  Assume there is no friction, so the only force is 20 pounds 

downwards due to gravity.   

 

24.  Find the work done against gravity by pushing a 30 pound cart 15 feet up a ramp that 

is 8° above horizontal.  Assume there is no friction, so the only force is 30 pounds 

downwards due to gravity.   

 

25.  An object is pulled to the top of a 40 foot ramp that forms a 10° 

angle with the ground.  It is pulled by rope exerting a force of 

120 pounds at a 35° angle relative to the ground.  Find the 

work done. 

 

26.  An object is pulled to the top of a 30 foot ramp that forms a 20° angle with the 

ground.  It is pulled by rope exerting a force of 80 pounds at a 30° angle relative to 

the ground.  Find the work done. 

 

 

 

15° 

10° 

35° 
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Section 8.6 Parametric Equations 

 

Many shapes, even ones as simple as circles, cannot be represented as an equation where 

y is a function of x.  Consider, for example, the path a moon follows as it orbits around a 

planet, which simultaneously rotates around a sun.  In some cases, polar equations 

provide a way to represent such a path.  In others, we need a more versatile approach that 

allows us to represent both the x and y coordinates in terms of a third variable, or 

parameter. 

 

 

Parametric Equations 

A system of parametric equations is a pair of functions x(t) and y(t) in which the x 

and y coordinates are the output, represented in terms of a third input parameter, t.  

 

 

Example 1 

Moving at a constant speed, an object moves at a steady rate along a straight path from 

coordinates (-5, 3) to the coordinates (3, -1) in 4 seconds, where the coordinates are 

measured in meters.  Find parametric equations for the position of the object. 

 

The x coordinate of the object starts at -5 meters, and goes to +3 meters, this means the 

x direction has changed by 8 meters in 4 seconds, giving us a rate of 2 meters per 

second.  We can now write the x coordinate as a linear function with respect to time, t, 

ttx 25)( +−= .  Similarly, the y value starts at 3 and goes to -1, giving a change in y 

value of 4 meters, meaning the y values have decreased by 

4 meters in 4 seconds, for a rate of -1 meter per second, 

giving equation tty −= 3)( .  Together, these are the 

parametric equations for the position of the object: 

tty

ttx

−=

+−=

3)(

25)(
 

 

Using these equations, we can build a table of t, x, and y 

values.  Because of the context, we limited ourselves to non-negative t values for this 

example, but in general you can use any values. 

 

From this table, we could create three possible graphs: a graph of x vs. t, which would 

show the horizontal position over time, a graph of y vs. t, which would show the vertical 

position over time, or a graph of y vs. x, showing the position of the object in the plane.   

 

 

 

 

 

 

t x y 

0 -5 3 

1 -3 2 

2 -1 1 

3 1 0 

4 3 -1 
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Position of x as a function of time  Position of y as a function of time 

                                 
 

Position of y relative to x 

 
 

Notice that the parameter t does not explicitly show up in this third graph.  Sometimes, 

when the parameter t does represent a quantity like time, we might indicate the direction 

of movement on the graph using an arrow, as shown above. 

 

 

There is often no single parametric representation for a curve. In 

Example 1 we assumed the object was moving at a steady rate 

along a straight line. If we kept the assumption about the path 

(straight line) but did not assume the speed was constant, we might 

get a system like: 

2

2

3)(

25)(

tty

ttx

−=

+−=
 

 

This starts at (-5, 3) when t = 0 and ends up at (3, -1) 

when t = 2.  If we graph the x(t) and y(t) function 

separately, we can see that those are no longer linear, 

but if we graph x vs. y we will see that we still get a 

straight-line path. 

t 
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Example 2 

Sketch a graph of  

tty

ttx

+=

+=

2)(

1)( 2

 

 

We can begin by creating a table of values.  From this table, we 

can plot the (x, y) points in the plane, sketch in a rough graph of 

the curve, and indicate the direction of motion with respect to 

time by using arrows. 

 
 

 

Notice that here the parametric equations describe a shape for which y is not a function of 

x.  This is an example of why using parametric equations can be useful – since they can 

represent such a graph as a set of functions.  This particular graph also appears to be a 

parabola where x is a function of y, which we will soon verify. 

 

 

Example 3 

Sketch a graph of  
( ) 3cos( )

( ) 3sin( )

x t t

y t t

=

=
 

 

These equations should look familiar.  Back when we first 

learned about sine and cosine we found that the coordinates 

of a point on a circle of radius r at an angle of θ will be 

cos( ), sin( )x r y r = = .  The equations above are in the 

same form, with 3r = , and t used in place of θ. 

 

This suggests that for each value of t, these parametric 

equations give a point on a circle of radius 3 at the angle 

corresponding to t.  At 0t = , the graph would be at 

3cos(0), 3sin(0)x y= = , the point (3,0).  Indeed, these 

equations describe the equation of a circle, drawn 

counterclockwise. 

 

t x y 

-3 10 -1 

-2 5 0 

-1 2 1 

0 1 2 

1 2 3 

2 5 4 

 

(rcos(θ), rsin(θ)) 

r 

θ 

y 

x 
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Interestingly, these similar parametric equations also describe the circle of radius 3: 

( ) 3sin( )

( ) 3cos( )

x t t

y t t

=

=
 

 

The difference with these equations it the graph would start at 3sin(0), 3cos(0)x y= = , 

the point (0,3).  As t increases from 0, the x value will increase, indicating these 

equations would draw the graph in a clockwise direction. 

 

 

While creating a t-x-y table, plotting points and connecting the dots with a smooth curve 

usually works to give us a rough idea of what the graph of a system of parametric 

equations looks like, it's generally easier to use technology to create these tables and 

(simultaneously) much nicer-looking graphs. 

 

 

Example 4 

Sketch a graph of 
)sin(3)(

)cos(2)(

tty

ttx

=

=
. 

 

Notice first that this equation looks very similar to the ones 

from the previous example, except the coefficients are not 

equal.  You might guess that the pairing of cos and sin will 

still produce rotation, but now x will vary from -2 to 2 while 

y will vary from -3 to 3, creating an ellipse. 

 

Using technology we can generate a graph of this equation, 

verifying it is indeed an ellipse. 

 

Similar to graphing polar equations, you must change the MODE on your calculator (or 

select parametric equations on your graphing technology) before graphing a system of 

parametric equations.  You will know you have successfully entered parametric mode 

when the equation input has changed to ask for a x(t)= and y(t)= pair of equations.   

 

 

Try it Now 

1. Sketch a graph of  
)2sin(3)(

)3cos(4)(

tty

ttx

=

=
.  This is an example of a Lissajous figure. 
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Example 5 

The populations of rabbits and wolves on an island over time are given by the graphs 

below.  Use these graphs to sketch a graph in the r-w plane showing the relationship 

between the number of rabbits and number of wolves. 

 

 
For each input t, we can determine the number of rabbits, r, and the number of wolves, 

w, from the respective graphs, and then plot the corresponding point in the r-w plane.   

 

 
This graph helps reveal the cyclical interaction between the two populations. 

 

 

Converting from Parametric to Cartesian 

 

In some cases, it is possible to eliminate the parameter t, allowing you to write a pair of 

parametric equations as a Cartesian equation. 

 

It is easiest to do this if one of the x(t) or y(t) functions can easily be solved for t, 

allowing you to then substitute the remaining expression into the second part. 

 

 

Example 6 

Write 
tty

ttx

+=

+=

2)(

1)( 2

 as a Cartesian equation, if possible. 

 

Here, the equation for y is linear, so is relatively easy to solve for t.  Since the resulting 

Cartesian equation will likely not be a function, and for convenience, we drop the 

function notation. 

0
2
4
6
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ty += 2   Solve for t 

ty =− 2   Substitute this for t in the x equation 

1)2( 2 +−= yx  

 

Notice that this is the equation of a parabola with x as a function of y, with vertex at 

(1,2), opening to the right.  Comparing this with the graph from Example 2, we see 

(unsurprisingly) that it yields the same graph in the x-y plane as did the original 

parametric equations. 

 

 

Try it Now 

2. Write   
6

3

)(

)(

tty

ttx

=

=
as a Cartesian equation, if possible. 

 

 

Example 7 

Write 
)log()(

2)(

tty

ttx

=

+=
 as a Cartesian equation, if possible. 

 

We could solve either the first or second equation for t.  Solving the first, 

2+= tx  

tx =− 2   Square both sides 

( ) tx =−
2

2   Substitute into the y equation 

( )( )2
2log −= xy  

 

Since the parametric equation is only defined for 0t , this Cartesian equation is 

equivalent to the parametric equation on the corresponding domain.  The parametric 

equations show that when t > 0, x > 2 and y > 0, so the domain of the Cartesian equation 

should be limited to x > 2. 

 

 

To ensure that the Cartesian equation is as equivalent as possible to the original 

parametric equation, we try to avoid using domain-restricted inverse functions, such as 

the inverse trig functions, when possible.  For equations involving trig functions, we 

often try to find an identity to utilize to avoid the inverse functions. 
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Example 8 

Write 
)sin(3)(

)cos(2)(

tty

ttx

=

=
 as a Cartesian equation, if possible. 

 

To rewrite this, we can utilize the Pythagorean identity 1)(sin)(cos 22 =+ tt . 

)cos(2 tx =  so )cos(
2

t
x
=  

)sin(3 ty =  so )sin(
3

t
y
=  

 

Starting with the Pythagorean Identity, 

1)(sin)(cos 22 =+ tt   Substitute in the expressions from the parametric form 

1
32

22

=







+







 yx
  Simplify 

1
94

22

=+
yx

 

 

This is a Cartesian equation for the ellipse we graphed earlier. 

 

 

Parameterizing Curves 

 

While converting from parametric form to Cartesian can be useful, it is often more useful 

to parameterize a Cartesian equation – converting it into parametric form. 

 

If the Cartesian equation gives one variable as a function of the other, then 

parameterization is trivial – the independent variable in the function can simply be 

defined as t. 

 

 

Example 9 

Parameterize the equation yyx 23 −= . 

 

In this equation, x is expressed as a function of y.  By defining ty =  we can then 

substitute that into the Cartesian equation, yielding ttx 23 −= .  Together, this produces 

the parametric form: 

tty

tttx

=

−=

)(

2)( 3
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Try it Now 

3. Write 322 =+yx  in parametric form, if possible. 

 

 

In addition to parameterizing Cartesian equations, we also can parameterize behaviors 

and movements. 

 

 

Example 10 

A robot follows the path shown.  Create a table of values for the 

x(t) and y(t) functions, assuming the robot takes one second to 

make each movement. 

 

Since we know the direction of motion, we can introduce 

consecutive values for t along the path of the robot.  Using these 

values with the x and y coordinates of the robot, we can create the 

tables.  For example, we designate the starting point, at (1, 1), as 

the position at t = 0, the next point at (3, 1) as the position at t = 1, 

and so on. 

 

 

 

 

Notice how this also ties back to vectors.  The journey of the robot as it moves through 

the Cartesian plane could also be displayed as vectors and total distance traveled and 

displacement could be calculated. 

 

 

Example 11 

A light is placed on the edge of a bicycle tire as shown and the bicycle starts rolling 

down the street.  Find a parametric equation for the position of the light after the wheel 

has rotated through an angle of θ. 

 

 
 

Relative to the center of the wheel, the position of the light can be found as the 

coordinates of a point on a circle, but since the x coordinate begins at 0 and moves in 

the negative direction, while the y coordinate starts at the lowest value, the coordinates 

of the point will be given by: 

θ 

Starting Rotated by θ 

r 

t 0 1 2 3 4 5 6 

x 1 3 3 2 4 1 1 

 

t 0 1 2 3 4 5 6 

y 1 1 2 2 4 5 4 
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)cos(

)sin(





ry

rx

−=

−=
 

 

The center of the wheel, meanwhile, is moving horizontally.  It remains at a constant 

height of r, but the horizontal position will move a distance equivalent to the arclength 

of the circle drawn out by the angle, rs = .  The position of the center of the circle is 

then 

ry

rx

=

= 
 

 

Combining the position of the center of the wheel with the position of the light on the 

wheel relative to the center, we get the following parametric equationw, with θ as the 

parameter: 

( )

( ))cos(1)cos(

)sin()sin(





−=−=

−=−=

rrry

rrrx
 

 

The result graph is called a cycloid. 

 
 

 

Example 12 

A moon travels around a planet 

as shown, orbiting once every 10 

days.  The planet travels around 

a sun as shown, orbiting once 

every 100 days.  Find a 

parametric equation for the 

position of the moon, relative to 

the center of the sun, after t days. 

 

For this example, we’ll assume 

the orbits are circular, though in 

real life they’re actually 

elliptical.   

 

 

 

 

6 

30 
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The coordinates of a point on a circle can always be written in the form 

)sin(

)cos(





ry

rx

=

=
 

 

Since the orbit of the moon around the planet has a period of 10 days, the equation for 

the position of the moon relative to the planet will be 









=








=









=








=

ttty

tttx

5
sin6

10

2
sin6)(

5
cos6

10

2
cos6)(





 

 

With a period of 100 days, the equation for the position of the planet relative to the sun 

will be 









=








=









=








=

ttty

tttx

50
sin30

100

2
sin30)(

50
cos30

100

2
cos30)(





 

 

Combining these together, we can find the 

position of the moon relative to the sun as the 

sum of the components. 









+








=









+








=

ttty

tttx

50
sin30

5
sin6)(

50
cos30

5
cos6)(





 

 

The resulting graph is shown here. 

 

 

Try it Now 

4. A wheel of radius 4 is rolled around the outside of a circle of radius 7.  Find a 

parametric equation for the position of a point on the boundary of the smaller wheel.  

This shape is called an epicycloid. 
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Important Topics of This Section 

Parametric equations 

Graphing x(t) , y(t) and the corresponding x-y graph 

Sketching graphs and building a table of values 

Converting parametric to Cartesian 

Converting Cartesian to parametric (parameterizing curves) 

 

 

Try it Now Answers 

1.  

 

2. ( )23ty = , so 
2xy =  

 

3. 
)sin(3)(

)cos(3)(

tty

ttx

=

=
 

 

4. The center of the small wheel rotates in circle with radius 7+4=11. 

Since the circumference of the small circle is 8  and the circumference of the large 

circle is 22 , in the time it takes to roll around the large circle, the small circle will 

have rotated 
4

11

8

22
=




 rotations.  We use this as the stretch factor.  The position of a 

point on the small circle will be the combination of the position of the center of the 

small wheel around the center of the large wheel, and the position of the point around 

the small wheel: 

( )

( )

11
( ) 11cos 4cos

4

11
( ) 11sin 4sin

4

x t t t

y t t t

 
= −  

 

 
= −  
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Section 8.6 Exercises 

 

Match each set of equations with one of the graphs below. 

1. 
( )

( ) 2 1

x t t

y t t

 =


= −

  2. 
( )
( ) 2

1x t t

y t t

 = −


=

 3. 
( ) ( )

( ) ( )

4sin

2cos

x t t

y t t

 =


=

  

4. 
( )
( )

2sin( )

4cos( )

x t t

y t t

 =


=

  5. 
( )

( )

2

3 2

x t t

y t t

 = +


= −

  6. 
( )

( )

2 2

3

x t t

y t t

 = − −


= +

  

A  B  C  

D  E  F  

 

From each pair of graphs in the t-x and t-y planes shown, sketch a graph in the x-y plane. 

7.  8.  
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From each graph in the x-y plane shown, sketch a graph of the parameter functions in the 

t-x and t-y planes. 

 

9.   10.  

 

 

Sketch the parametric equations for 2 2t−   . 

11. 
( )

( ) 2

1 2x t t

y t t

 = +


=

    12. 
( )

( ) 3

2 2x t t

y t t

 = −


=

  

 

 

Eliminate the parameter t to rewrite the parametric equation as a Cartesian equation 

13. 
( )

( )

5

8 2

x t t

y t t

 = −


= −

    14. 
( )
( )

6 3

10

x t t

y t t

 = −


= −

  

15. 
( )

( )

2 1

3

x t t

y t t

 = +


=

    16. 
( )

( ) 2

3 1

2

x t t

y t t

 = −


=

  

17. 
( )
( )

2

1 5

tx t e

y t t

 =


= −

    18. 
( ) ( )

( )

4log

3 2

x t t

y t t

 =


= +

  

19. 
( )
( )

3

2

x t t t

y t t

 = −


=

    20. 
( )
( )

4

2

x t t t

y t t

 = −


= +

  

21. 
( )
( )

2

6

t

t

x t e

y t e

 =


=

    22. 
( )
( )

5

10

x t t

y t t

 =


=

  

23. 
( ) ( )

( ) ( )

4cos

5sin  

x t t

y t t

 =


=

    24. 
( ) ( )

( ) ( )

3sin

6cos

x t t

y t t

 =


=
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Parameterize (write a parametric equation for) each Cartesian equation  

25. ( ) 23 3y x x= +     26. ( ) ( )2sin 1y x x= +   

27. ( ) ( )3logx y y y= +     28. ( ) 2x y y y= +  

29. 
2 2

1
4 9

x y
+ =     30. 

2 2

1
16 36

x y
+ =   

 

Parameterize the graphs shown. 

31.   32.  

 

33.   34.  

 

35. Parameterize the line from ( 1,5)−  to (2,3)  so that the line is at ( 1,5)−  at t = 0, and at 

(2, 3)  at t = 1. 

 

36. Parameterize the line from (4,1)  to (6, 2)−  so that the line is at (4,1)  at t = 0, and at 

(6,  2)−  at t = 1. 
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The graphs below are created by parameteric equations of the form 
( ) ( )

( ) ( )

cos

sin

x t a bt

y t c dt

 =


=

.  

Find the values of a, b, c, and d to achieve each graph. 

 

37.   38.  

 

39.   40.  

 

41. An object is thrown in the air with vertical velocity 20 ft/s and horizontal velocity 15 

ft/s.  The object’s height can be described by the equation ( ) 216 20y t t t= − + , while 

the object moves horizontally with constant velocity 15 ft/s.  Write parametric 

equations for the object’s position, then eliminate time to write height as a function of 

horizontal position. 

 

42. A skateboarder riding on a level surface at a constant speed of 9 ft/s throws a ball in 

the air, the height of which can be described by the equation ( ) 216 10 5y t t t= − + + .  

Write parametric equations for the ball’s position, then eliminate time to write height 

as a function of horizontal position. 
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43. A carnival ride has a large rotating arm with 

diameter 40 feet centered 35 feet off the ground.  

At each end of the large arm are two smaller 

rotating arms with diameter 16 feet each.  The 

larger arm rotates once every 5 seconds, while 

the smaller arms rotate once every 2 seconds.  If 

you board the ride when the point P is closest to 

the ground, find parametric equations for your 

position over time.  

