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Section 3.1 Power Functions & Polynomial Functions 

A square is cut out of cardboard, with each side having length L.  If we wanted to write a 

function for the area of the square, with L as the input and the area as output, you may 

recall that the area of a rectangle can be found by multiplying the length times the width.  

Since our shape is a square, the length & the width are the same, giving the formula: 
2)( LLLLA ==  

 

Likewise, if we wanted a function for the volume of a cube with each side having some 

length L, you may recall volume of a rectangular box can be found by multiplying length 

by width by height, which are all equal for a cube, giving the formula: 
3)( LLLLLV ==  

 

These two functions are examples of power functions, functions that are some power of 

the variable. 

 

 

Power Function 

A power function is a function that can be represented in the form 
pxxf =)(  

Where the base is a variable and the exponent, p, is a number. 

 

 

Example 1 

Which of our toolkit functions are power functions? 

 

The constant and identity functions are power functions, since they can be written as 
0)( xxf =  and 1)( xxf =  respectively. 
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The quadratic and cubic functions are both power functions with whole number powers: 
2)( xxf =  and 3)( xxf = . 

 

The reciprocal and reciprocal squared functions are both power functions with negative 

whole number powers since they can be written as 1)( −= xxf and 2)( −= xxf . 

 

The square and cube root functions are both power functions with fractional powers 

since they can be written as 21)( xxf = or 31)( xxf = . 

 

 

Try it Now 

1. What point(s) do the toolkit power functions have in common? 

 

 

Characteristics of Power Functions 

 

Shown to the right are the graphs of 
642 )(and,)(,)( xxfxxfxxf === , all even whole number 

powers.  Notice that all these graphs have a fairly similar 

shape, very similar to the quadratic toolkit, but as the power 

increases the graphs flatten somewhat near the origin, and 

become steeper away from the origin. 

 

To describe the behavior as numbers become larger and 

larger, we use the idea of infinity.  The symbol for positive infinity is  , and −  for 

negative infinity.  When we say that “x approaches infinity”, which can be symbolically 

written as →x , we are describing a behavior – we are saying that x is getting large in 

the positive direction.   

 

With the even power functions, as the x becomes large in either the positive or negative 

direction, the output values become very large positive numbers.  Equivalently, we could 

describe this by saying that as x approaches positive or negative infinity, the f(x) values 

approach positive infinity.  In symbolic form, we could write: as →x , →)(xf . 

 

Shown here are the graphs of 
753 )(and,)(,)( xxfxxfxxf === , all odd whole number 

powers.  Notice all these graphs look similar to the cubic 

toolkit, but again as the power increases the graphs flatten 

near the origin and become steeper away from the origin. 

 

For these odd power functions, as x approaches negative 

infinity, f(x) approaches negative infinity.  As x approaches 

positive infinity, f(x) approaches positive infinity.  In 

symbolic form we write:  as −→x , −→)(xf  and as →x , →)(xf . 
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Long Run Behavior 

The behavior of the graph of a function as the input takes on large negative values,

−→x , and large positive values, →x , is referred to as the long run behavior of 

the function. 

 

 

Example 2 

Describe the long run behavior of the graph of 8)( xxf = . 

 

Since 8)( xxf =  has a whole, even power, we would expect this function to behave 

somewhat like the quadratic function.  As the input gets large positive or negative, we 

would expect the output to grow without bound in the positive direction.  In symbolic 

form, as →x , →)(xf .  

 

 

Example 3 

Describe the long run behavior of the graph of 9)( xxf −=  

 

Since this function has a whole odd power, we would expect it to behave somewhat like 

the cubic function.  The negative in front of the 9x  will cause a vertical reflection, so as 

the inputs grow large positive, the outputs will grow large in the negative direction, and 

as the inputs grow large negative, the outputs will grow large in the positive direction.  

In symbolic form, for the long run behavior we would write: as →x , −→)(xf

and as −→x , →)(xf . 

 

You may use words or symbols to describe the long run behavior of these functions. 

 

 

Try it Now 

2. Describe in words and symbols the long run behavior of 4)( xxf −=  

 

 

Treatment of the rational and radical forms of power functions will be saved for later. 

 

 

Polynomials 

 

An oil pipeline bursts in the Gulf of Mexico, causing an oil slick in a roughly circular 

shape.  The slick is currently 24 miles in radius, but that radius is increasing by 8 miles 

each week.   If we wanted to write a formula for the area covered by the oil slick, we 

could do so by composing two functions together.  The first is a formula for the radius, r, 

of the spill, which depends on the number of weeks, w, that have passed.   
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Hopefully you recognized that this relationship is linear:   
wwr 824)( +=  

 

We can combine this with the formula for the area, A, of a circle:  
2)( rrA =  

 

Composing these functions gives a formula for the area in terms of weeks: 
2)824()824())(()( wwAwrAwA +=+==   

 

Multiplying this out gives the formula 
264384576)( wwwA  ++=  

 

This formula is an example of a polynomial.  A polynomial is simply the sum of terms 

each consisting of a vertically stretched or compressed power function with non-negative 

whole number power. 