 

44. A hypocycloid is a shape generated by tracking a fixed 

point on a small circle as it rolls around the inside of a 

larger circle.  If the smaller circle has radius 1 and the 

large circle has radius 6, find parametric equations for 

the position of the point P as the smaller wheel rolls in 

the direction indicated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P 

P 
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In this chapter, we will explore a set of shapes defined by a common characteristic: they 

can all be formed by slicing a cone with a plane.  These families of curves have a broad 

range of applications in physics and astronomy, from describing the shape of your car 

headlight reflectors to describing the orbits of planets and comets.  

 

Section 9.1 Ellipses 

The National Statuary Hall1 in Washington, D.C. is an 

oval-shaped room called a whispering chamber because 

the shape makes it possible for sound to reflect from the 

walls in a special way.  Two people standing in specific 

places are able to hear each other whispering even 

though they are far apart.  To determine where they 

should stand, we will need to better understand ellipses. 

 

An ellipse is a type of conic section, a shape resulting from intersecting a plane with a 

cone and looking at the curve where they intersect.  They were discovered by the Greek 

mathematician Menaechmus over two millennia ago.  

 

The figure below2 shows two types of conic sections.  When a plane is perpendicular to 

the axis of the cone, the shape of the intersection is a circle.  A slightly titled plane 

creates an oval-shaped conic section called an ellipse.  

 

 

 

 

 

 

 

 

 

 

 

 

 
1 Photo by Gary Palmer, Flickr, CC-BY, https://www.flickr.com/photos/gregpalmer/2157517950 
2 Pbroks13 (https://commons.wikimedia.org/wiki/File:Conic_sections_with_plane.svg), “Conic sections 

with plane”, cropped to show only ellipse and circle by L Michaels, CC BY 3.0 
 

https://commons.wikimedia.org/wiki/File:Conic_sections_with_plane.svg
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An ellipse can be drawn by placing two thumbtacks in a piece of 

cardboard then cutting a piece of string longer than the distance 

between the thumbtacks.  Tack each end of the string to the 

cardboard, and trace a curve with a pencil held taught against 

the string.  An ellipse is the set of all points where the sum of 

the distances from two fixed points is constant.  The length of 

the string is the constant, and the two thumbtacks are the fixed 

points, called foci. 

 

 

Ellipse Definition and Vocabulary 

An ellipse is the set of all points ( )yxQ ,   for which the sum of the distance to two 

fixed points ( )111 , yxF  and ( )222 , yxF , called the foci (plural of focus), is a constant k:  

( ) ( ) kFQdFQd =+ 21 ,, . 

 

The major axis is the line passing through the foci.   

Vertices are the points on the ellipse which intersect the major axis. 

The major axis length is the length of the line segment between the vertices.   

The center is the midpoint between the vertices (or the midpoint between the foci).   

The minor axis is the line perpendicular to the minor axis passing through the center.   

Minor axis endpoints are the points on the ellipse which intersect the minor axis.   

The minor axis endpoints are also sometimes called co-vertices. 

The minor axis length is the length of the line segment between minor axis endpoints.   

 

 

Note that which axis is major and which is minor 

will depend on the orientation of the ellipse.  In 

the ellipse shown at right, the foci lie on the y 

axis, so that is the major axis, and the x axis is 

the minor axis.  Because of this, the vertices are 

the endpoints of the ellipse on the y axis, and the 

minor axis endpoints (co-vertices) are the 

endpoints on the x axis. 

 

x 

y 

d(Q,F1) 
d(Q,F2) 

Q 

F2 F1 

y 

x 

Vertices 
Minor axis 

endpoints Foci 

Major axis 

Minor axis 
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Ellipses Centered at the Origin 

 

From the definition above we can find an equation for an ellipse.  We will find it for a 

ellipse centered at the origin ( )0,0C  with foci at ( )0,1 cF  and ( )0,2 cF −  where c > 0. 

 

Suppose ( )yxQ ,   is some point on the ellipse.  The distance from F1 to Q is 

( ) ( ) ( ) ( )   0, 2222

1 ycxycxFQd +−=−+−=  

 

Likewise, the distance from F2 to Q is 

( ) ( )( ) ( ) ( )   0, 2222

2 ycxycxFQd ++=−+−−=  

 

From the definition of the ellipse, the sum of these distances should be constant: 

( ) ( ) kFQdFQd =+ 21 ,,  so that 

( ) ( ) kycxycx =++++−    2222
 

 

If we label one of the vertices ( )0,a , it should satisfy the equation above since it is a 

point on the ellipse.  This allows us to write k in terms of a. 

 ( ) ( ) kcaca =++++−  0 0 2222
 

kcaca =++−      Since a > c, these will be positive 

kcaca =++− )()(  

ka =2  

 

Substituting that into our equation, we will now try to rewrite the equation in a friendlier 

form. 

( ) ( ) aycxycx 2   2222
=++++−     Move one radical 

( ) ( )  2  2222
ycxaycx ++−=+−     Square both sides 

( ) ( )
2

22
2

22
 2  




 ++−=





 +− ycxaycx    Expand 

( ) ( ) ( ) 2222222
 44 ycxycxaaycx +++++−=+−   Expand more 

( ) 222222222 2 442 ycxcxycxaaycxcx ++++++−=++−   

 

Combining like terms and isolating the radical leaves 

( ) xcaycxa 44 4 222
+=++      Divide by 4 

( ) xcaycxa +=++ 222
       Square both sides again 

( )( ) 2224222 2 cxxcaaycxa ++=++     Expand 

( ) 22242222 22 cxxcaaycxcxa ++=+++    Distribute 
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22242222222 22 cxxcaayacaxcaxa ++=+++   Combine like terms 
224222222 caayacxxa −=+−     Factor common terms 

( ) ( )22222222 caayaxca −=+−  

 

Let 
222 cab −= .  Since a > c, we know b > 0.  Substituting 

2b for 
22 ca −  leaves 

222222 bayaxb =+       Divide both sides by 
22ba  

1
2

2

2

2

=+
b

y

a

x
 

 

This is the standard equation for an ellipse.  We typically swap a and b when the major 

axis of the ellipse is vertical. 

 

 

Equation of an Ellipse Centered at the Origin in Standard Form 

The standard form of an equation of an ellipse centered at the origin ( )0,0C  depends 

on whether the major axis is horizontal or vertical.  The table below gives the standard 

equation, vertices, minor axis endpoints, foci, and graph for each. 

 

 

 

 

Major Axis Horizontal Vertical 

Standard 

Equation 
1

2

2

2

2

=+
b

y

a

x
 1

2

2

2

2

=+
a

y

b

x
 

 

Vertices 

 

(−a, 0) and (a, 0) (0, −a) and (0, a) 

Minor Axis 

Endpoints 
(0, −b) and (0, b) (−b, 0) and (b, 0) 

Foci 
(−c, 0) and (c, 0) 

 

where 
222 cab −=  

(0, −c) and (0, c) 
 

where 
222 cab −=  

 

Graph 

 

 

 

x 

y 

(a,0) (-a,0) 

(0,b) 

(0,-b) 

(c,0) (-c,0) 

x 

y 

(b,0) 
(-b,0) 

(0,a) 

(0,-a) 

(0,c) 

(0,-c) 
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Example 1 

Put the equation of the ellipse 99 22 =+ yx  in standard form.  Find the vertices, minor 

axis endpoints, length of the major axis, and length of the minor axis.  Sketch the graph, 

then check using a graphing utility. 

 

The standard equation has a 1 on the right side, so this equation can be put in standard 

form by dividing by 9: 

 1
91

22

=+
yx

 

 

Since the y-denominator is greater than the x-denominator, the ellipse has a vertical 

major axis.  Comparing to the general standard form equation 1 
2

2

2

2

=+
a

y

b

x
, we see the 

value of 39 ==a  and the value of 11  ==b .    

 

The vertices lie on the y-axis at (0,±a) = (0, ±3).   

The minor axis endpoints lie on the x-axis at (±b, 0) = (±1, 0).   

The length of the major axis is ( ) ( ) 6322 ==a .   

The length of the minor axis is ( ) ( ) 2122 ==b .   

 

To sketch the graph we plot the vertices and the minor axis endpoints.  Then we sketch 

the ellipse, rounding at the vertices and the minor axis endpoints. 

   
 

To check on a graphing utility, we must solve the equation for y.  Isolating 
2y  gives us 

( )22 19 xy −=  

 

Taking the square root of both sides we get 
213 xy −=  

 

Under Y= on your graphing utility enter the two halves of the ellipse as 213 xy −=  

and  213 xy −−= .  Set the window to a comparable scale to the sketch with xmin = -5, 

xmax = 5, ymin= -5, and ymax = 5.   
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Here’s an example output on a TI-84 calculator: 

 

 

 

 

 

 

 

 

Sometimes we are given the equation.  Sometimes we need to find the equation from a 

graph or other information. 

 

 

Example 2 

Find the standard form of the equation for an ellipse centered at (0,0) with horizontal 

major axis length 28 and minor axis length 16.  

 

Since the center is at (0,0) and the major axis is horizontal, the ellipse equation has the 

standard form  1
2

2

2

2

=+
b

y

a

x
.   The major axis has length 282 =a  or a = 14.  The minor 

axis has length 162 =b  or b = 8.  Substituting gives  
2 2

2 2
1

14 8

x y
+ =  or 

2 2

1
96 4.1 6

x y
+ = . 

 

 

Try it Now 

1. Find the standard form of the equation for an ellipse with horizontal major axis length 

20 and minor axis length 6. 

 

 

Example 3 

Find the standard form of the equation for the ellipse graphed here.  

 

The center is at (0,0) and the major axis is vertical, so the standard 

form of the equation will be 1
2

2

2

2

=+
a

y

b

x
. 

 

From the graph we can see the vertices are (0,4) and (0,-4), giving 

a = 4. 

The minor-axis endpoints are (2,0) and (-2,0), giving b = 2. 

 

The equation will be 1
42 2

2

2

2

=+
yx

 or 1
164

22

=+
yx

. 
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Ellipses Not Centered at the Origin 

 

Not all ellipses are centered at the origin.  The graph of such an ellipse is a shift of the 

graph centered at the origin, so the standard equation for one centered at (h, k) is slightly 

different.  We can shift the graph right h units and up k units  by replacing x with x – h 

and y with y – k, similar to what we did when we learned transformations.  

 

 

Equation of an Ellipse Centered at (h, k) in Standard Form 

The standard form of an equation of an ellipse centered at the point C ( )kh,  depends 

on whether the major axis is horizontal or vertical.  The table below gives the standard 

equation, vertices, minor axis endpoints, foci, and graph for each. 

 

 

 

 

 

 

 

 

 

Major Axis Horizontal Vertical 

Standard 

Equation 

( ) ( )
1

2

2

2

2

=
−

+
−

b

ky

a

hx
 

( ) ( )
1

2

2

2

2

=
−

+
−

a

ky

b

hx
 

 

Vertices 

 

( h ± a, k ) (h, k ± a) 

Minor Axis 

Endpoints 
( h, k ± b ) ( h ± b, k ) 

Foci 
( h ± c, k ) 

 

where  b2 = a2 – c2 

(h, k ± c) 
 

where  b2 = a2 – c2 

 

Graph 

 

 

 

x 

y 

(h+a,k) (h-a,k) 

(h,k+b) 

(h,k-b) 

(h-c,k) 

(h,k) 

(h+c,k) 

x 

y 

(h+b,k) (h-b,k) 

(h,k+a) 

(h, k-a) 

(h,k+c) 

(h, k-c) 

(h,k) 
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Example 4 

Put the equation of the ellipse 332442 22 −=−++ yyxx  in standard form.  Find the 

vertices, minor axis endpoints, length of the major axis, and length of the minor axis.  

Sketch the graph. 

 

To rewrite this in standard form, we will need to complete the square, twice. 

 

Looking at the x terms, xx 22 + , we like to have something of the form 
2)( nx + .  Notice 

that if we were to expand this, we’d get 
22 2 nnxx ++ , so in order for the coefficient on 

x to match, we’ll need 12)1( 22 ++=+ xxx .  However, we don’t have a +1 on the left 

side of the equation to allow this factoring.  To accommodate this, we will add 1 to both 

sides of the equation, which then allows us to factor the left side as a perfect square: 

13324412 22 +−=−+++ yyxx  

32244)1( 22 −=−++ yyx  

 

Repeating the same approach with the y terms, first we’ll factor out the 4. 

)6(4244 22 yyyy −=−  

 

Now we want to be able to write ( )yy 64 2 −  as ( )222 24)(4 nnyyny ++=+ .   

For the coefficient of y to match, n will have to -3, giving 

( ) 36244964)3(4 222 +−=+−=− yyyyy .   

 

To allow this factoring, we can add 36 to both sides of the equation. 

363236244)1( 22 +−=+−++ yyx  

( ) 4964)1( 22 =+−++ yyx  

( ) 434)1(
22 =−++ yx  

 

Dividing by 4 gives the standard form of the equation for the ellipse 

( ) ( )
1

1

3

4

1
22

=
−

+
+ yx

 

 

Since the x-denominator is greater than the y-denominator, the ellipse has a horizontal 

major axis.  From the general standard equation 
( ) ( )

2 2

2 2
  1

x h y k

a b

− −
+ =  we see the value 

of 24 ==a  and the value of 11  ==b .   

 

The center is at (h, k) = (-1, 3).    

The vertices are at (h±a, k)  or (-3, 3) and (1,3).   

The minor axis endpoints are at (h, k±b)  or (-1, 2) and (-1,4).   
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The length of the major axis is ( ) ( ) 4222 ==a .   

The length of the minor axis is ( ) ( ) 2122 ==b .   

 

To sketch the graph we plot the vertices and the minor axis endpoints.  Then we sketch 

the ellipse, rounding at the vertices and the minor axis endpoints. 

   
 

 

Example 5 

Find the standard form of the equation for an ellipse centered at (-2,1), a vertex at (-2,4) 

and passing through the point (0,1). 

 

The center at (-2,1) and vertex at (-2,4) means the major axis is vertical since the x-

values are the same.  The ellipse equation has the standard form  
( ) ( )

1
2

2

2

2

=
−

+
−

a

ky

b

hx
.    

 

The value of a = 4-1=3. Substituting a = 3, h = -2, and k = 1 gives  

( ) ( )
1

3

12
2

2

2

2

=
−

+
+ y

b

x
.  Substituting for x and y using the point (0,1) gives 

( ) ( )
1

3

1120
2

2

2

2

=
−

+
+

b
.   

Solving for b gives b=2.   

The equation of the ellipse in standard form is 
( ) ( )

1
3

1

2

2
2

2

2

2

=
−

+
+ yx

 or 

( ) ( )
1

9

1

4

2
22

=
−

+
+ yx

. 

 

 

Try it Now 

2. Find the center, vertices, minor axis endpoints, length of the major axis, and length of 

the minor axis for the ellipse  ( )
( )

1
4

2
4

2
2

=
+

+−
y

x . 
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Bridges with Semielliptical Arches 

 

Arches have been used to build bridges for centuries, like 

in the Skerton Bridge in England which uses five 

semielliptical arches for support3.  Semielliptical arches 

can have engineering benefits such as allowing for longer 

spans between supports.  

 

 

Example 6 

A bridge over a river is supported by a single semielliptical arch.  The river is 50 feet 

wide.  At the center, the arch rises 20 feet above the river.  The roadway is 4 feet above 

the center of the arch.  What is the vertical distance between the roadway and the arch 

15 feet from the center? 

 

Put the center of the ellipse at (0,0) and make the span of the river the major axis. 

 

 
 

Since the major axis is horizontal, the equation has the form  1
2

2

2

2

=+
b

y

a

x
.   

The value of 25)50(
2

1
==a  and the value of b = 20, giving 

2 2

2 2
1

25 20

x y
+ = .   

Substituting x = 15 gives  1
2025

15
2

2

2

2

=+
y

.  Solving for y, 16
625

225
120 =−=y .   

 

The roadway is 20 + 4 = 24 feet above the river. The vertical distance between the 

roadway and the arch 15 feet from the center is 24 − 16 = 8 feet.  

 

 

 

 

 

 
3 Maxine Armstrong 

(https://commons.wikimedia.org/wiki/File:Skerton_Bridge,_Lancaster,_England.JPG), “Skerton Bridge, 

Lancaster, England”, CC BY-SA 

x 

y 

50ft 

20ft 

4ft 

https://commons.wikimedia.org/wiki/File:Skerton_Bridge,_Lancaster,_England.JPG
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Ellipse Foci 

 

The location of the foci can play a key role in ellipse application problems.  Standing on a 

focus in a whispering gallery allows you to hear someone whispering at the other focus.  

To find the foci, we need to find the length from the center to the foci, c, using the 

equation 
222 cab −= .  It looks similar to, but is not the same as, the Pythagorean 

Theorem.   

 

 

Example 7 

The National Statuary Hall whispering chamber is an elliptical room 46 feet wide and 

96 feet long.  To hear each other whispering, two people need to stand at the foci of the 

ellipse.  Where should they stand? 

 

We could represent the hall with a horizontal ellipse centered at the origin.  The major 

axis length would be 96 feet, so 48)96(
2

1
==a , and the minor axis length would be 46 

feet, so 23)46(
2

1
==b .  To find the foci, we can use the equation 

222 cab −= . 

222 4823 c−=  
222 2348 −=c  

421775 =c  ft. 

 

To hear each other whisper, two people would need to stand 2(42) = 84 feet apart along 

the major axis, each about 48 – 42 = 6 feet from the wall. 

 

 

Example 8 

Find the foci of the ellipse 
( ) ( )

1
29

3

4

2
22

=
+

+
− yx

.   

 

The ellipse is vertical with an equation of the form  
( ) ( )

1
2

2

2

2

=
−

+
−

a

ky

b

hx
.   

The center is at (h, k) = (2, −3).   The foci are at (h, k ± c).  

 

To find length c we use 
222 cab −= .   

Substituting gives 
2294 c−=  or 525 ==c .   

 

The ellipse has foci (2, −3 ± 5), or (2, −8) and (2, 2).  
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Example 9 

Find the standard form of the equation for an ellipse with foci (-1,4) and (3,4) and major 

axis length 10. 

 

Since the foci differ in the x -coordinates, the ellipse is horizontal with an equation of 

the form  
( ) ( )

1
2

2

2

2

=
−

+
−

b

kh

a

hx
.   

The center is at the midpoint of the foci 
( )

( )4, 1
2

44
,

2

31

2
,

2

2121 =






 ++−
=







 ++ yyxx
.   

The value of a is half the major axis length: 5)10(
2

1
==a .   

The value of c is half the distance between the foci:  2)4(
2

1
))1(3(

2

1
==−−=c .  

To find length b we use 
222 cab −= .  Substituting a and c gives 

222 25 −=b  = 21.    

 

The equation of the ellipse in standard form is 
( ) ( )

1
21

4

5

1
2

2

2

=
−

+
− yx

 or  

( ) ( )
1

21

4

25

1
22

=
−

+
− yx

. 

 

 

Try it Now 

3. Find the standard form of the equation for an ellipse with focus (2,4), vertex (2,6), 

and center (2,1). 

 

 

Planetary Orbits 

 

It was long thought that planetary orbits around the 

sun were circular.  Around 1600, Johannes Kepler 

discovered they were actually elliptical4.  His first law 

of planetary motion says that planets travel around the 

sun in an elliptical orbit with the sun as one of the foci.  

The length of the major axis can be found by measuring the planet’s aphelion, its greatest 

distance from the sun, and perihelion, its shortest distance from the sun, and summing 

them together. 

 

 

 
4 Technically, they’re approximately elliptical.  The orbits of the planets are not exactly elliptical because 

of interactions with each other and other celestial bodies.   
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Example 10 

Mercury’s aphelion is 35.98 million miles and its perihelion is 28.58 million miles.   

Write an equation for Mercury’s orbit. 

   

Let the center of the ellipse be (0,0) and its major axis be horizontal so the equation will 

have form  1
2

2

2

2

=+
b

y

a

x
.   

 

The length of the major axis is 56.6458.2898.352 =+=a  giving 28.32=a  and  

9984.10412 =a .   

 

Since the perihelion is the distance from the focus to one vertex, we can find the 

distance between the foci by subtracting twice the perihelion from the major axis 

length: ( ) 4.758.28256.642 =−=c  giving 7.3=c .   

Substitution of a and c into 
222 cab −=   yields  3084.10287.328.32 222 =−=b .   

 

The equation is 1
3084.10289984.1041

22

=+
yx

. 

 

 

Important Topics of This Section 

Ellipse Definition 

Ellipse Equations in Standard Form 

Ellipse Foci 

Applications of Ellipses 

 

 

Try it Now Answers 

1.  2a = 20, so a =10.  2b = 6, so b = 3.  1
9100

22

=+
yx

      

 

2.  Center (4, -2).  Vertical ellipse with a = 2, b = 1.   

Vertices at (4, -2±2) =  (4,0) and (4,-4),  

minor axis endpoints at (4±1, -2) = (3,-2) and (5,-2),  

major axis length 4, minor axis length 2       

 

3.  Vertex, center, and focus have the same x-value, so it’s a vertical ellipse. 

Using the vertex and center, a = 6 – 1 = 5 

Using the center and focus, c = 4 – 1 = 3 
222 35 −=b .  b = 4. 

( ) ( )
1

25

1

16

2
22

=
−

+
− yx
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Section 9.1 Exercises 

 

In problems 1–4, match each graph with one of the equations A–D. 

A.  1
94

22

=+
yx

 B.  1
49

22

=+
yx

 C.  1
9

2
2

=+ y
x

 D.  1
9

2
2 =+

y
x  

 

1.   2.    3.   4.  

    
 

In problems 5–14, find the vertices, the minor axis endpoints, length of the major axis, 

and length of the minor axis.  Sketch the graph.  Check using a graphing utility. 

5.  1
254

22

=+
yx

 6.  1
416

22

=+
yx

 7.  1
4

2
2

=+ y
x

  8.  1
25

2
2 =+

y
x  

 

9.  2525 22 =+ yx   10.  1616 22 =+ yx   11. 144916 22 =+ yx  

 

12.  4002516 22 =+ yx  13. 189 22 =+ yx   14.  124 22 =+ yx  

 

In problems 15–16, write an equation for the graph. 

15.      16. 

    
In problems 17–20, find the standard form of the equation for an ellipse satisfying the 

given conditions. 

17.  Center (0,0), horizontal major axis length 64, minor axis length 14 

 

18.  Center (0,0), vertical major axis length 36, minor axis length 18 

 

19.  Center (0,0), vertex (0,3), 2=b  

 

20.  Center (0,0), vertex (4,0), 3=b  
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In problems 21–28, match each graph to equations A-H. 

A.  
( )

1
9

)1(

4

2 22

=
−

+
− yx

   E.  
( )

1
9

)1(

4

2 22

=
+

+
+ yx

    

B.  
( )

1
16

)1(

4

2 22

=
−

+
− yx

     F.  
( )

1
16

)1(

4

2 22

=
+

+
+ yx

 

C.  
( )

1
4

)1(

16

2 22

=
−

+
− yx

   G.  
( )

1
4

)1(

16

2 22

=
+

+
+ yx

 

D.  
( )

1
4

)1(

9

2 22

=
−

+
− yx

   H.   
( )

1
4

)1(

9

2 22

=
+

+
+ yx

 

 

21.   22.    23.   24.  

    
   

25.      26.   27.    28.   

    
      

In problems 29–38, find the vertices, the minor axis endpoints, length of the major axis, 

and length of the minor axis.  Sketch the graph.  Check using a graphing utility. 

29.  1
4

)2(

25

)1( 22

=
+

+
− yx

   30.  1
36

)3(

16

)5( 22

=
−

+
+ yx

  

 

31.  1
25

)3(
)2(

2
2 =

−
++

y
x    32.  1)6(

25

)1( 2
2

=−+
−

y
x

  

 

33.  16484 22 =+++ yxx    34. 3616164 22 =+++ yyx   

  

35.  11642 22 −=+++ yyxx    36.  48164 22 =−++ yyxx   

 

37.  10484369 22 =++− yyxx   38.  436984 22 −=+++ yyxx  
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In problems 39–40, write an equation for the graph. 

39.      40. 

    
 

In problems 41–42, find the standard form of the equation for an ellipse satisfying the 

given conditions. 

41.  Center (-4,3), vertex(-4,8), point on the graph (0,3) 

 

42.  Center (1,-2), vertex(-5,-2), point on the graph (1,0) 

 

43.  Window  A window in the shape of a semiellipse is 12 feet wide and 4 feet high.  

What is the height of the window above the base 5 feet from the center ? 

 

44.  Window A window in the shape of a semiellipse is 16 feet wide and 7 feet high.  

What is the height of the window above the base 4 feet from the center? 

 

45.  Bridge A bridge over a river is supported by a semielliptical arch.  The river is 150 

feet wide.  At the center, the arch rises 60 feet above the river.  The roadway is 5 feet 

above the center of the arch.  What is the vertical distance between the roadway and 

the arch 45 feet from the center? 

 

46.  Bridge A bridge over a river is supported by a semielliptical arch.  The river is 1250 

feet wide.  At the center, the arch rises 175 feet above the river.  The roadway is 3 

feet above the center of the arch.  What is the vertical distance between the roadway 

and the arch 600 feet from the center? 

 

47.  Racetrack An elliptical racetrack is 100 feet long and 90 feet wide.  What is the 

width of the racetrack 20 feet from a vertex on the major axis? 

 

48.  Racetrack An elliptical racetrack is 250 feet long and 150 feet wide.  What is the 

width of the racetrack 25 feet from a vertex on the major axis? 
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In problems 49-52, find the foci. 

49.  1
319

22

=+
yx

     50.  1
382

22

=+
yx

     

 

51.  1
26

)1(
)6(

2
2 =+

−
++

y
x     52.  1)5(

10

)3( 2
2

=++
−

y
x

   

 

In problems 53-72, find the standard form of the equation for an ellipse satisfying the 

given conditions. 

 

53.  Major axis vertices (±3,0), c=2   54.  Major axis vertices (0,±7), c=4 

 

55.  Foci (0,±5) and major axis length 12  

 

56.  Foci (±3,0) and major axis length 8 

 

57.  Foci (±5,0), vertices (±7,0)   58.  Foci (0,±2), vertices (0,±3) 

 

59.  Foci (0,±4) and x-intercepts (±2,0)   

 

60.  Foci (±3,0) and y-intercepts (0,±1) 

 

61.  Center (0,0), major axis length 8, foci on x-axis, passes through point ( )6,2  

 

62.  Center (0,0), major axis length 12, foci on y-axis, passes through point ( )4,10  

 

63.  Center (-2,1), vertex (-2,5), focus (-2,3) 

 

64.  Center (-1,-3), vertex (-7,-3), focus (-4,-3) 

 

65.  Foci (8,2) and (-2,2), major axis length 12 

 

66.  Foci (-1,5) and (-1,-3), major axis length 14 

 

67.  Vertices (3,4) and (3,-6), c= 2 

 

68.  Vertices (2,2) and (-4,2), c= 2 

 

69.  Center (1,3), focus (0,3), passes through point (1,5) 

 

70.  Center (-1,-2), focus (1,-2), passes through point (2,-2) 

 

71.  Focus (-15,-1), vertices (-19,-1) and (15,-1) 

 

72.  Focus (-3,2), vertices (-3,4) and (-3,-8) 
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73.  Whispering Gallery If an elliptical whispering gallery is 80 feet long and 25 feet 

wide, how far from the center of room should someone stand on the major axis of 

the ellipse to experience the whispering effect?  Round to two decimal places. 

 

74.  Billiards Some billiards tables are elliptical and have the foci marked on the table.  If 

such a one is 8 feet long and 6 feet wide, how far are the foci from the center of the 

ellipse?  Round to two decimal places. 

 

75.  Planetary Orbits The orbits of planets around the sun are approximately elliptical 

with the sun as a focus.  The aphelion is a planet’s greatest distance from the sun and 

the perihelion is its shortest.  The length of the major axis is the sum of the aphelion 

and the perihelion.  Earth’s aphelion is 94.51 million miles and its perihelion is 

91.40 million miles.  Write an equation for Earth’s orbit.  

 

76.  Satellite Orbits The orbit of a satellite around Earth is elliptical with Earth’s center 

as a focus.  The satellite’s maximum height above the Earth is 170 miles and its 

minimum height above the Earth is 90 miles.  Write an equation for the satellite’s 

orbit.  Assume Earth is spherical and has a radius of 3960 miles.   

 

77.  Eccentricity e of an ellipse is the ratio 
a

c
 where c is the distance of a focus from the 

center and a is the distance of a vertex from the center.  Write an equation for an 

ellipse with eccentricity 0.8 and foci at (-4,0) and (4,0). 

 

78.  Confocal ellipses have the same foci.  Show that, for k > 0, all ellipses of the form 

1
6

22

=+
+ k

y

k

x
 are confocal. 

 

79.  The latus rectum of an ellipse is a line segment with endpoints on the ellipse that 

passes through a focus and is perpendicular to the major axis.  Show that
a

b22
is the 

length of the latus rectum of 1
2

2

2

2

=+
b

y

a

x
 where a > b. 
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Section 9.2 Hyperbolas 

 

In the last section, we learned that planets have 

approximately elliptical orbits around the sun.  When an 

object like a comet is moving quickly, it is able to escape 

the gravitational pull of the sun and follows a path with the 

shape of a hyperbola.  Hyperbolas are curves that can help 

us find the location of a ship, describe the shape of cooling towers, or calibrate 

seismological equipment.   

 

The hyperbola is another type of conic section created by intersecting a plane with a 

double cone, as shown below5.   

            
 

 

The word “hyperbola” derives from a Greek word meaning “excess.”  The English word 

“hyperbole” means exaggeration.  We can think of a hyperbola as an excessive or 

exaggerated ellipse, one turned inside out. 

 

We defined an ellipse as the set of all points where the sum of the distances from that 

point to two fixed points is a constant.  A hyperbola is the set of all points where the 

absolute value of the difference of the distances from the point to two fixed points is a 

constant. 

 

 

 

 

 

 

 

 
5 Pbroks13 (https://commons.wikimedia.org/wiki/File:Conic_sections_with_plane.svg), “Conic sections 

with plane”, cropped to show only a hyperbola by L Michaels, CC BY 3.0 

https://commons.wikimedia.org/wiki/File:Conic_sections_with_plane.svg
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Hyperbola Definition 

A hyperbola is the set of all points ( )yxQ ,   for which the absolute value of the 

difference of the distances to two fixed points ( )111 , yxF  and ( )222 , yxF  called the foci 

(plural for focus) is a constant k: ( ) ( ) kFQdFQd =− 21 ,, . 

               

The transverse axis is the line passing through the foci.  

Vertices are the points on the hyperbola which intersect the transverse axis.   

The transverse axis length is the length of the line segment between the vertices.   

The center is the midpoint between the vertices (or the midpoint between the foci).   

The other axis of symmetry through the center is the conjugate axis. 

The two disjoint pieces of the curve are called branches.  

A hyperbola has two asymptotes. 

 

 

Which axis is the transverse axis will depend on the orientation of the hyperbola.  As a 

helpful tool for graphing hyperbolas, it is common to draw a central rectangle as a 

guide.  This is a rectangle drawn around the center with sides parallel to the coordinate 

axes that pass through each vertex and co-vertex.  The asymptotes will follow the 

diagonals of this rectangle. 

 

x 

y 

d(Q,F1) 
d(Q,F2) 

Q 

F1 F2 x 

y 

d(Q,F2) 

d(Q,F1) 

Q 

F2 

F1 

x 

y 

Vertex 
Focus 

Asymptote 

Center 

Co-vertex 

Transverse axis 

Conjugate axis 
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Hyperbolas Centered at the Origin 

 

From the definition above we can find an equation of a hyperbola.  We will find it for a 

hyperbola centered at the origin ( )0,0C  opening horizontally with foci at ( )0,1 cF  and 

( )0,2 cF −  where c > 0.   

 

Suppose ( )yxQ ,   is a point on the hyperbola.  The distances from Q to F1 and Q to F2 are: 

( ) ( ) ( ) ( )   0, 2222

1 ycxycxFQd +−=−+−=  

( ) ( )( ) ( ) ( )   0, 2222

2 ycxycxFQd ++=−+−−= . 

 

From the definition, the absolute value of the difference should be constant: 

( ) ( ) ( ) ( ) kycxycxFQdFQd =++−+−=−   ,, 2222

21  

 

Substituting in one of the vertices ( )0,a , we can determine k in terms of a: 

( ) ( ) kcaca =++−+−  0 0 2222
 

kcaca =+−−       Since c > a, acca −=−  

kcaac =+−− )()(  

aak 22 =−=  

 

Using ak 2=  and removing the absolute values, 

( ) ( ) aycxycx 2   2222
=++−+−    Move one radical  

( ) ( )  2  2222
ycxaycx +++=+−    Square both sides 

( ) ( ) ( ) 2222222
 44 ycxycxaaycx +++++=+−  Expand 

( ) 222222222 2 442 ycxcxycxaaycxcx ++++++=++−  

 

Combining like terms leaves 

( )  444 222 ycxaaxc ++=−     Divide by 4 

( )  222 ycxaaxc ++=−      Isolate the radical 

( ) xcaycxa −−=++ 222
       Square both sides again 

( )( ) 2224222 2 cxxcaaycxa ++=++     Expand and distribute 

22242222222 22 cxxcaayacaxcaxa ++=+++   Combine like terms 

222242222 xacxacaya −=−+     Factor common terms 
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( ) ( ) 22222222 xacacaya −=−+  

Let 
222 acb −= .  Since c > a, b > 0.  Substituting 

2b  for 
22 ac −  leaves 

222222 xbbaya =+       Divide both sides by 
22ba  

2

2

2

2

1
a

x

b

y
=+        Rewrite 

1
2

2

2

2

=−
b

y

a

x
 

 

 

We can see from the graphs of the hyperbolas that the branches appear to approach 

asymptotes as x gets large in the negative or positive direction.  The equations of the 

horizontal hyperbola asymptotes can be derived from its standard equation. 

 

1
2

2

2

2

=−
b

y

a

x
       Solve for y 









−= 1

2

2
22

a

x
by       Rewrite 1 as 

2

2

2

2

x

a

a

x
 









−=

2

2

2

2

2

2
22

x

a

a

x

a

x
by       Factor out 

2

2

a

x
 









−=

2

2

2

2
22 1

x

a

a

x
by       Take the square root 

2

2

1
x

a
x

a

b
y −=   

 

As x → ±∞ the quantity 
2

2

x

a
 → 0 and 

2

2

1
x

a
−  → 1, so the asymptotes are x

a

b
y = . 

 

Similarly, for vertical hyperbolas the asymptotes are x
b

a
y = . 

 

 

The standard form of an equation of a hyperbola centered at the origin C ( )0,0  depends on 

whether it opens horizontally or vertically.  The following table gives the standard 

equation, vertices, foci, asymptotes, construction rectangle vertices, and graph for each. 
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Equation of a Hyperbola Centered at the Origin in Standard Form 

 

 

 

Example 1 

Put the equation of the hyperbola 44 22 =− xy  in standard form.  Find the vertices, 

length of the transverse axis, and the equations of the asymptotes.  Sketch the graph.  

Check using a graphing utility.   

 

The equation can be put in standard form  1
14

22

=−
xy

 by dividing by 4.   

Comparing to the general standard equation 1 
2

2

2

2

=−
b

x

a

y
 we see that 24 ==a  and 

11  ==b .    

 

Opens Horizontally Vertically 

Standard 

Equation 
1

2

2

2

2

=−
b

y

a

x
 1

2

2

2

2

=−
b

x

a

y
 

Vertices (-a, 0) and (a, 0) (0, -a) and (0, a) 

Foci 
(-c, 0) and (c, 0) 

 

where 
222 acb −=  

(0, -c) and (0, c) 
 

Where 
222 acb −=  

Asymptotes x
a

b
y =  x

b

a
y =  

Construction 

Rectangle 

Vertices 

(a, b), (-a, b), ( a,-b), (-a, -b) (b, a), (-b, a), (b, -a), (-b, -a) 

Graph 

 

  

x 

y 

(0,b) 

(-c,0) 

(0,-b) 

(c,0) (a,0) (-a,0) 

x 

y 

(0,a) 

(0,c) 

(-b,0) 

(0,-a) 

(0,-c) 

(b,0) 
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Since the x term is subtracted, the hyperbola opens vertically and the vertices lie on the 

y-axis at (0,±a) = (0, ±2).   

 

The length of the transverse axis is ( ) ( ) 4222 ==a .   

Equations of the asymptotes are x
b

a
y =  or x2= .   

 

To sketch the graph we plot the vertices of the construction rectangle at (±b,±a) or  

(-1,-2), (-1,2), (1,-2), and (1,2).  The asymptotes are drawn through the diagonals of the 

rectangle and the vertices plotted.  Then we sketch in the hyperbola, rounded at the 

vertices and approaching the asymptotes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

To check on a graphing utility, we must solve the equation for y.  Isolating y2 gives us

( )22 1 4 xy += . 

 

Taking the square root of both sides we find 212 xy += . 