 

 

Terminology of Polynomial Functions 

A polynomial is function that can be written as 
n

n xaxaxaaxf ++++= 2

210)(  

 

Each of the ai constants are called coefficients and can be positive, negative, or zero, 

and be whole numbers, decimals, or fractions. 

 

A term of the polynomial is any one piece of the sum, that is any 
i

i xa . Each 

individual term is a transformed power function. 

 

The degree of the polynomial is the highest power of the variable that occurs in the 

polynomial. 

 

The leading term is the term containing the highest power of the variable: the term 

with the highest degree.  

 

The leading coefficient is the coefficient of the leading term. 

 

Because of the definition of the “leading” term we often rearrange polynomials so that 

the powers are descending. 

01

2

2.....)( axaxaxaxf n

n ++++=  
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Example 4 

Identify the degree, leading term, and leading coefficient of these polynomials: 

 

a) 32 423)( xxxf −+=  b) ttttg 725)( 35 +−=  c) 26)( 3 −−= ppph  

 

a) For the function f(x), the degree is 3, the highest power on x.  The leading term is the 

term containing that power, 34x− .  The leading coefficient is the coefficient of that 

term, -4. 

 

b) For g(t), the degree is 5, the leading term is 55t , and the leading coefficient is 5. 

 

c) For h(p), the degree is 3, the leading term is 3p− , so the leading coefficient is -1. 

 

 

Long Run Behavior of Polynomials 

For any polynomial, the long run behavior of the polynomial will match the long run 

behavior of the leading term. 

 

 

Example 5 

What can we determine about the long run behavior and 

degree of the equation for the polynomial graphed here? 
 

Since the output grows large and positive as the inputs 

grow large and positive, we describe the long run 

behavior symbolically by writing: as →x , →)(xf

.  Similarly, as −→x , −→)(xf . 

 

In words, we could say that as x values approach 

infinity, the function values approach infinity, and as x 

values approach negative infinity the function values 

approach negative infinity. 

 

We can tell this graph has the shape of an odd degree power function which has not 

been reflected, so the degree of the polynomial creating this graph must be odd, and the 

leading coefficient would be positive. 

 

 

Try it Now 

3. Given the function )5)(1)(2(2.0)( −+−= xxxxf use your algebra skills to write the 

function in standard polynomial form (as a sum of terms) and determine the leading 

term, degree, and long run behavior of the function.  
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Short Run Behavior 

 

Characteristics of the graph such as vertical and horizontal intercepts and the places the 

graph changes direction are part of the short run behavior of the polynomial.   

 

Like with all functions, the vertical intercept is where the graph crosses the vertical axis, 

and occurs when the input value is zero.  Since a polynomial is a function, there can only 

be one vertical intercept, which occurs at the point ),0( 0a .  The horizontal intercepts 

occur at the input values that correspond with an output value of zero.  It is possible to 

have more than one horizontal intercept. 

 

Horizontal intercepts are also called zeros, or roots of the function. 

 

 

Example 6 

Given the polynomial function )4)(1)(2()( −+−= xxxxf , written in factored form for 

your convenience, determine the vertical and horizontal intercepts.   

 

The vertical intercept occurs when the input is zero.   

8)40)(10)(20()0( =−+−=f .   

 

The graph crosses the vertical axis at the point (0, 8). 

 

The horizontal intercepts occur when the output is zero. 

)4)(1)(2(0 −+−= xxx  when x = 2, -1, or 4. 

f(x) has zeros, or roots, at x = 2, -1, and 4. 

 

The graph crosses the horizontal axis at the points (2, 0), (-1, 0), and (4, 0) 

 

 

Notice that the polynomial in the previous example, which would be degree three if 

multiplied out, had three horizontal intercepts and two turning points – places where the 

graph changes direction.  We will now make a general statement without justifying it – 

the reasons will become clear later in this chapter. 

 

 

Intercepts and Turning Points of Polynomials 

A polynomial of degree n will have: 

At most n horizontal intercepts.  An odd degree polynomial will always have at least 

one. 

At most n−1 turning points 
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Example 7 

What can we conclude about the graph of the 

polynomial shown here? 
 