 

Under Y= enter the two halves of the hyperbola and the two asymptotes as 
212 xy += , 212 xy +−= , xy 2= ,  and xy 2−= .  Set the window to a comparable 

scale to the sketch with xmin = -4, xmax = 4, ymin= -3, and ymax = 3. 

 

 

 

 

 

 

 

 

 

Sometimes we are given the equation.  Sometimes we need to find the equation from a 

graph or other information. 
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Example 2 

Find the standard form of the equation for a hyperbola with vertices at (-6,0) and (6,0) 

and asymptote xy
3

4
= .  

 

Since the vertices lie on the x-axis with a midpoint at the origin, the hyperbola is 

horizontal with an equation of the form  1
2

2

2

2

=−
b

y

a

x
. The value of a is the distance 

from the center to a vertex.  The distance from (6,0) to (0,0) is 6, so a = 6.   

 

The asymptotes follow the form x
a

b
y = .  From 

4

3
y x=  we see 

4

3

b

a
=   and 

substituting a = 6 give us 
4

3 6

b
= .  Solving yields b = 8.     

 

The equation of the hyperbola in standard form is 1
86 2

2

2

2

=−
yx

 or  1
6436

22

=−
yx

.  

 

 

Try it Now 

1.  Find the standard form of the equation for a hyperbola with vertices at (0,-8) and (0,8) 

and asymptote xy 2=  

 

 

Example 3 

Find the standard form of the equation for a hyperbola with vertices at (0, 9) and (0,-9) 

and passing through the point (8,15).  

 

Since the vertices lie on the y-axis with a midpoint at the origin, the hyperbola is 

vertical with an equation of the form  1
2

2

2

2

=−
b

x

a

y
.  The value of a is the distance from 

the center to a vertex.  The distance from (0,9) to (0,0) is 9, so a = 9.  

 

Substituting a = 9 and the point (8,15) gives 1
8

9

15
2

2

2

2

=−
b

.  Solving for b yields

( )
6

915

89
22

22

=
−

=b . 

 

The standard equation for the hyperbola is  1
69 2

2

2

2

=−
xy

 or  1
3681

22

=−
xy

.  
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Hyperbolas Not Centered at the Origin 

 

Not all hyperbolas are centered at the origin.  The standard equation for one centered at 

(h, k) is slightly different. 

 

 

Equation of a Hyperbola Centered at (h, k) in Standard Form 

The standard form of an equation of a hyperbola centered at C ( )kh,  depends on 

whether it opens horizontally or vertically.  The table below gives the standard 

equation, vertices, foci, asymptotes, construction rectangle vertices, and graph for 

each. 

 

 

 

 

 

 

 

 

Opens Horizontally Vertically 

Standard 

Equation 

( ) ( )
1

2

2

2

2

=
−

−
−

b

ky

a

hx
 

( ) ( )
1

2

2

2

2

=
−

−
−

b

hx

a

ky
 

Vertices ( h ± a, k ) (h, k ± a) 

 

Foci 

( h ± c, k ) 
 

where  b2 = c2 – a2 

(h, k ± c) 
 

where  b2 = c2 – a2 

Asymptotes ( )hx
a

b
ky −=−  ( )hx

b

a
ky −=−  

Construction 

Rectangle 

Vertices 

( h ± a, k ± b  ) ( h ± b, k ± a  ) 

Graph 

 

  

x 

y 

(h,k+b) 

(h-c,k) 

(h+a,k) (h-a,k) 

(h,k) 

(h,k-b) 

(h+c,k) 

x 

y 

(h-b,k) 

(h,k-a) 

(h+b,k) 
(h,k) 

(h,k-c) 

(h,k+c) 

(h,k+a) 
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Example 4 

Write an equation for the hyperbola in the graph 

shown. 

 

The center is at (2,3), where the asymptotes cross.  

It opens vertically, so the equation will look like 

( ) ( )
1

23
2

2

2

2

=
−

−
−

b

x

a

y
. 

 

The vertices are at (2,2) and (2,4).  The distance 

from the center to a vertex is 134 =−=a . 

 

If we were to draw in the construction rectangle, it would extend from x = -1 to x = 5.  

The distance from the center to the right side of the rectangle gives 325 =−=b . 

 

The standard equation of this hyperbola is 
( ) ( )

1
3

2

1

3
2

2

2

2

=
−

−
− xy

, or 

( )
( )

1
9

2
3

2
2

=
−

−−
x

y . 

 

 

Example 5 

Put the equation of the hyperbola 43164189 22 =+−+ yyxx  in standard form.  Find the 

center, vertices, length of the transverse axis, and the equations of the asymptotes.  

Sketch the graph, then check on a graphing utility. 

 

To rewrite the equation, we complete the square for both variables to get  

( ) ( ) 16943444129 22 −+=+−−++ yyxx   

( ) ( ) 362419
22
=−−+ yx  

Dividing by 36 gives the standard form of the equation, 
( ) ( )

1
9

2

4

1
22

=
−

−
+ yx

 

 

Comparing to the general standard equation 
( ) ( )

2 2

2 2
  1

x h y k

a b

− −
− =  we see that 

24 ==a  and 39  ==b .   

 

Since the y term is subtracted, the hyperbola opens horizontally. 

The center is at (h, k) = (-1, 2).    

The vertices are at (h±a, k) or (-3, 2) and (1,2).   

The length of the transverse axis is ( ) ( ) 4222 ==a .   

Equations of the asymptotes are ( )hx
a

b
ky −=−  or ( )1

2

3
2 +=− xy .   
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To sketch the graph we plot the corners of the construction rectangle at (h±a, k±b) or  

(1, 5), (1, -1), (-3,5), and (-3,-1).   The asymptotes are drawn through the diagonals of 

the rectangle and the vertices plotted.  Then we sketch in the hyperbola rounded at the 

vertices and approaching the asymptotes. 

 

 

 

 

 

 

 

 

 

 

 

 

To check on a graphing utility, we must solve the equation for y.   

( )













−

+
= 1

4

1
92

2
x

y . 

 

Under Y= enter the two halves of the hyperbola and the two asymptotes as 

( )













−

+
+= 1

4

1
92

2
x

y ,  
( )














−

+
−= 1

4

1
92

2
x

y , ( ) 21
2

3
++= xy ,  and 

( ) 21
2

3
++−= xy .  Set the window to a comparable scale to the sketch, then graph.  

Note that the gaps you see on the calculator are not really there; they’re a limitation of 

the technology. 

 

 

 

 

 

 

 

 

Example 6 

Find the standard form of the equation for a hyperbola with vertices at )5,2( −−  and 

)7,2(− , and asymptote 4
2

3
+= xy . 
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Since the vertices differ in the y -coordinates, the hyperbola opens vertically with an 

equation of the form  
( ) ( )

1
2

2

2

2

=
−

−
−

b

hx

a

ky
 and asymptote equations of the form 

( )hx
b

a
ky −=− .   

 

The center will be halfway between the vertices, at )1,2(
2

75
,2 −=







 +−
− . 

The value of a is the distance from the center to a vertex.  The distance from )1,2(−  to 

)5,2( −−  is 6, so a = 6.   

 

While our asymptote is not given in the form ( )hx
b

a
ky −=− , notice this equation 

would have slope 
b

a
.  We can compare that to the slope of the given asymptote equation 

to find b.  Setting 
b

a
=

2

3
  and substituting a = 6 gives us b = 4.   

 

The equation of the hyperbola in standard form is 
( ) ( )

1
4

2

6

1
2

2

2

2

=
+

−
− xy

 or  

( ) ( )
1

16

2

36

1
22

=
+

−
− xy

.  

 

 

Try it Now 

2.  Find the center, vertices, length of the transverse axis, and equations of the asymptotes 

for the hyperbola  
( ) ( )

1
36

2

9

5
22

=
−

−
+ yx

.  

 

 

Hyperbola Foci 

 

The location of the foci can play a key role in hyperbola application problems.   To find 

them, we need to find the length from the center to the foci, c, using the equation 
222 acb −= .  It looks similar to, but is not the same as, the Pythagorean Theorem.   

 

Compare this with the equation to find length c for ellipses, which is 
222 cab −= .  If you 

remember that for the foci to be inside the ellipse they have to come before the vertices 

)( ac  , it’s clear why we would calculate 
2a  minus 

2c .  To be inside a hyperbola, the 

foci have to go beyond the vertices )( ac  , so we can see for hyperbolas we need 
2c  

minus 
2a , the opposite. 
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Example 7 

Find the foci of the hyperbola 
( ) ( )

1
5

3

4

1
22

=
−

−
+ xy

.   

 

The hyperbola is vertical with an equation of the form  
( ) ( )

1
2

2

2

2

=
−

−
−

b

hx

a

ky
.   

The center is at (h, k) = (3, -1).   The foci are at (h, k ± c).  

 

To find length c we use 
222 acb −= .  Substituting gives 45 2 −= c  or 39 ==c .   

 

The hyperbola has foci (3, -4) and (3, 2).  

 

 

Example 8 

Find the standard form of the equation for a hyperbola with foci (5, -8) and (-3, -8) and 

vertices (4, -8) and (-2, -8). 

 

Since the vertices differ in the x -coordinates, the hyperbola opens horizontally with an 

equation of the form  
( ) ( )

1
2

2

2

2

=
−

−
−

b

ky

a

hx
.   

 

The center is at the midpoint of the vertices 

( ) ( )
( )8, 1

2

88
,

2

24

2
,

2

2121 −=






 −+−−+
=







 ++ yyxx
.   

 

The value of a is the horizontal length from the center to a vertex, or 314 =−=a .   

The value of c is the horizontal length from the center to a focus, or 415 =−= .   

To find length b we use 
222 acb −= .  Substituting gives 79162 =−=b .    

The equation of the hyperbola in standard form is 
( ) ( )( )

1
7

8

3

1
2

2

2

=
−−

−
− yx

 or  

( ) ( )
1

7

8

9

1
22

=
+

−
− yx

. 

 

 

Try it Now 

3.  Find the standard form of the equation for a hyperbola with focus (1,9), vertex (1,8), 

center (1,4). 
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LORAN 

 

Before GPS, the Long Range Navigation (LORAN) 

system was used to determine a ship’s location.  Two 

radio stations A and B simultaneously sent out a signal to 

a ship.  The difference in time it took to receive the 

signal was computed as a distance locating the ship on 

the hyperbola with the A and B radio stations as the foci.  

A second pair of radio stations C and D sent 

simultaneous signals to the ship and computed its 

location on the hyperbola with C and D as the foci.  The 

point P where the two hyperbolas intersected gave the 

location of the ship. 

 

 

Example 9 

Stations A and B are 150 kilometers apart and send a simultaneous radio signal to the 

ship.  The signal from B arrives 0.0003 seconds before the signal from A.  If the signal 

travels 300,000 kilometers per second, find the equation of the hyperbola on which the 

ship is positioned. 

 

Stations A and B are at the foci, so the distance from the center to one focus is half the 

distance between them, giving 75)150(
2

1
==c  km.  

 

By letting the center of the hyperbola be at (0,0) and placing the foci at (±75,0), the 

equation  1
2

2

2

2

=−
b

y

a

x
 for a hyperbola centered at the origin can be used.   

 

The difference of the distances of the ship from the two stations is 

km90)s0003.0(
s

km
000,300 ==k .  From our derivation of the hyperbola equation we 

determined k = 2a, so 45)90(
2

1
==a .   

 

Substituting a and c into 
222 acb −=  yields  36004575 222 =−=b .   

 

The equation of the hyperbola in standard form is   1
360045

2

2

2

=−
yx

 or 1
36002025

22

=−
yx

.  

 

 

To determine the position of a ship using LORAN, we would need an equation for the 

second hyperbola and would solve for the intersection.  We will explore how to do that in 

the next section.  

A B 

C D 

P 
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Important Topics of This Section 

Hyperbola Definition 

Hyperbola Equations in Standard Form 

Hyperbola Foci 

Applications of Hyperbolas 

Intersections of Hyperbolas and Other Curves 

 

 

Try it Now Answers 

1.  The vertices are on the y axis so this is a vertical hyperbola.   

The center is at the origin. 

a = 8 

Using the asymptote slope, 2
8
=

b
, so b = 4. 

1
1664

22

=−
xy

     

 

2.  Center (-5, 2).  This is a horizontal hyperbola.  a = 3.  b = 6. 

transverse axis length 6,  

Vertices will be at (-5±3,2) =  (-2,2) and (-8,2),  

Asymptote slope will be 2
3

6
= .  Asymptotes: ( )522 +=− xy    

 

3. Focus, vertex, and center have the same x value so this is a vertical hyperbola. 

Using the vertex and center, a = 9 – 4 = 5 

Using the focus and center, c = 8 – 4 = 4 
222 45 −=b .  b = 3. 

 
( ) ( )

1
9

1

16

4
22

=
−

−
− xy
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Section 9.2 Exercises 

 

In problems 1–4, match each graph to equations A–D. 

A.  1
94

22

=−
yx

 B.  1
49

22

=−
yx

 C.   1
9

2
2 =−

x
y  D.  1

9

2
2

=− x
y

 

 

1.   2.    3.   4.  

     
 

 

In problems 5–14, find the vertices, length of the transverse axis, and equations of the 

asymptotes.  Sketch the graph.  Check using a graphing utility. 

5.  1
254

22

=−
yx

 6.  1
916

22

=−
xy

 7.  1
4

2
2 =−

x
y   8.  1

25

2
2 =−

y
x  

 

9.  99 22 =− yx   10.  44 22 =− xy   11.  144169 22 =− xy  

 

12.  4002516 22 =− yx  13.  189 22 =− yx   14.  124 22 =− xy  

 

In problems 15–16, write an equation for the graph. 

15.      16. 
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In problems 17–22, find the standard form of the equation for a hyperbola satisfying the 

given conditions. 

17.  Vertices at (0,4) and (0, -4); asymptote xy
2

1
=  

 

18.  Vertices at (-6,0) and (6,0); asymptote xy 3=  

 

19.  Vertices at (-3,0) and (3,0); passes through (5,8) 

 

20.  Vertices at (0, 4) and (0, -4); passes through (6, 5) 

 

21.  Asymptote y = x; passes through (5, 3) 

 

22.  Asymptote y = x; passes through (12, 13) 

 

In problems 23–30, match each graph to equations A–H. 

 

A.  
( ) ( )

1
4

2

9

1
22

=
−

−
− yx

  E.  
( ) ( )

1
9

1

4

2
22

=
−

−
− xy

 

B.  
( ) ( )

1
4

2

9

1
22

=
+

−
+ yx

  F.   
( ) ( )

1
9

1

4

2
22

=
+

−
+ xy

 

C.  
( ) ( )

1
16

2

9

1
22

=
+

−
+ yx

  G.  
( ) ( )

1
16

1

4

2
22

=
+

−
+ xy

 

D.  
( ) ( )

1
16

2

9

1
22

=
−

−
− yx

  H.  
( ) ( )

1
16

1

4

2
22

=
−

−
− xy

 

 

23.   24.    25.   26. 

      
 

27.   28.    29.   30.  
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In problems 31–40, find the center, vertices, length of the transverse axis, and equations 

of the asymptotes.  Sketch the graph.  Check using a graphing utility. 

31.  
( ) ( )

1
4

2

25

1
22

=
+

−
− yx

   32.  
( ) ( )

1
36

5

16

3
22

=
+

−
− xy

  

 

33.  
( )

( ) 12
9

1 2
2

=+−
−

x
y

   34.  
( )

( ) 16
25

1 2
2

=−−
−

y
x

   

 

35.  1284 22 =−− yxx    36.  209164 22 =−+ xyy    

 

37.  12164 22 =−−− xxyy    38.  296164 22 =+−− yyxx    

 

39.  484369 22 =+−+ yyxx    40.  369616369 22 −=−−+ xxyy  

 

In problems 41–42, write an equation for the graph. 

41.      42. 

   
 

In problems 43–44, find the standard form of the equation for a hyperbola satisfying the 

given conditions. 

43.  Vertices (-1,-2) and (-1,6); asymptote ( )122 +=− xy  

44.  Vertices (-3,-3) and (5,-3); asymptote ( )1
2

1
3  −=+ xy  

In problems 45–48, find the center, vertices, length of the transverse axis, and equations 

of the asymptotes.  Sketch the graph.  Check using a graphing utility. 

45.  194 2 −= xy     46.  19
4

1 2 += xy  

 

47.  10189
2

1
1 2 ++= xxy    48.  818921 2 +−−= xx  
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In problems 49–54, find the foci. 

49.   1
196

22

=−
xy

    50.   1
35

2
2 =−

y
x    

 

51.   
( )

( ) 16
15

1 2
2

=−−
−

y
x

   52.   
( ) ( )

1
2

5

47

3
22

=
+

−
− xy

 

 

53.   258
3

4
1 2 ++= xxy    54.  214

5

12
3 2 −−−= xxy  

 

In problems 55–66, find the standard form of the equation for a hyperbola satisfying the 

given conditions. 

 

55.  Foci (5,0) and (-5,0), vertices (4,0) and (4,0) 

 

56.  Foci (0,26) and (0, -26),  vertices (0,10) and (0,-10) 

 

57.  Focus (0, 13),  vertex (0,12), center (0,0) 

 

58.  Focus (15, 0),  vertex (12, 0), center (0,0) 

 

59.  Focus (17, 0) and (-17,0),  asymptotes  xy
15

8
=  and xy

15

8
−=  

 

60.  Focus (0, 25) and (0, 25),  asymptotes  xy
7

24
=  and xy

7

24
−=  

 

61.  Focus (10, 0) and (-10, 0), transverse axis length 16 

 

62.  Focus (0, 34) and (0, -34), transverse axis length 32 

 

63.  Foci (1, 7) and (1, -3),  vertices (1, 6) and (1,-2) 

 

64.  Foci (4, -2) and (-6, -2), vertices (2, -2) and (-4, -2) 

 

65.  Focus (12, 3),  vertex (4, 3), center (-1, 3) 

 

66.  Focus (-3, 15),  vertex (-3, 13), center (-3, -2) 
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67.  LORAN  Stations A and B are 100 kilometers apart and send a simultaneous radio 

signal to a ship.  The signal from A arrives 0.0002 seconds before the signal from B.  

If the signal travels 300,000 kilometers per second, find an equation of the hyperbola 

on which the ship is positioned if the foci are located at A and B. 

 

68.  Thunder and Lightning  Anita and Samir are standing 3050 feet apart when they 

see a bolt of light strike the ground.  Anita hears the thunder 0.5 seconds before 

Samir does.  Sound travels at 1100 feet per second.  Find an equation of the 

hyperbola on which the lighting strike is positioned if Anita and Samir are located at 

the foci. 

 

 

69.  Cooling Tower  The cooling tower for a power plant 

has sides in the shape of a hyperbola.  The tower 

stands 179.6 meters tall. The diameter at the top is 72 

meters. At their closest, the sides of the tower are 60 

meters apart.  Find an equation that models the sides 

of the cooling tower.   

 

 

70.  Calibration  A seismologist positions two recording devices 340 feet apart at points 

A and B.  To check the calibration, an explosive is detonated between the devices 90 

feet from point A.  The time the explosions register on the devices is noted and the 

difference calculated.  A second explosion will be detonated east of point A.  How 

far east should the second explosion be positioned so that the measured time 

difference is the same as for the first explosion? 

 

71.  Target Practice  A gun at point A and a target at point B are 200 feet apart.  A 

person at point C hears the gun fire and hit the target at exactly the same time.  Find 

an equation of the hyperbola on which the person is standing if the foci are located at 

A and B.  A fired bullet has a velocity of 2000 feet per second.  The speed of sound 

is 1100 feet per second. 

 

 

72.  Comet Trajectories  A comet passes through the 

solar system following a hyperbolic trajectory with 

the sun as a focus.  The closest it gets to the sun is 

3×108 miles.  The figure shows the trajectory of the 

comet, whose path of entry is at a right angle to its 

path of departure.  Find an equation for the comet’s 

trajectory.  Round to two decimal places. 

 

 

 

 

 

3×108 
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73.  The conjugate of the hyperbola 1
2

2

2

2

=−
b

y

a

x
 is  1

2

2

2

2

−=−
b

y

a

x
.  Show that 

0255 22 =+− xy  is the conjugate of 0255 22 =+− yx . 

 

74.  The eccentricity e of a hyperbola is the ratio 
a

c
, where c is the distance of a focus 

from the center and a is the distance of a vertex from the center.  Find the 

eccentricity of 1
169

22

=−
yx

. 

 

75.  An equilateral hyperbola is one for which a = b.  Find the eccentricity of an 

equilateral hyperbola. 

 

76.  The latus rectum of a hyperbola is a line segment with endpoints on the hyperbola 

that passes through a focus and is perpendicular to the transverse axis.  Show that

a

b22
is the length of the latus rectum of 1

2

2

2

2

=−
b

y

a

x
. 

 

77.  Confocal hyperbolas have the same foci.  Show that, for 0 < k < 6, all hyperbolas of 

the form 1
6

22

=
−

−
k

y

k

x
 are confocal. 
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Section 9.3 Parabolas and Non-Linear Systems  

 

To listen for signals from space, a radio telescope uses a dish in the 

shape of a parabola to focus and collect the signals in the receiver.  

 

While we studied parabolas earlier when we explored quadratics, at the 

time we didn’t discuss them as a conic section.  A parabola is the 

shape resulting from when a plane parallel to the side of the cone 

intersects the cone6. 

 
 

Parabola Definition and Vocabulary 

A parabola with vertex at the origin can be defined by placing a fixed point at 

( )pF ,0   called the focus, and drawing a line at py −= , called the directrix.  The 

parabola is the set of all points ( )yxQ ,   that are an equal distance between the fixed 

point and the directrix. 

         

For general parabolas, 

The axis of symmetry is the line passing through the foci, perpendicular to the 

directrix.   

The vertex is the point where the parabola crosses the axis of symmetry. 

The distance from the vertex to the focus, p, is the focal length. 

 
6 Pbroks13 (https://commons.wikimedia.org/wiki/File:Conic_sections_with_plane.svg), “Conic sections 

with plane”, cropped to show only parabola, CC BY 3.0 

x 

y 

(0,p) 

y=-p 

Q 

x 

y 

Focus 

Directrix Vertex 

Axis of 

symmetry 

https://commons.wikimedia.org/wiki/File:Conic_sections_with_plane.svg
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Equations for Parabolas with Vertex at the Origin 

 

From the definition above we can find an equation of a parabola.  We will find it for a 

parabola with vertex at the origin, ( )0,0C , opening upward with focus at ( )pF ,0  and 

directrix at py −= . 

 

Suppose ( )yxQ ,   is some point on the parabola.  The distance from Q to the focus is 

( ) ( ) ( ) ( )   0,
2222

pyxpyxFQd −+=−+−=  

 

The distance from the point Q to the directrix is the difference of the y-values: 

 pypyd +=−−= )(  

 

From the definition of the parabola, these distances should be equal: 

( ) pypyx +=−+  
22

    Square both sides  

( ) ( )222 pypyx +=−+     Expand 
22222 22 ppyyppyyx ++=+−+    Combine like terms 

pyx 42 =  

 

This is the standard conic form of a parabola that opens up or down (vertical axis of 

symmetry), centered at the origin.  Note that if we divided by 4p, we would get a more 

familiar equation for the parabola, 
p

x
y

4

2

= .  We can recognize this as a transformation of 

the parabola 
2xy = , vertically compressed or stretched by 

p4

1
. 

 

Using a similar process, we could find an equation of a parabola with vertex at the origin 

opening left or right. The focus will be at (p,0) and the graph will have a horizontal axis 

of symmetry and a vertical directrix.  The standard conic form of its equation will be 

pxy 42 = , which we could also write as 
p

y
x

4

2

= . 

 

Example 1 

Write the standard conic equation for a parabola with vertex at the origin and focus at 

(0, -2). 

 

With focus at (0, -2), the axis of symmetry is vertical, so the standard conic equation is 

pyx 42 = .  Since the focus is (0, -2), p = -2. 

 

The standard conic equation for the parabola is yx )2(42 −= , or 

yx 82 −=  
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For parabolas with vertex not at the origin, we can shift these equations, leading to the 

equations summarized next. 

 

 

Equation of a Parabola with Vertex at (h, k) in Standard Conic Form 

The standard conic form of an equation of a parabola with vertex at the point ( )kh,  

depends on whether the axis of symmetry is horizontal or vertical.  The table below 

gives the standard equation, vertex, axis of symmetry, directrix, focus, and graph for 

each. 

 

 

 

 

Since you already studied quadratics in some depth earlier, we will primarily explore the 

new concepts associated with parabolas, particularly the focus. 

 

 

 

 

 Horizontal Vertical 

Standard 

Equation 
( ) ( )hxpky −=− 4

2
 ( ) ( )kyphx −=− 4

2
 

Vertex (h, k) (h, k) 

Axis of 

symmetry 
y = k x = h 

Directrix x = h - p y = k - p 

Focus (h + p, k) 
(h, k + p) 

 

 

Graph 

 

An example with p < 0 

 

An example with p > 0 

 

 

x 

y 

(h+p,k) 

x=h-p 

(h,k) y=k 

x 

y 

(h,k+p) 

y=k-p 
(h,k) 

x=h 
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Example 2 

Put the equation of the parabola 2)1(8 2 +−= xy  in standard conic form.  Find the 

vertex, focus, and axis of symmetry.   

 

From your earlier work with quadratics, you may already be able to identify the vertex 

as (1,2), but we’ll go ahead and put the parabola in the standard conic form.  To do so, 

we need to isolate the squared factor. 

2)1(8 2 +−= xy     Subtract 2 from both sides 
2)1(82 −=− xy     Divide by 8 

( ) 2)1(
8

2
−=

−
x

y
 

 

This matches the general form for a vertical parabola, ( ) ( )kyphx −=− 4
2

, where 

8

1
4 =p .  Solving this tells us 

32

1
=p .  The standard conic form of the equation is 

( ) ( )2
32

1
41

2
−








=− yx . 

 

The vertex is at (1,2).  The axis of symmetry is at x = 1. 

The directrix is at 
32

63

32

1
2 =−=y . 

The focus is at 







=








+

32

65
,1

32

1
2,1 . 

 

 

Example 3 

A parabola has its vertex at (1,5) and focus at (3,5).  Find an equation for the parabola. 

 

Since the vertex and focus lie on the line y = 5, that is our axis of symmetry. 

 

The vertex (1,5) tells us h = 1 and k = 5. 

 

Looking at the distance from the vertex to the focus, p = 3 – 1 = 2. 

 

Substituting these values into the standard conic form of an 

equation for a horizontal parabola gives the equation 

( ) ( )1)2(45
2

−=− xy  

( ) ( )185
2

−=− xy  

 

Note this could also be rewritten by solving for x, resulting in 

( ) 15
8

1 2
+−= yx  
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Try it Now 

1. A parabola has its vertex at (-2,3) and focus at (-2,2).  Find an equation for this 

parabola. 

 

 

Applications of Parabolas 

 

In an earlier section, we learned that ellipses have a special property 

that a ray eminating from one focus will be reflected back to the 

other focus, the property that enables the whispering chamber to 

work.  Parabolas also have a special property, that any ray 

eminating from the focus will be reflected parallel to the axis of 

symmetry.  Reflectors in flashlights take advantage of this property 

to focus the light from the bulb into a collimated beam.  The same 

property can be used in reverse, taking parallel rays of sunlight or 

radio signals and directing them all to the focus. 

 

 

Example 4 

A solar cooker is a parabolic dish that reflects the sun’s rays to a central point allowing 

you to cook food.  If a solar cooker has a parabolic dish 16 inches in diameter and 4 

inches tall, where should the food be placed? 

 

We need to determine the location of the focus, since 

that’s where the food should be placed.  Positioning the 

base of the dish at the origin, the shape from the side 

looks like: 

 

The standard conic form of an equation for the parabola would be pyx 42 = .  The 

parabola passes through (8, 4), so substituting that into the equation, we can solve for p: 

)4)((482 p=  

4
16

82

==p  

 

The focus is 4 inches above the vertex.  This makes for a very convenient design, since 

then a grate could be placed on top of the dish to hold the food. 

 

 

Try it Now 

2. A radio telescope is 100 meters in diameter and 20 meters deep.  Where should the 

receiver be placed? 

 

 

 

x 

y 

4 

8 
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Non-Linear Systems of Equations 

 

In many applications, it is necessary to solve for the intersection of two curves.  Many of 

the techniques you may have used before to solve systems of linear equations will work 

for non-linear equations as well, particularly substitution.  You have already solved some 

examples of non-linear systems when you found the intersection of a parabola and line 

while studying quadratics, and when you found the intersection of a circle and line while 

studying circles. 

 

 

Example 4 

Find the points where the ellipse 1
254

22

=+
yx

 intersects the circle 922 =+ yx . 

 

To start, we might multiply the ellipse equation by 100 on both sides to clear the 

fractions, giving 100425 22 =+ yx . 

 

A common approach for finding intersections is substitution.  With these equations, 

rather than solving for x or y, it might be easier to solve for 
2x  or 

2y .  Solving the circle 

equation for 
2x  gives 

22 9 yx −= .  We can then substitute that expression for 
2x  into 

the ellipse equation. 

 

100425 22 =+ yx     Substitute 
22 9 yx −=  

( ) 1004925 22 =+− yy    Distribute 

100425225 22 =+− yy    Combine like terms 

12521 2 −=− y     Divide by -21 

21

1252 =y      Use the square root to solve 

21

55

21

125
==y  

 

We can substitute each of these y values back in to 
22 9 yx −=  to find x 

21

64

21

125

21

189

21

125
9

21

125
9

2

2 =−=−=













−=x  

21

8

21

64
==x  

There are four points of intersection: 















21

55
,

21

8
. 
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It’s worth noting there is a second technique we could have used in the previous example, 

called elimination.  If we multiplied the circle equation by -4 to get 3644 22 −=−− yx , 

we can then add it to the ellipse equation, eliminating the variable y. 

100425 22 =+ yx  

3644 22 −=−− yx     Add the left sides, and add the right sides 

6421 2 =x      Solve for x 

21

8

21

64
==x  

 

 

Example 5 

Find the points where the hyperbola 1
94

22

=−
xy

 intersects the parabola 
22xy = . 

 

We can solve this system of equations by substituting 
22xy =  into the hyperbola 

equation.  

1
94

)2( 222

=−
xx

     Simplify 

1
94

4 24

=−
xx

     Simplify, and multiply by 9 

99 24 =− xx       Move the 9 to the left 

099 24 =−− xx  

 

While this looks challenging to solve, we can think of it as a “quadratic in disguise,” 

since 
224 )(xx = .  Letting 

2xu = , the equation becomes  
29 9 0u u− − =      Solve using the quadratic formula 

18

3251

)9(2

)9)(9(4)1()1( 2


=
−−−−−

=u   Solve for x 

18

32512 
=x      But 03251 − , so 

18

3251+
=x      This leads to two real solutions 

x ≈ 1.028, -1.028 

 

Substituting these into 
22xy = , we can find the corresponding y values.   

The curves intersect at the points (1.028, 2.114) and (-1.028, 2.114). 
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Try it Now 

3. Find the points where the line xy 4=  intersect the ellipse 1
164

22

=−
xy

 

 

 

Solving for the intersection of two hyperbolas allows us to utilize 

the LORAN navigation approach described in the last section. 

 

In our example, stations A and B are 150 kilometers apart and 

send a simultaneous radio signal to the ship.  The signal from B 

arrives 0.0003 seconds before the signal from A.  We found the 

equation of the hyperbola in standard form would be 

1
36002025

22

=−
yx

 

 

 

Example 6 

Continuing the situation from the last section, suppose stations C and D are located 200 

km due south of stations A and B and 100 km apart.  The signal from D arrives 0.0001 

seconds before the signal from C, leading to the equation 1
2275

)200(

225

22

=
+

−
yx

.  Find 

the position of the ship. 

 

To solve for the position of the boat, we need to find where the hyperbolas intersect. 

This means solving the system of equations.  To do this, we could start by solving both 

equations for 
2x .  With the first equation from the previous example, 

1
36002025

22

=−
yx

   Move the y term to the right 

3600
1

2025

22 yx
+=    Multiply both sides by 2025 

3600

2025
2025

2
2 y

x +=   Simplify 

16

9
2025

2
2 y

x +=  

 

With the second equation, we repeat the same process 

1
2275

)200(

225

22

=
+

−
yx

  Move the y term to the right and multiply by 225 

2275

)200(225
225

2
2 +

+=
y

x   Simplify 

91

)200(9
225

2
2 +

+=
y

x  

A B 

C D 

P 
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Now set these two expressions for 
2x  equal to each other and solve. 

 

91

)200(9
225

16

9
2025

22 +
+=+

yy
   Subtract 225 from both sides 

91

)200(9

16

9
1800

22 +
=+

yy
    Divide by 9 

91

)200(

16
200

22 +
=+

yy
    Multiply both sides by 14569116 =  

22 )200(1691291200 +=+ yy     Expand and distribute 

64000064001691291200 22 ++=+ yyy   Combine like terms on one side 

0348800640075 2 =−− yy     Solve using the quadratic formula 


−−−−−

=
)75(2

)348800)(75(4)6400()6400( 2

y  123.11 km or -37.78 km 

 

We can find the associated x values by substituting these y-values into either hyperbola 

equation.  When y ≈ 123.11,  

16

)11.123(9
2025

2
2 +x  

71.102x  

 

When y ≈ -37.78km,  

16

)78.37(9
2025

2
2 −

+x  

18.53x  

 

This provides 4 possible locations for the ship. Two can be immediately discarded, as 

they’re on land.  Navigators would use other navigational techniques to decide between 

the two remaining locations.  
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Important Topics of This Section 

Parabola Definition 

Parabola Equations in Standard Form 

Applications of Parabolas 

Solving Non-Linear Systems of Equations 

 

 

Try it Now Answers 

1. Axis of symmetry is vertical, and the focus is below the vertex. 

 p = 2 – 3 = -1.   

( ) ( )3)1(4)2(
2

−−=−− yx , or  ( ) ( )342
2

−−=+ yx . 

 

2. The standard conic form of the equation is pyx 42 = .   

Using (50,20), we can find that )20(4502 p= , so  p = 31.25 meters.   

The receiver should be placed 31.25 meters above the vertex. 

 

3. Substituting xy 4=  gives 
( )

1
164

4 22

=−
xx

. Simplify 

1
164

16 22

=−
xx

.  Multiply by 16 to get  

1664 22 =− xx  

504.0
63

16
==x  

Substituting those into xy 4=  gives the corresponding y values. 

The curves intersect at (0.504, 2.016) and (-0.504, -2.016).   
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Section 9.3 Exercises 

 

In problems 1–4, match each graph with one of the equations A–D. 

A.  xy 42 =   B.  yx 42 =   C.  yx 82 =   D. 042 =+ xy  

 

1.   2.    3.   4.  

    
 

In problems 5–14, find the vertex, axis of symmetry, directrix, and focus of the parabola. 

5.  xy 162 =    6.  yx 122 =   7.  
22xy =   8.  

8

2y
x −=  

 

9.  04 2 =+ yx   10.  08 2 =+ xy   11. )1(8)2( 2 +=− yx  

 

12.  )2(4)3( 2 −=+ xy  13. 4)1(
4

1 2 ++= xy   14.  1)1(
12

1 2 ++−= yx  

 

In problems 15–16, write an equation for the graph. 

15.      16. 

    
 

In problems 17-20, find the standard form of the equation for a parabola satisfying the 

given conditions. 

17.  Vertex at (2,3), opening to the right, focal length 3  

 

18.  Vertex at (-1,2), opening down, focal length 1 

 

19.  Vertex at (0,3), focus at (0,4) 

 

20.  Vertex at (1,3), focus at (0,3) 
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21.  The mirror in an automobile headlight has a parabolic cross-section with the light 

bulb at the focus. On a schematic, the equation of the parabola is given as 
22 4yx = .  

At what coordinates should you place the light bulb? 

 

22.  If we want to construct the mirror from the previous exercise so that the focus is 

located at (0,0.25), what should the equation of the parabola be? 

 

23.  A satellite dish is shaped like a paraboloid of revolution. This means that it can be 

formed by rotating a parabola around its axis of symmetry. The receiver is to be 

located at the focus.  If the dish is 12 feet across at its opening and 4 feet deep at its 

center, where should the receiver be placed? 

 

24.  Consider the satellite dish from the previous exercise.  If the dish is 8 feet across at 

the opening and 2 feet deep, where should we place the receiver? 

 

25.  A searchlight is shaped like a paraboloid of revolution.  A light source is located 1 

foot from the base along the axis of symmetry.  If the opening of the searchlight is 2 

feet across, find the depth. 

 

26.  If the searchlight from the previous exercise has the light source located 6 inches 

from the base along the axis of symmetry and the opening is 4 feet wide, find the 

depth. 

 

In problems 27–34, solve each system of equations for the intersections of the two 

curves. 

 

27. 
1

2

22 =−

=

xy

xy
    28. 

12

1

22 =+

+=

yx

xy
 

 

29. 
14

11

22

22

=−

=+

yx

yx
    30. 