Based on the long run behavior, with the graph 

becoming large positive on both ends of the graph, we 

can determine that this is the graph of an even degree 

polynomial.  The graph has 2 horizontal intercepts, 

suggesting a degree of 2 or greater, and 3 turning points, 

suggesting a degree of 4 or greater.  Based on this, it 

would be reasonable to conclude that the degree is even 

and at least 4, so it is probably a fourth degree 

polynomial. 

 

 

Try it Now 

4. Given the function )5)(1)(2(2.0)( −+−= xxxxf , determine the short run behavior. 

 

 

Important Topics of this Section 

Power Functions 

Polynomials 

Coefficients 

Leading coefficient 

Term 

Leading Term 

Degree of a polynomial  

Long run behavior 

Short run behavior 

 

 

Try it Now Answers 

1. (0, 0) and (1, 1) are common to all power functions. 

2. As x approaches positive and negative infinity, f(x) approaches negative infinity:  as 

→x , −→)(xf  because of the vertical flip. 

3. The leading term is 32.0 x , so it is a degree 3 polynomial. 

As x approaches infinity (or gets very large in the positive direction) f(x) approaches 

infinity; as x approaches negative infinity (or gets very large in the negative direction) 

f(x) approaches negative infinity.  (Basically the long run behavior is the same as the 

cubic function). 

4. Horizontal intercepts are (2, 0) (-1, 0) and (5, 0), the vertical intercept is (0, 2) and 

there are 2 turns in the graph. 
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Section 3.1 Exercises 

 
Find the long run behavior of each function as x →  and x →−  

1. ( ) 4f x x=   2. ( ) 6f x x=    3. ( ) 3f x x=   4. ( ) 5f x x=  

5. ( ) 2f x x= −   6. ( ) 4f x x= −   7. ( ) 7f x x= −   8. ( ) 9f x x= −  

 

Find the degree and leading coefficient of each polynomial 

9. 74x       10. 65x    

11. 25 x−      12. 36 3 4x x+ −  

13. 4 22  3   1 x x x− − + −       14. 5 4 26 2    3x x x− + +  

15. ( )( )2 3 4 (3 1)x x x+ − +    16. ( )( )3 1 1 (4 3)x x x+ + +   

 

Find the long run behavior of each function as x →  and x →−  

17. 4 22  3   1 x x x− − + −       18. 5 4 26 2    3x x x− + +  

19. 23   2x x+ −      20. 3 22   3x x x− + − +  

 

21. What is the maximum number of x-intercepts and turning points for a polynomial of 

degree 5?  

 

22. What is the maximum number of x-intercepts and turning points for a polynomial of 

degree 8?  

 

What is the least possible degree of the polynomial function shown in each graph? 

23. 24. 25. 26.  

27. 28. 29. 30.  

 

Find the vertical and horizontal intercepts of each function. 

31. ( ) ( )( )2 1 2 ( 3)f t t t t= − + −   32. ( ) ( )( )3 1 4 ( 5)f x x x x= + − +  

33. ( ) ( )2 3 1 (2 1)g n n n= − − +   34. ( ) ( )3 4 (4 3)k u n n= − − +    
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Section 3.2 Quadratic Functions 

 

In this section, we will explore the family of 2nd degree polynomials, the quadratic 

functions.  While they share many characteristics of polynomials in general, the 

calculations involved in working with quadratics is typically a little simpler, which makes 

them a good place to start our exploration of short run behavior.  In addition, quadratics 

commonly arise from problems involving area and projectile motion, providing some 

interesting applications. 

 

 

Example 1 

A backyard farmer wants to enclose a rectangular space for a new garden.  She has 

purchased 80 feet of wire fencing to enclose 3 sides, and will put the 4th side against the 

backyard fence.  Find a formula for the area enclosed by the fence if the sides of fencing 

perpendicular to the existing fence have length L. 

 

In a scenario like this involving geometry, it is often 

helpful to draw a picture.  It might also be helpful to 

introduce a temporary variable, W, to represent the side 

of fencing parallel to the 4th side or backyard fence.   

 

Since we know we only have 80 feet of fence available, 

we know that 80=++ LWL , or more simply, 

802 =+WL .  This allows us to represent the width, W, in terms of L:  LW 280 −=  

 

Now we are ready to write an equation for the area the fence encloses.  We know the 

area of a rectangle is length multiplied by width, so  
)280( LLLWA −==  

2280)( LLLA −=   

This formula represents the area of the fence in terms of the variable length L. 

 

 

Short run Behavior: Vertex 

 

We now explore the interesting features of the graphs of quadratics.  In addition to 

intercepts, quadratics have an interesting feature where they change direction, called the 

vertex.  You probably noticed that all quadratics are related to transformations of the 

basic quadratic function 2)( xxf = . 