1

42

22

22

=−

=+

xy

yx
 

 

31. 
166 22

2

=−

=

xy

xy
    32. 

1
94

22

2

=+

=

yx

yx

 

 

33. 
14

1

22

22

=−

=−

xy

yx
    34. 

)1(8

)2(4

2

2

+=

−=

yx

yx
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35.  A LORAN system has transmitter stations A, B, C, and D at (-125,0), (125,0),        

(0, 250), and (0,-250), respectively.  A ship in quadrant two computes the difference 

of its distances from A and B as 100 miles and the difference of its distances from C 

and D as 180 miles.  Find the x- and y-coordinates of the ship’s location.  Round to 

two decimal places. 

 

36.  A LORAN system has transmitter stations A, B, C, and D at (-100,0), (100,0),          

(-100, -300), and (100,-300), respectively.  A ship in quadrant one computes the 

difference of its distances from A and B as 80 miles and the difference of its 

distances from C and D as 120 miles.  Find the x- and y-coordinates of the ship’s 

location.  Round to two decimal places. 
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Section 9.4 Conics in Polar Coordinates 

 

In the preceding sections, we defined each conic in a different way, but each involved the 

distance between a point on the curve and the focus.  In the previous section, the parabola 

was defined using the focus and a line called the directrix.  It turns out that all conic 

sections (circles, ellipses, hyperbolas, and parabolas) can be defined using a single 

relationship. 

 

 

Conic Sections General Definition 

A conic section can be defined by placing a fixed point at the origin, ( )0,0F , called 

the focus, and drawing a line L called the directrix at px =  or py = .  The conic 

section is the set of all points ( )yxQ ,   for which the ratio of the distance from Q to F 

to the distance from Q to the directrix is some positive constant e, called the 

eccentricity.  In other words, 
( )

e
LQd

FQd
=

),(

,
. 

                 
Warning: the eccentricity, e, is not the Euler constant e ≈ 2.71828 we studied with exponentials 

 

 

The Polar Form of a Conic 

 

To create a general equation for a conic section using the definition above, we will use 

polar coordinates.  Represent ( )yxQ ,   in polar coordinates so ( ) ( ))sin(),cos(,  rryx = .  

For now, we’ll focus on the case of a horizontal directrix at py −= , as in the picture 

above on the left. 

 

The distance from the focus to the point Q in polar is just r.   

The distance from the point Q to the directrix py −=  is )sin()()sin(  rppr +=−−    

 

The ratio of these should be the constant eccentricity e, so 

( )
e

LQd

FQd
=

),(

,
    Substituting in the expressions for the distances, 

e
rp

r
=

+ )sin(
 

x 

y 

F 

L: y = −p 

Q 

x 

y 

F 

L: x=p 

Q 
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To have a standard polar equation, we need to solve for r.  Start by clearing the fraction.

( ))sin(rper +=      Distribute 

)sin(erepr +=      Move terms with r to the left 

eperr =− )sin(      Factor the r 

( ) eper =− )sin(1       Divide 

)sin(1 e

ep
r

−
=  

 

 

We could repeat the same approach for a directrix at py =  and for vertical directrices to 

obtain the polar equations below. 

 

 

Polar Equation for a Conic Section 

A conic section with a focus at the origin, eccentricity e, and directrix at px =  or 

py =  will have polar equation: 

)sin(1 e

ep
r


=   when the directrix is py =  

 

)cos(1 e

ep
r


=   when the directrix is px =  

 

 

Example 1 

Write the polar equation for a conic section with eccentricity 3 and directrix at 2=x . 

 

We are given e = 3 and p = 2.  Since the directrix is vertical and at a positive x value, we 

use the equation involving cos with the positive sign. 

 

)cos(31

6

)cos(31

)2)(3(

 +
=

+
=r  

 

Graphing that using technology reveals it’s an equation for a 

hyperbola.  

 

 

 

Try it Now 

1. Write a polar equation for a conic with eccentricity 1 and directrix at 3−=y . 
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Relating the Polar Equation to the Shape 

 

It was probably not obvious to you that the polar equation in the last example would give 

the graph of a hyperbola.  To explore the relationship between the polar equation and the 

shape, we will try to convert the polar equation into a Cartesian one.  For simplicity, we 

will consider the case where the directrix is 1=x .  

 

)cos(1 e

e
r

+
=     Multiply by the denominator 

( ) eer =+ )cos(1      Rewrite 
r

x
=)cos(  

e
r

x
er =








+1      Distribute 

eexr =+      Isolate r 

exer −=      Square both sides 

( )22 exer −=      Rewrite 
222 yxr +=  and expand 

222222 2 xexeeyx +−=+    Move variable terms to the left 
222222 2 eyxexex =+−+    Combine like terms 
22222 2)1( eyxeex =++−  

 

We could continue, by completing the square with the x terms, to eventually rewrite this 

in the standard form as 1
1

1

)1( 2

2

2
2

2

2

2

22

=






 −
+









−
−







 −
y

e

e

e

e
x

e

e
, but happily there’s no 

need for us to do that. 

 

In the equation 
22222 2)1( eyxeex =++− , we can see that: 

When e < 1, the coefficients of both 
2x  and 

2y  are positive, resulting in ellipse. 

When e > 1, the coefficient of 
2x  is negative while the coefficient of 

2y  is positive, 

resulting in a hyperbola. 

When e = 1, the 
2x  will drop out of the equation, resulting in a parabola. 

 

 

Relation Between the Polar Equation of a Conic and its Shape 

For a conic section with a focus at the origin, eccentricity e, and directrix at px =  

or py = , 

 

when 0 < e < 1, the graph is an ellipse 

when e = 1, the graph is a parabola 

when e > 1, the graph is a hyperbola 
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Taking a more intuitive approach, notice that if e < 1, the denominator  

)cos(1 e+  will always be positive and so r will always be positive.  

This means that the radial distance r is defined and finite for every 

value of θ, including 
2


, with no breaks.  The only conic with this 

characteristic is an ellipse.  

 

 

If e = 1, the denominator will be positive for all values of θ, except 

−  where the denominator is 0 and r is undefined.  This fits with a 

parabola, which has a point at every angle except at the angle pointing 

along the axis of symmetry away from the vertex.  

 

 

 

If e > 1, then the denominator will be zero at two angles other 

than 
2


 , and r will be negative for a set of θ values.  This 

division of positive and negative radius values would result in 

two distinct branches of the graph, fitting with a hyperbola. 

 

 

 

Example 2 

For each of the following conics with focus at the origin, identify the shape, the 

directrix, and the eccentricity. 

a.  
)sin(21

8

−
=r   b.  

)cos(23

6

−
=r   c.  

)sin(55

8

+
=r  

 

a.  This equation is already in standard form 
)sin(1 e

ep
r


=  for a conic with horizontal 

directrix at py −= .   

The eccentricity is the coefficient of )sin( , so e = 2.   

Since e = 2 > 1, the shape will be a hyperbola. 

 

Looking at the numerator, ep = 8, and substituting e = 2 gives p = 4.  The directrix is 

4−=y . 

 

 

 

 

 

 

4

5
 =  

r < 0 

4


 =  

r > 0 
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b.  This equation is not in standard form, since the constant in the denominator is not 1.  

To put it into standard form, we can multiply the numerator and denominator by 1/3. 

 

( ) )cos(
3

2
1

2

3

1
)cos(23

3

1
6

3

1
3

1

)cos(23

6




−

=









−










=
−

=r  

 

This is the standard form for a conic with vertical directrix px −= .  The eccentricity is 

the coefficient on )cos( , so 
3

2
=e .   

Since 0 < e < 1, the shape is an ellipse. 

 

Looking at the numerator, ep = 2, so 2
3

2
=p , giving p = 3. The directrix is 3−=x . 

 

c.  This equation is also not in standard form.  Multiplying the numerator and 

denominator by 1/5 will put it in standard form. 

( ) )sin(1

5

8

5

1
)sin(55

5

1
8

5

1
5

1

)sin(55

8




 +
=









+










=
+

=r  

 

This is the standard form for a conic with horizontal directrix at py = . 

The eccentricity is the coefficient on )sin( , so e = 1.  The shape will be a parabola. 

 

Looking at the numerator, 
5

8
=ep .  Since e = 1, 

5

8
=p .  The directrix is 

5

8
=y .   

 

Notice that since the directrix is above the focus at the origin, the parabola will open 

downward. 

 

 

Try it Now 

2. Identify the shape, the directrix, and the eccentricity of  
)cos(24

9

+
=r  

 

 

Graphing Conics from the Polar Form 

 

Identifying additional features of a conic in polar form can be challenging, which makes 

graphing without technology likewise challenging.  We can utilize our understanding of 

the conic shapes from earlier sections to aid us. 
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Example 3 

Sketch a graph of 
)sin(5.01

3

−
=r  and write its Cartesian equation. 

 

This is in standard form, and we can identify that 5.0=e , so the shape is an ellipse. 

From the numerator, 3=ep , so 35.0 =p , giving p = 6.  The directrix is 6−=y . 

 

To sketch a graph, we can start by evaluating the function at a few convenient θ values, 

and finding the corresponding Cartesian coordinates. 

 

0=   3
1

3

)0sin(5.01

3
==

−
=r    )0,3(),( =yx  

2


 =  6

5.01

3

2
sin5.01

3
=

−
=









−

=


r   )6,0(),( =yx  

 =  3
1

3

)sin(5.01

3
==

−
=


r    )0,3(),( −=yx  

2

3
 =  2

5.01

3

2

3
sin5.01

3
=

+
=









−

=


r   )2,0(),( −=yx  

 

Plotting these points and remembering the origin is one of the 

foci gives an idea of the shape, which we could sketch in.  To 

get a better understanding of the shape, we could use these 

features to find more.   

 

The vertices are at (0, -2) and (0, 6), so the center must be 

halfway between, at 






 +−

2

62
,0  = (0, 2).  Since the vertices are 

a distance a from the center, a = 6 – 2 = 4. 

 

One focus is at (0, 0), a distance of 2 from the center, so c = 2, and the other focus must 

be 2 above the center, at (0, 4).  

 

We can now solve for b:  
222 cab −= , so 1024 222 =−=b , hence 10=b .  The 

minor axis endpoints would be at ( )2,10−  and ( )2,10 . 

 

We can now use the center, a, and b to write the Cartesian equation for this curve: 

1
16

)2(

10

22

=
−

+
yx
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Try it Now 

3. Sketch a graph of   
)cos(21

6

+
=r  and identify the important features. 

 

 

Important Topics of This Section 

Polar equations for Conic Sections 

Eccentricity and Directrix 

Determining the shape of a polar conic section 

 

 

Try it Now Answers 

1. 
)sin(1

)3)(1(

−
=r .   

)sin(1

3

−
=r  

 

2. We can convert to standard form by multiplying the top and bottom by 
4

1
.   

)cos(
2

1
1

4

9

+

=r .  Eccentricity = 
2

1
, so the shape is an ellipse.  

The numerator is 
4

9

2

1
== pep .  The directrix is 

2

9
=x . 

 

3. The eccentricity is e = 2, so the graph of the equation is a hyperbola.  The directrix is 

3=x .  Since the directrix is a vertical line and the focus is at the origin, the hyperbola 

is horizontal. 

0=  2
21

6

)0cos(21

6
=

+
=

+
=r   )0,2(),( =yx  

2


 =  6

1

6

2
cos21

6
==









+

=


r   )6,0(),( =yx  

 =  6
21

6

)cos(21

6
−=

−
=

+
=


r   )0,6(),( =yx  

2

3
 =  6

1

6

2

3
cos21

6
==









+

=


r   )6,0(),( −=yx  
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Plotting those points, we can connect the three on the left 

with a smooth curve to form one branch of the hyperbola, 

and the other branch will be a mirror image passing through 

the last point. 

 

The vertices are at (2,0) and (6,0). 

 

The center of the hyperbola would be at the midpoint of the 

vertices, at (4,0).   

The vertices are a distance a = 2 from the center.   

The focus at the origin is a distance c = 4 from the center.   

Solving for b, 1224 222 =−=b .  3212 ==b .   

 

The asymptotes would be ( )43 −= xy . 

 

The Cartesian equation of the hyperbola would be: 

( )
1

124

4 22

=−
− yx
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Section 9.4 Exercises 

 

In problems 1–8, find the eccentricity and directrix, then identify the shape of the conic. 

 

1.  
)cos(31

12

+
=r     2.  

)sin(1

4

−
=r  

 

3.  
)sin(34

2

−
=r     4.  

)cos(2

7

−
=r  

 

5.  
)cos(55

1

−
=r     6.  

)cos(83

6

+
=r  

 

7.  
)cos(27

4

+
=r     8.  

)sin(34

16

+
=r  

 

 

In problems 9–14, find a polar equation for a conic having a focus at the origin with the 

given characteristics. 

 

9.  Directrix x = −4, eccentricity e = 5. 10.  Directrix y = −2, eccentricity e = 3. 

 

11.  Directrix y = 3, eccentricity e = 
3

1
. 12.  Directrix x = 5, eccentricity e = 

4

3
. 

 

13.  Directrix y = −2, eccentricity e = 1. 14.  Directrix x = −3, eccentricity e = 1. 

 

 

In problems 15–20, sketch a graph of the conic.  Use the graph to help you find important 

features and write a Cartesian equation for the conic. 

 

15.  
)cos(21

9

−
=r     16.  

)sin(31

4

+
=r  

 

17.  
)sin(3

12

+
=r     18.  

)cos(23

15

−
=r  

 

19.  
)cos(1

6

+
=r     20.  

)sin(1

4

−
=r  

 

 

 

 

21. At the beginning of the chapter, we defined an ellipse as the set of all points Q for 

which the sum of the distance from each focus to Q is constant.  Mathematically, 



Section 9.4 Conics in Polar Coordinates 

 

639 

( ) ( ) kFQdFQd =+ 21 ,, .  It is not obvious that this definition and the one provided in 

this section involving the directrix are related.  In this exercise, we will start with the 

definition from this section and attempt to derive the earlier formula from it. 

 

a. Draw an ellipse with foci at ( )0,c  and ( )0,c− , vertices at ( )0,a  and ( )0,a− , and 

directrixes at px =  and px −= .  Label the foci 1F  and 2F .  Label the directrixes 

1L  and 2L .  Label some point ( )yx,  on the ellipse Q. 

 

b. Find formulas for ( )1, LQd  and ( )2, LQD  in terms of x and p.  

c. From the definition of a conic in this section, 
( )
( )

e
LQd

FQd
=

1

1

,

,
.  Likewise, 

( )
( )

e
LQd

FQd
=

2

2

,

,
 

as well.  Use these ratios, with your answers from part (b) above, to find formulas 

for ( )1, FQd  and ( )2, FQD  in terms of e, x, and p. 

 

d. Show that the sum, ( ) ( )21 ,, FQdFQd + , is constant.  This establishes that the 

definitions are connected. 

 

e. Let Q be a vertex. Find the distances ( )1, FQd  and ( )2, FQD  in terms of a and c. 

Then combine this with your result from part (d) to find a formula for p in terms 

of a and e. 

 

f. Let Q be a vertex. Find the distances ( )2, LQD  and ( )2, FQD  in terms of a, p, and c. 

Use the relationship  
( )
( )

e
LQd

FQd
=

2

2

,

,
, along with your result from part (e), to find a 

formula for e in terms of a and c. 

 

 

22. When we first looked at hyperbolas, we defined them as the set of all points Q for 

which the absolute value of the difference of the distances to two fixed points is 

constant.  Mathematically, ( ) ( ) kFQdFQd =− 21 ,, .  Use a similar approach to the 

one in the last exercise to obtain this formula from the definition given in this section.  

Find a formula for e in terms of a and c. 
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Solutions to Selected Exercises 
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Chapter 5 

Section 5.1 

1. 10      3. ( ) ( )
2 2 28   10  8x y− + + =  

5. ( ) ( )
2 2

7   2  293x y− + + =    7. ( ) ( )
2 2

5   8 1  3x y− + − =  

9.  

11. (0, 3 5)+  and (0, 3 5)−   13. (1.3416407865, 7.683281573) 

15.  (-1.07335, 2.8533)   17. 29.87 miles 

Section 5.2 

1.  

3. π   5. 150°   7. 325° 

9. 54°   11. 
8

9


  13. 

2


 

15. 35 miles  17. 8π cm  19. 5.7596 miles 

21. 28.6479°  23. 14.1372 cm2 

25. 3960 rad/min    630.254 RPM 

27. 2.094 in/sec,  π/12 rad/sec,  2.5 RPM 

29. 75,398.22 mm/min = 1.257 m/sec 

31. Angular speed: π/12 rad/hr.  Linear speed: 1036.73 miles/hr 

 

 

30° 

70° 

-135° 
300° 

2𝜋

3
 

7𝜋

4
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Section 5.3 

1. a. III   b. II    3. 
4

5
−  

5. 
4 3

7
−     7. 

55

8
−  

9.  a. reference: 45°.  Quadrant III.  ( )
2

sin 225
2

 = − .  ( )
2

cos 225
2

 = −  

b. reference: 60°.  Quadrant IV.  ( )
3

sin 300
2

 = − .  ( )
1

cos 300
2

 =  

c. reference: 45°.  Quadrant II.  ( )
2

sin 135
2

 = .  ( )
2

cos 135
2

 = −  

d. reference: 30°.  Quadrant III.  ( )
1

sin 210
2

 = − .  ( )
3

cos 210
2

 = −  

 

11.  a. reference: 
4


.  Quadrant III.  

5 2
sin

4 2

 
= − 

 
.  

5 2
cos

4 2

 
= − 

 
 

b. reference: 
6


.  Quadrant III.  

7 1
sin

6 2

 
= − 

 
.  

7 3
cos

6 2

 
= − 

 
 

c. reference: 
3


.  Quadrant IV.  

5 3
sin

3 2

 
= − 

 
.  

5 1
cos

3 2

 
= 

 
 

d. reference: 
4


.  Quadrant II.  

3 2
sin

4 2

 
= 

 
.  

3 2
cos

4 2

 
= − 

 
 

13.  a. 
3 2

sin
4 2

 
− = − 
 

     
3 2

cos
4 2

 
− = − 
 

 

b. 
23 1

sin
6 2

 
= − 

 
     

23 3
cos

6 2

 
= 

 
 

c. sin 1
2

 
− = − 
 

     cos 0
2

 
− = 
 

 

d. ( )sin 5 0 =      ( )cos 5 1 = −  

 

15. a. 
2

3


 b. 100°  c. 40°  d. 

5

3


  e. 235° 

17. a. 
5

3


 b. 280°  c. 220°  d. 

2

3


  e. 55° 

19. (-11.491, -9.642) 
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Section 5.4 

1. ( )sec 2 = , ( )csc 2 = , ( )tan 1 = , ( )cot 1 =  

3. ( )
2 3

sec
3

 = − , ( )csc 2 = , ( )
3

tan
3

 = − , ( )cot 3 = −  

5. ( )sec 2 = − , ( )
2 3

csc
3

 = , ( )tan 3 = − , ( )
3

cot
3

 = −  

7.  a. ( )sec 135 2 = −   b. ( )csc 210 2 = −    c. ( )tan 60 3 = .    d. ( )cot 225 1 =  

9. ( )
7

cos
4

 = − ,  ( )
4 7

sec
7

 = − , ( )
4

csc
3

 = , ( )
3 7

tan
7

 = − , ( )
7

cot
3

 = −  

11. ( )
2 2

sin
3

 = − ,  ( )
4

23
csc −= , ( ) 3sec −= , ( )tan 2 2 = , ( )

2
cot

4
 =  

13. ( )
12

sin
13

 = , ( )
5

cos
13

 = ,  ( )
13

sec
5

 = , ( )
13

csc
12

 =  , ( )
5

cot
12

 =  

15. a. sin(0.15) = 0.1494    cos(0.15) = 0.9888    tan(0.15) = 0.1511  

b. sin(4) = -0.7568    cos(4) = -0.6536    tan(4) = 1.1578 

c. sin(70°) = 0.9397    cos(70°) = 0.3420    tan(70°) = 2.7475 

d. sin(283°) = -0.9744 cos(283°) = 0.2250 tan(283°) = -4.3315 

17. sec( )t  19. tan( )t  21. tan( )t  23. cot( )t  25. ( )
2

sec( )t  

 

 

Section 5.5 

1. 
( ) ( ) ( )

4

5
tan,

41

414
cos,

41

415
sin === AAA

 

     ( ) ( ) ( )
41 41 4

sec ,csc ,cot
4 5 5

A A A= = =  

3. 14,   7 3,   60c b B= = =     5. 5.3171,   11.3257,   28a c A= = =   

7. 9.0631,   4.2262,   25a b B= = =    9. 32.4987 ft 

11. 836.2698 ft    13. 460.4069 ft 

15. 660.35 feet    17. 28.025 ft 

19. 143.0427     21. 86.6685 
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Chapter 6 

Section 6.1 

1.    3.     

5. Amp: 3.  Period= 2.  Midline: y= -4.  ( ) ( )3sin 4f t t= −  

7. Amp: 2.  Period= 4π.  Midline: y= 1.  ( )
1

2cos 1
2

f t t
 

= + 
 

 

9. Amp: 2.  Period= 5.  Midline: y= 3.  ( )
2

2cos 3
5

f t t
 

= − + 
 

 

11. Amp: 3, Period = 
4


, Shift: 4 left, Midline: y = 5 

13. Amp: 2, Period = 
2

3


, Shift: 7 right, Midline: y = 4 

15. Amp: 1, Period = 12, Shift: 6 left, Midline: y = -3 

17. ( ) ( )4sin 1
5

f x x
 

= + 
 

 

19. ( ) ( )cos 2
5

f x x
 

= + 
 

 

21. ( ) 50 7sin
12

D t t
 

= −  
 

 

23 a. Amp: 12.5.  Midline:  y = 13.5.  Period: 10 

     b. ( ) 12.5cos 13.5
5

h t t
 

= − + 
 

 

     c. ( )5 26h =  meters 

 

 

 



646 

Section 6.2 

1. II 

3. I 

5. Period: 
4


.  Horizontal shift: 8 right 

7. Period: 8.  Horizontal shift: 1 left 

9. Period: 6.  Horizontal shift: 3 left 

11.      13.  

 

15.  

17. ( ) 2sec 1 
2

f x x
 

= − 
 

    19. ( ) 2csc 1
4

f x x
 

= + 
 

 

21. ( )tan 1.5x− =      23. ( )sec 2x− =  

25. ( )csc 5x− =      27.  ( )csc x−  
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Section 6.3 

1. 
4


   3. 

6


−    5. 

3


   

7. 
3

4


   9. 

4


   11. 

3


−  

13. 1.9823  15. -0.9273  17. 44.427°   

19. 
4


   21. 

6


−   23. 

7

102
  25. 

17

1
 

27. 
5

25 2x−
  29. 

19

3

2 +x

x
  

   

Section 6.4 

1. 
5 7

,
4 4

 
  3. 

5
,

3 3

 
   5. 

2


   7. 

3
,

2 2

 
 

9. 
7

2 , 2
4 4

k k
 

 + + , where k is an integer 

11. 
7 11

2 , 2
6 6

k k
 

 + + , where k is an integer 

13. 
2 5 2

,
18 3 18 3

k k
   
+ + , where k is an integer 

15. 
5 2 7 2

,
12 3 12 3

k k
   
+ + , where k is an integer 

17. 
5

,
6 6

k k
 

 + + , where k is an integer 

19. 
2 5 2

,
4 3 12 3

k k
   
+ + , where k is an integer 

21. 4 8k+ , where k is an integer 

23. 
1 5

2 , 2
6 6

k k+ + , where k is an integer 

 

25. 0.2734, 2.8682  27. 3.7603, 5.6645  29. 2.1532, 4.1300   

31. 0.7813, 5.5019  33. 0.04829, 0.47531  35. 0.7381, 1.3563 

37. 0.9291, 3.0709  39. 1.3077, 4.6923 
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Section 6.5 

1.  89c = , A = 57.9946°, B = 32.0054° 

3. 1  76b = , A = 27.8181°, B = 62.1819° 

5. ( ) ( )6sin 1 4
2

y x x
 

= − + 
 

 

7. ( ) ( )
π

50 13cos t 5
12

D t
 

= − − 
 

 

9. a. ( ) 129 25cos
6

P t t
 

= −  
 

   b. ( ) 129 25cos ( 3)
6

P t t
 

= − − 
 

 

11. 75 degrees    13. 8 

15. 2.80869431742   17.  5.035 months 

 

Chapter 7 

Section 7.1 

1. 
7 11

,
6 6

 
     3. 

5
,

3 3

 
 

5. 
2

 8
3

k+ , and 
10

8
3

k+ , where k is an integer 

7. 
5

12
k


+  and 

7

12
k


+ , where k is an integer 

9. 1.3386 10k+  and 8.6614 10k+ , where k is an integer 

11. 
2

0.0966
3

k


− +  and 
2

1.1438
3

k


+ , where k is an integer 

13. 
3

, , 0.644, 2.498
2 2

 
   15. 0.056, 1.515, 3.197, 4.647 

17. 
5

0,  , ,  
3 3

 
     19. 

5 7 11
, , ,

6 6 6 6

   
 

21. 1.183, 1.958, 4.325, 5.100  23.  
3 7 11

, ,
2 6 6

  
 

25. 
5

, ,
3 3

 
      27.  1.823, 4.460 

29. 2.301, 3.983, 0.723, 5.560  31. 3.305, 6.120 



649 

33. 
2 4 5

0, , , , ,
3 3 3 3

   
    35. 

3 5 7
0, , ,  , ,

4 4 4 4

   
  

37.  
3

4
,

6

5
, 

3

2
,

6


    39. 0, ,1  .231, 5.052  

41. 
5

,
3 3

 
 

Section 7.2 

1. 
2 6

4

+
    3. 

2 6

4

− −
 

5. 
2 6

4

−
    7. 

2 6

4

+
 

9. ( ) ( )
3 1

sin cos
2 2

x x−   11. ( ) ( )
3 1

– cos sin
2 2

x x+  

13. ( )sec t     15. ( )tan x  

17. ( ) ( )( )8 cos 5 cos 27x x−   19. ( ) ( )sin 8 sin 2x x+  

21. ( ) ( )2cos 5 cost t    23. ( ) ( )2sin 5 cos 2x x  

25. a. 
2 1 5 15 2 5 3

3 4 3 4 12

   − −  
− + − =            

   

      b. 
5 1 2 15 5 2 15

3 4 3 4 12

    +   
− − + =               

 

27. 
2

0.373
3

k


+  and 
2

0.674
3

k


+ , where k is an integer 

29. k2 , where k is an integer 

31. 
4

7 7
k

 
+ , 

3 4

7 7
k

 
+ , 

4

3 3
k

 
+ , and 

4

3
k


 + , where k is an integer 

33. 
7

12
k


+ , 

11

12
k


+ , and 

4
k


, where k is an integer 

35. 2 13sin( 5.3004)x +      or   2 13sin( 0.9828)x −  

37. 29sin(3 0.3805x + )   39. 0.3681, 3.8544    

41. 0.7854, 1.8158    43. ( )tan 6t  
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Section 7.3 

1. a. 
3 7

32
   b. 

31

32
   c. 

3 7

31
  3. ( )cos 56  

5. cos(34 )     7. ( )cos 18x  

9. ( )2sin 16x     11. 0, , 2.4189, 3.8643  

13. 0.7297, 2.4119, 3.8713, 5.5535 

15. 
5 3

, , ,
6 2 6 2

   
 

17. a. 
3

4
,

3

2
, 0,

9

16
,

9

14
,

9

10
,

9

8
,

9

4
,

9

2 
 

19. 
( )1 cos 10

2

x+
 

21. ( ) ( )xx 32cos
8

1
16cos

2

1

8

3
+−  

23. ( ) ( ) ( ) ( )
1 1 1 1

cos 2 cos 4 cos 2 cos 4
16 16 16 16

x x x x− − +  

25. a. 
1 2 3

2 7
+    b. 

1 2 3

2 7
−    c. 

1

7 4 3−
 

 

Section 7.4 

1. ( )3sin 3 1
6

y x
 

= − − 
 

 

3. Amplitude: 8,  Period:  
1

3
 second,  Frequency: 3 Hz (cycles per second) 

5. ( )
40

19cos 650
6 3

P t t t
 

= − + + 
 

  7. ( ) ( )33cos 900 1.07
6

t
P t t

 
= − + 
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9. ( ) ( )10 0.85 cos(36 )
t

D t t=   11. ( ) ( ) ( )17 0.9145 cos 28
t

D t t=  

13. a. IV    b. III    15.  ( )6 4 5sin
2

x
y x

 
= +  

 
 

17. 3sin 2 7
2

y x
 

= − + + 
 

   19. 3
2

cos
2

1
8 +
















= xy

x


 

 

 

Chapter 8 

Section 8.1 

1.   3.    

5.   7.   

  

9.  = 68°, a = 14.711, c = 20.138  11.   = 28.096°,   = 32.904°, c = 16.149 

13. Not possible.   

15.   = 64.243°,   = 72.657°, c = 257.328  OR   =115.757°,  = 21.143°, c = 97.238 

17.   19.    

21. === 255.86, 545.52,066.2 c    

70° 50° 

10 

60° 
12.26

7 

11.305 

120

° 

6 

25° 

35° 

4.421 

 

9.059 

65° 

5 6 

49.048° 

65.952° 

6.046 

1

8 
40° 

25 

116.668° 

23.222° 

11.042 

60° 
20 28 

24.980 

43.898° 76.102° 

13 

11 

20 

112.620° 

30.510° 

36.870° 
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23. === 543.32, 457.27,269.11 a  

25. 177.562     27. 978.515 ft 

29. Distance to A: 565.258 ft.  Distance to shore: 531.169 ft 

31. 529.014 m     33. 173.877 feet 

35. 4.642 km, 2.794 km   37. 757.963 ft 

39. 2371.129 miles    41. 65.375 cm2 

43. 7.72 

Section 8.2 

1. 













−−

2

7
,

2

37
    3. ( )2 2,  2 2−  

5. ( )3 2, 3 2−     7. (0,3)   

9. 
3 3 3

,
2 2

 
− −  
 

    11. ( 1.248, 2.728)−  

13. ( )2 5, 0.464     15. ( )2 13,2.159  

17. ( )34,5.253     19. ( )269,4.057  

21. ( )sec3=r     23. 
( )

( )2

sin

4cos
r




=  

25. ( )4sinr =     27. 
( )

( ) ( )( )2 2

cos

cos sin
r



 
=

−
 

29. 
2 2 3x y y+ =     31. 7 4y x+ =  

33. 2x =      35. 
2 2 2x y x+ = +  

37. A  39. C  41. E  43. C  45. D  47. F 

49.  51.  53.   
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55.  57.  59.  

61.  63.  65.  

 

Section 8.3 

1. 3i       3. 12−  

5. 1 3i+      7. 8 i−  

9. 11 4i− +      11. 12 8i− +  

13. 30 10i−      15. 11 10i+  

17. 20       19. 
3

2
2

i+  

21. 
3 5

2 2
i+      23. 

1 18

25 25
i− −  

25. 1−       27. i  

29. ( ) ( )3cos 2 3sin 2 1.248 2.728i i+ = − +  

31. 3 3 3i+      33. 
3 2 3 2

– –
2 2

i  

35. 06 ie      37. 
3

24
i

e


 

39. 42 2
i

e


     41. 
3

43 2
i

e


 

43. 
0.54034 ie      45. 

2.82010 ie  

47. 
4.46717 ie      49. 

6.086 26 ie  

51. 
5

126
i

e


     53. 
7

122
i

e


 

55. 
5

21024
i

e


     57. 34
i

e
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59. 4096      61. 0.788 1.903i+  

63. 1.771 0.322i+     

65. iiii 092.1355.0, 675.0929.0, 675.0929.0, 092.1355.0, 149.125 −−−+−+  

67. 
1 3 1 3 1 3 1 3

1, ,  ,  1,  , 
2 2 2 2 2 2 2 2

i i i i+ − + − − − −  

Section 8.4 

1. 4,2−  

3.  The vectors do not need to start at the same point 

5. 3v u−       7. 3 2,3 2    

9. 6.128, 5.142− −      11. Magnitude: 4, Direction: 90° 

13. Magnitude: 7.810, Direction: 39.806°   

15. Magnitude: 2.236, Direction: 153.435°  

17. Magnitude: 5.385, Direction: 291.801°   

19. Magnitude: 7.211, Direction: 236.310° 

21. 21,132,  8,1,  2,3 −=−−=−=+ vuvuvu


 

23. 4.635 miles, 17.764 deg N of E    

25. 17 miles.  10.318 miles 

27. 4, 11netF = − −  

29. Distance: 2.868.  Direction: 86.474° North of West, or 3.526° West of North 

31. 4.924 degrees.  659 km/hr     

33. 4.424 degrees 

35. (0.081, 8.602) 

37. 21.801 degrees, relative to the car’s forward direction 
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Section 8.5 

1.  529.15)75cos(106 =  3. 0)0)(4()3)(0( =+−   5. 33)13)(1()10)(2( =+−−  

7. =






− 90
34

0
cos 1   9. =















−++

−+− 135
)3(142

)3)(4()1)(2(
cos

2222

1  

11. =














++

+− 0
4284

)4)(2()8)(4(
cos

2222

1    13. 0)4)(7())(2( =+k ,  k = -14 

15. 325.6
)3(1

)3)(4()1)(8(

22
=

−+

−−+
   17. 8.10,6.33,1

)3(1

)3)(10()1)(6(
2

22

−=−
















−+

−+−
 

19. The vectors are 3,2  and 2,5 −− .  The acute angle between the vectors is 34.509° 

21. 14.142 pounds  23. 20,0)10sin(10),10cos(10 − , so 34.7296 ft-lbs 

25. 277.4350)25cos(12040 = ft-lbs 

Section 8.6 

1. C  3. E  5. F   

 

7.   

 

9. x(t)  y(t)  
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11.  

13. 2 2y x= − +     15. 
1

3
2

x
y

−
=  

17. 
1

52
y

x e
−

=  or 1 5ln
2

x
y

 
= −  

 
  19. 

3

2 2

y y
x

 
= − 
 

 

21. 
3y x=      23. 

2 2

1
4 5

x y   
+ =   

   
 

25. 
( )

( ) 23 3

x t t

y t t

 =


= +

    27. 
( ) ( )

( )

3logx t t t

y t t

 = +


=

.  

29. 
( ) ( )

( ) ( )

2cos

3sin

x t t

y t t

 =


=

    31. 
( )
( )

3

2

x t t

y t t

 =


= +

 

33. 
( )
( ) 2

1x t t

y t t

 = −


= −

    35. 
( )

( )



−=

+−=

tty

ttx

25

31
 

37. 
( ) ( )
( ) ( )

4cos 3

6sin

x t t

y t t

 =


=

    39. 
( ) ( )

( ) ( )

4cos 2

3sin 3

x t t

y t t

 =


=

 

41. ( )
2

16 20
15 15

x x
y x

   
= − +   

   
  43. 

( ) ( )

( ) ( )

2
20sin 8sin

5

2
35 20cos 8cos

5

x t t t

y t t t







  
= + 

  


  = − −   
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Chapter 9 

Section 9.1 

1.   D  3. B 

5.  Vertices (0,±5), minor axis endpoints (±2,0), major length = 10, minor length = 4 

  
7.  Vertices (±2,0), minor axis endpoints (0,±1), major length = 4, minor length = 2 

 
9.  Vertices (±5,0), minor axis endpoints (0,±1), major length = 10, minor length = 2 

 
11.  Vertices (0,±4), minor axis endpoints (±3,0),  major length = 8, minor length = 6 

 

13.  Vertices ( )0, 3 2 , minor axis endpoints ( )2,0 , major length = 6 2 , minor 

length = 2 2  
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15.  
2 2

1
16 4

x y
+ =  17.   

2 2

1
1024 49

x y
+ =  19.   

2 2

1
4 9

x y
+ =  

21.  B  23.  C  25.  F  27.  G 

29.  Center (1,-2), vertices (6,-2) and (-4,-2), minor axis endpoints (1,0) and (1,-4),  major 

length= 10, minor length = 4  

 
31.  Center (-2,3), vertices (-2,8) and (-2,-2), minor axis endpoints (-1,3) and (-3,3),  

major length = 10, minor length = 2 

 
33.  Center (-1,0), vertices (-1,4) and (-1,-4), minor axis endpoints (-1,0) and (3,0),  major 

length = 8, minor length = 4 

 
35.  Center (-1,-2), vertices (3,-2) and (-5,-2), minor axis endpoints (-1,0) and (-1,-4),  

major length = 8, minor length = 4 
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37.  Center (2,-1), vertices (2,5) and (2,-7), minor axis endpoints (6,-1) and (-2,-1), major 

length = 12, minor length = 8 

 

39.  ( )
( )

2

2 1
3 1

16

y
x

+
− + =   41.  

( ) ( )
2 2

4 3
1

16 25

x y+ −
+ =    

43.  2.211083 feet 45.  17 feet 47.  64 feet 49.  (±4,0) 51.  (-6,6) and (-6,-4) 

53.  
2 2

1
9 5

x y
+ =    55.  

2 2

1
11 36

x y
+ =     57.  

2 2

1
49 24

x y
+ =    59.  

2 2

1
4 20

x y
+ =    

61.  
2 2

1
16 8

x y
+ =  63.  

( ) ( )
2 2

2 1
1

12 16

x y+ −
+ =    65.  

( ) ( )
2 2

3 2
1

36 11

x y− −
+ =    

67.  
( ) ( )

2 2
3 1

1
21 25

x y− +
+ =    69.  

( ) ( )
2 2

1 3
1

4 5

x y− −
+ =    71.  

( ) ( )
2 2

2 1
1

289 120

x y+ +
+ =    

73.  31.22 feet  75.  
2 2

1
8640.632025 8638.214

x y
+ =  77.  

2 2

1
25 9

x y
+ =  

79.  The center is at (0,0).  Since a > b, the ellipse is horizontal.  Let (c,0) be the focus on 

the positive x-axis.  Let (c, h) be the endpoint in Quadrant 1 of the latus rectum passing 

through (c,0).   
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The distance between the focus and latus rectum endpoint can be found by substituting 

(c,0) and (c,h) into the distance formula ( ) ( )
2 2

1 2 1 2h x x y y= − + −  which yields 

( ) ( )
2 2

0h c c h h= − + − = .  So h is half the latus rectum distance.  Substituting (c,h) 

into the ellipse equation  to find h gives 
2 2

2 2
1

c h

a b
+ = .  Solve for h yields 

2 2 2 2 2 2 4
2 2 2 2 2

2 2 2 2 2 2
1  

c a c a c b b
h b b b b

a a a a a a

       −
= − = − = = =       

       
.   so 

4 2

2

b b
h

a a
= = .  The 

distance of the latus rectum is 
22

2
b

h
a

= . 

 

Section 9.2 

1.   B  3. D   

5.  Vertices (±2,0), transverse length = 4, asymptotes y = ±5/2x, 

   



661 

7.  Vertices (0, ±1), transverse length = 2, asymptotes y = ±1/2x,  

 
9.  Vertices (±3,0), transverse length = 6, asymptotes y =±1/3x, 

 
11.  Vertices (0, ±4), transverse length = 8, asymptotes y =±4/3x 

  

13.  Vertices (± 2 ,0), transverse length = 2 2 , asymptotes y =±3x, 

  

15.  
2 2

1
4 9

y x
− =  17.  

2 2

1
16 64

y x
− =  19.  

2 2

1
9 36

x y
− =   21.  

2 2

1
16 16

x y
− =   

23.  C  25.  H  27.  B  29.  A 

31.  Center (1,-2), vertices (6,-2) and (-4,-2), transverse length = 10, asymptotes y 

=±2/5(x-1)-2 
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33.  Center (-2,1), vertices (-2,4) and (-2,-2), transverse length = 6, asymptotes y 

=±3(x+2)+1 

 
35.  Center (1,0), vertices (3,0) and (-1,0), transverse length = 4, asymptotes y =±2(x-1) 

 
37.  Center (-1,2), vertices (-1,4) and (-1,0), transverse length = 4, asymptotes y 

=±1/2(x+1)+2 

  
39.  Center (-2,1), vertices (0,1) and (-4,1), transverse length = 4, asymptotes y 

=±3/2(x+2)+1 
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41.  
( ) ( )

2 2
1 4

1
9 4

y x+ −
− =   43.  

( ) ( )
2 2

2 1
1

16 4

y x− +
− =  

45.  Center (0,0), vertices (±1/3,0), transverse length = 2/3, asymptotes y = ±12x 

 
47.  Center (-1,1), vertices (-1,3/2) and (-1,1/2), transverse length = 1, asymptotes y = ± 

3/2 (x + 1) +1 

 
49.  Foci (0,±5) 51.  Foci (5,6) and (-3,6) 53.  Foci (-4,6) and (-4,-4) 

 

55.  
2 2

1
16 9

x y
− =  57.  

2 2

1
144 25

y x
− =  59.  

2 2

1
225 64

x y
− =  61.  

2 2

1
64 36

x y
− =  

 

63.  
( ) ( )

2 2
2 1

1
16 9

y x− −
− =  65.  

( ) ( )
2 2

1 3
1

25 144

x y+ −
− =  67.  

2 2

1
900 1600

x y
− =  

69. 
2 2

1
900 14400.3636

x y
− =    
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71.  
2 2

1
3025 6975

x y
− =    

73.  
2 25 25 0y x− + =  can be put in the form 

2 2

1
5 25

y x
− = − . 

2 2   5 25 0x y− + =  can be put 

in the form   
2 2

1
5 25

y x
− =  showing they are conjugate. 

75.  2    77.  No matter the value of k, the foci are at ( )6,0  

Section 9.3 

1. C 3. A 

 

5. Vertex: (0,0).  Axis of symmetry: y = 0.  Directrix: x = -4.  Focus: (4,0) 

 

7. Vertex: (0,0).  Axis of symmetry: x = 0.  Directrix: y = -1/8.  Focus: (0,1/8) 

 

9. Vertex: (0,0).  Axis of symmetry: y = 0.  Directrix: x = 1/16.  Focus: (-1/16,0) 

 

11. Vertex: (2,-1).  Axis of symmetry: x = 2.  Directrix: y = -3.  Focus: (2,1) 

 

13. Vertex: (-1,4).  Axis of symmetry: x = -1.  Directrix: y = 3.  Focus: (-1,5) 

 

15. )3()1( 2 −−=− xy  17.  )2(12)3( 2 −=− xy  19.  )3(42 −= yx  

 

21.  At the focus, (0,1) 23. 2.25 feet above the vertex. 25. 0.25 ft 

 

27. 






 −−









3

2
,

3

1
,

3

2
,

3

1
  29. ( ) ( ) ( ) ( )2,3,2,3,2,3,2,3 −−−−  

 

31. ( ) ( )8,22,8,22 −    

 

33. 













−−














−














−















3

2
,

3

5
,

3

2
,

3

5
,

3

2
,

3

5
,

3

2
,

3

5
 

 

35. (-64.50476622, 93.37848007) ≈ (-64.50, 93.38)   
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Section 9.4 

1. e = 3.  Directrix: x = 4.  Hyperbola. 3. e = 3/4.  Directrix: y = -2/3.  Ellipse. 

 

5. e = 1. Directrix: x = -1/5.  Parabola. 7. e = 2/7.  Directrix: x = 2.  Ellipse. 

 

9. 
)cos(51

20

−
=r   11. 

)sin(
3

1
1

1

+

=r , or 
)sin(3

3

+
=r  

 

13. 
)sin(1

2

−
=r  

 

15. Hyperbola. Vertices at (-9,0) and (-3,0) 

Center at (-6,0).  a =  3. c = 6, so b = 27  

1
279

)6( 22

=−
+ yx

 

 

17. Ellipse. Vertices at (0,3) and (0,-6) 

Center at (0,-1.5).  a = 4.5, c = 1.5, 18=b  

1
25.20

)5.1(

18

22

=
+

+
yx

 

 

 

19. Parabola. Vertex at (3,0). p = 3. 

)3(122 −−= xy  

 

 

 

21. a) 

  

x 

y 

d(Q,F1) 
d(Q,F2) 

Q=(x,y) 

F1 F2 

L1 L2 

(c,0) (a,0) 

x = p 
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b) ( ) pxpxLQd +=−−= )(, 1
, ( ) xpLQd −=2,  

 

c) ( ) ( ) )(,, 11 pxeLQedFQd +== . ( ) ( ) )(,, 22 xpeLQedFQd −==  

 

d) ( ) ( ) epxpepxeFQdFQd 2)()(,, 21 =−++=+ , a constant. 

 

e) At Q = (a, 0), ( ) cacaFQd +=−−= )(, 1
, and ( ) caFQd −=2, , so 

( ) ( ) acacaFQdFQd 2)()(,, 21 =−++=+  

Combining with the result above, aep 22 = , so 
e

a
p = . 

f) ( ) caFQd −=2, , and ( ) apLQd −=2,    

( )
( )

e
LQd

FQd
=

2

2

,

,
, so e

ap

ca
=

−

−
.  

)( apeca −=− .  Using the result from (e), 









−=− a

e

a
eca  

eaaca −=−  

a

c
e =  
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Index 
 

Absolute Value Functions, 149 

Graphing, 150 

Solving, 151 

Solving Inequalities, 152 

Ambiguous Case, 501 

Amplitude, 399, 402 

Angle, 347 

Coterminal Angles, 348 

Degree, 347 

Radian, 351 

Reference Angles, 369 

Standard Position, 347 

Angular Velocity, 356 

Annual Percentage Rate (APR), 257 

Annual Percentage Yield (APY), 259 

Arclength, 350 

Arcsine, Arccosine and Arctangent, 423 

Area of a Sector, 355 

asymptotes of hyperbola, 598 

Average Rate of Change, 37 

axis of symmetry, 617 

Cauchy's Bound, 203 

central rectangle, 598 

Change of Base, 281, 289 

Circles, 338, 518 

Area of a Sector, 355 

Equation of a Circle, 338 

Points on a Circle, 339, 364 

Polar Coordinates, 518 

Coefficients, 162 

Cofunction Identities, 387 

Common Log, 279 

completing the square, 170 

Completing the square, 170 

Complex Conjugate, 212, 530 

Complex Factorization Theorem, 214 

Complex Number, 210, 528 

Complex Plane, 529 

Component Form, 544 

Composition of Functions, 51 

Formulas, 54 

Tables and Graphs, 52 

Compound Interest, 257 

Concavity, 43 

conic section, 579 

Continuous Growth, 260 

Correlation Coefficient, 144, 145 

Cosecant, 375 

Cosecant Function 

Domain, 415 

Range, 415 

Cosine, 363, 385, 398 

Cotangent, 375 

Cotangent Function 

Domain, 416 

Period, 416 

Range, 416 

Coterminal Angles, 348 

co-vertices, 580 

Damped Harmonic Motion, 492 

Decreasing, 40 

Degree, 162, 347 

Difference of Logs Property, 289 

directrix, 617, 630 

Domain, 22 

Dot Product, 555 

Double Angle Identities, 477 

Double Zero, 183 

Doubling Time, 311 

eccentricity, 630 

ellipse, 580, 617, 630, 631, 632 

Even Functions, 73 

Exponential Functions, 249 

Finding Equations, 253 

Fitting Exponential Functions to Data, 

331 

Graphs of Exponential Functions, 267 

Solving Exponential Equations, 282 

Transformations of Exponential 

Graphs, 270 

Exponential Growth or Decay Function, 

251 

Exponential Property, 289 

Extrapolation, 142 

Extrema, 41, 187 

Factor Theorem, 196 

factored completely, 215 

focal length, 617 
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foci, 598 

Function, 1 

Absolute Value Functions, 149 

Composition of Functions, 51 

Domain and Range, 22 

Exponential Functions, 249 

Formulas as Functions, 8 

Function Notation, 3 

Graphs as Functions, 6 

Horizontal Line Test, 7 

Inverse of a Function, 93 

Linear Functions, 101, 103 

Logarithmic Functions, 277 

One-to-One Function, 2 

Parametric Functions, 564 

Periodic Functions, 395 

Piecewise Function, 29 

Polar Functions, 517 

Power Functions, 159 

Quadratic Functions, 167 

Radical Functions, 239, 240 

Rational Functions, 218, 221 

Sinusoidal Functions, 397 

Solving & Evaluating, 5 

Tables as Functions, 4 

Tangent Function, 413 

Vertical Line Test, 7 

Fundamental Theorem of Algebra, 213 

Half-Angle Identities, 483 

Half-Life, 308 

Horizontal Asymptote, 219, 224 

Horizontal Intercept, 118 

Horizontal Line Test, 7 

Horizontal Lines, 119 

hyperbola, 598 

Imaginary Number, 210, 528 

Complex Conjugate, 212, 530 

Complex Number, 210, 528 

Complex Plane, 529 

Polar Form of Complex Numbers, 531 

Increasing, 40 

Inflection Point, 43 

Intercepts, 173, 181, 182, 186, 225 

Graphical Behavior, 182 

Writing Equations, 186 

Interpolation, 142 

Interval Notation, 24 

Union, 24 

Inverse of a Function, 93 

Properties of Inverses, 96 

Inverse Properties, 289 

Inversely Proportional, 218 

Inversely Proportional to the Square, 218 

Inverses, 239 

irreducible quadratic, 215 

Law of Cosines 

Generalized Pythagorean Theorem, 

503 

Law of Sines 

Ambiguous Case, 501 

Leading Coefficient, 162 

Leading Term, 162 

Least-Square Regression, 143 

Limaçons, 519 

Linear Functions, 101, 103 

Fitting Linear Models to Data, 141 

Graphing, 114 

Horizontal Intercept, 118 

Horizontal Lines, 119 

Least-Square Regression, 143 

Modeling, 129 

Parallel Lines, 120 

Perpendicular Lines, 120 

Veritcal Lines, 119 

Vertical Intercept, 115 

Linear Velocity, 356 

Lissajous Figure, 567 

Local Maximum, 41 

Local Minimum, 41 

Logarithmic Functions, 277 

Change of Base, 281, 289 

Common Log, 279 

Difference of Logs Property, 289 

Exponential Property, 280, 289 

Graphs of Logarithmic Functions, 300 

Inverse Properties, 277, 289 

Logarithmic Scales, 314 

Log-Log Graph, 329 

Moment Magnitude Scale, 318 

Natural Log, 279 

Orders of Magnitude, 317 

Semi-Log Graph, 329 
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Sum of Logs Property, 289 

The Logarithm, 277 

Transformations of the Logarithmic 

Function, 302 

Log-Log Graph, 329 

Long Division, 194 

Long Run Behavior, 161, 163, 219 

major axis, 580 

Mathematical Modeling, 101 

Midline, 400, 402 

minor axis, 580 

Model Breakdown, 143 

Moment Magnitude Scale, 318 

multiplicity, 183 

Natural Log, 279 

Negative Angle Identities, 454 

Newton's Law of Cooling, 313 

Nominal Rate, 257 

oblique asymptote, 230 

Odd Functions, 73 

One-to-One Function, 2, 7 

Orders of Magnitude, 317 

orthogonal, 557 

Parallel Lines, 120 

Parametric Functions, 564 

Converting from Parametric to 

Cartesian, 568 

Lissajous Figure, 567 

Parameterizing Curves, 570 

Period, 395, 402 

Periodic Functions, 395 

Period, 395 

Sinusoidal, 397 

Perpendicular Lines, 120 

Phase Shift, 406 

Piecewise Function, 29 

Polar Coordinates 

Converting Points, 515 

Polar Form of a Conic, 630 

Polar Functions, 517 

Converting To and From Cartesian 

Coordinates, 520 

Limaçons, 519 

Polar Form of Complex Numbers, 531 

Roses, 519 

Polynomial, 162 

Coefficients, 162 

Degree, 162 

Horizontal Intercept, 183, 186 

Leading Coefficient, 162 

Leading Term, 162 

Long Division, 194 

Solving Inequalities, 184 

Term, 162 

Power Functions, 159 

Characterisitcs, 160 

Power Reduction Identities, 483 

Product to Sum Identities, 468 

Projection Vector, 559 

Pythagorean Identity, 364, 379 

Alternative Forms, 379, 454, 456 

Pythagorean Theorem, 337 

Quadratic Formula, 175 

Quadratic Functions, 167 

Quadratic Formula, 175 

Standard Form, 169, 170 

Transformation Form, 169 

Vertex Form, 169 

Radian, 351 

Radical Functions, 239, 240 

Range, 22 

Rate of Change, 36 

Average, 37 

Using Function Notation, 38 

Rational Functions, 218, 221 

Intercepts, 225 

Long Run Behavior, 223 

Rational Roots Theorem, 204 

Reciprocal Identities, 454 

Reference Angles, 369 

Remainder Theorem, 196 

roots, 164 

Roses, 519 

Scalar Product, 555 

Secant, 375 

Secant Function 

Domain, 415 

Range, 415 

Semi-Log Graph, 329 

Set-Builder Notation, 24 

Short Run Behavior, 164, 167, 173, 181, 

219 
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Sign of the Dot Product, 558 

Sine, 363, 385, 398 

Single Zero, 183 

Sinusoidal Functions, 397 

Amplitude, 399, 402 

Damped Harmonic Motion, 492 

Midline, 400, 402 

Modeling, 443 

Period, 395, 402 

Phase Shift, 406 

Solving Trig Equations, 437 

slant asymptote, 230 

Slope, 103, 104, 115 

Decreasing, 103 

Increasing, 103 

Standard Form, 169, 170 

Standard Position, 347 

Sum and Difference Identities, 461 

Sum of Logs Property, 289 

Sum to Product Identities, 469 

synthetic division, 198 

Tangent, 375, 385 

Tangent Function, 413 

Domain, 413 

Period, 413 

Range, 413 

Term, 162 

The Logarithm, 277 

Toolkit Functions, 11 

Domains and Ranges of Toolkit 

Functions, 27 

Transformation Form, 169 

Transformations of Functions, 64 

Combining Horizontal 

Transformations, 79 

Combining Vertical Transformations, 

79 

Horizontal Reflections, 71 

Horizontal Shifts, 67 

Horizontal Stretch or Compression, 77 

Vertical Reflections, 71 

Vertical Shifts, 65 

Vertical Stretch or Compression, 75 

transverse axis, 598 

Trigonometric Identities, 376 

Alternative Forms of the Pythagorean 

Identity, 379, 454, 456 

Cofunction Identities, 387 

Double Angle Identities, 477 

Half-Angle Identities, 483 

Negative Angle Identities, 454 

Power Reduction Identities, 483 

Product to Sum Identities, 468 

Pythagorean Identity, 364 

Reciprocal Identities, 454 

Sum and Difference Identities, 461 

Sum to Product Identities, 469 

Trigonometry 

Cosecant, 375 

Cosine, 363, 385, 398 

Cotangent, 375 

Right Triangles, 385, 597 

Secant, 375 

Sine, 363, 385, 398 

SohCahToa, 385 

Solving Trig Equations, 437 

Tangent, 375, 385 

The Pythagorean Theorem, 337 

Unit Circle, 369 

Triple Zero, 183 

Unit Circle, 369 

Vector, 541, 544 

Adding Vectors Geometrically, 542 

Adding, Subtracting, or Scaling 

Vectors in Component Form, 547 

Geometrically Scaling a Vector, 543 

Vertex, 167, 169 

Vertex Form, 169 

Vertical Asymptote, 219, 222 

Vertical Intercept, 115 

Vertical Line Test, 7 

Vertical Lines, 119 

Vertices, 580, 598, 617 

Work, 560 

zeros, 164 
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