 

 

 

 

 

 

Backyard 

Garden 

W 

L 
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Example 2 

Write an equation for the quadratic graphed below as a transformation of 2)( xxf = , 

then expand the formula and simplify terms to write the equation in standard 

polynomial form. 

 
We can see the graph is the basic quadratic shifted to the left 2 and down 3, giving a 

formula in the form 3)2()( 2 −+= xaxg .  By plugging in a point that falls on the grid, 

such as (0,-1), we can solve for the stretch factor: 

2

1

42

3)20(1 2

=

=

−+=−

a

a

a

 

 

Written as a transformation, the equation for this formula is 3)2(
2

1
)( 2 −+= xxg .  To 

write this in standard polynomial form, we can expand the formula and simplify terms: 

12
2

1
)(

322
2

1
)(

3)44(
2

1
)(

3)2)(2(
2

1
)(

3)2(
2

1
)(

2

2

2

2

−+=

−++=

−++=

−++=

−+=

xxxg

xxxg

xxxg

xxxg

xxg

 

 

 

Notice that the horizontal and vertical shifts of the basic quadratic determine the location 

of the vertex of the parabola; the vertex is unaffected by stretches and compressions. 
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Try it Now 

1. A coordinate grid has been superimposed 

over the quadratic path of a basketball1.  

Find an equation for the path of the ball.  

Does he make the basket? 

 

 

 

 

 

 

Forms of Quadratic Functions 

The standard form of a quadratic function is cbxaxxf ++= 2)(  

The transformation form of a quadratic function is khxaxf +−= 2)()(  

The vertex of the quadratic function is located at (h, k), where h and k are the numbers 

in the transformation form of the function.  Because the vertex appears in the 

transformation form, it is often called the vertex form. 

 

 

In the previous example, we saw that it is possible to rewrite a quadratic function given in 

transformation form and rewrite it in standard form by expanding the formula.  It would 

be useful to reverse this process, since the transformation form reveals the vertex. 

 

Expanding out the general transformation form of a quadratic gives: 

kahahxaxkhxhxaxf

khxhxakhxaxf

++−=++−=

+−−=+−=

2222

2

2)2()(

))(()()(
 

 

This should be equal to the standard form of the quadratic: 

cbxaxkahahxax ++=++− 222 2  

 

The second degree terms are already equal.  For the linear terms to be equal, the 

coefficients must be equal: 

bah =− 2 , so 
a

b
h

2
−=  

 

This provides us a method to determine the horizontal shift of the quadratic from the 

standard form.  We could likewise set the constant terms equal to find: 

ckah =+2 , so 
a

b
c

a

b
ac

a

b
acahck

442

2

2

22

2 −=−=







−−=−=  

 
1 From http://blog.mrmeyer.com/?p=4778, © Dan Meyer, CC-BY 

http://blog.mrmeyer.com/?p=4778
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In practice, though, it is usually easier to remember that k is the output value of the 

function when the input is h, so )(hfk = . 

 

Finding the Vertex of a Quadratic 

For a quadratic given in standard form, the vertex (h, k) is located at: 

a

b
h

2
−= ,   ( )

2

b
k f h f

a

− 
= =  

 
 

 

 

Example 3 

Find the vertex of the quadratic 762)( 2 +−= xxxf .  Rewrite the quadratic into 

transformation form (vertex form). 

 

The horizontal coordinate of the vertex will be at 
2

3

4

6

)2(2

6

2
==

−
−=−=

a

b
h  

The vertical coordinate of the vertex will be at 
2

5
7

2

3
6

2

3
2

2

3
2

=+







−








=








f  

 

Rewriting into transformation form, the stretch factor will be the same as the a in the 

original quadratic.  Using the vertex to determine the shifts,  

2

5

2

3
2)(

2

+







−= xxf  

 

 

Try it Now 

2. Given the equation xxxg 613)( 2 −+=  write the equation in standard form and then in 

transformation/vertex form. 

 

 

As an alternative to using a formula for finding the vertex, the equation can also be 

written into vertex form by completing the square.  This process is most easily 

explained through example.  In most cases, using the formula for finding the vertex will 

be quicker and easier than completing the square, but completing the square is a useful 

technique when faced with some other algebraic problems. 

 

 

Example 4 

Rewrite 14122)( 2 +−= xxxf  into vertex form by completing the square. 

 

We start by factoring the leading coefficient from the quadratic and linear terms. 

( ) 1462 2 +− xx  
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Next, we are going to add something inside the parentheses so that the quadratic inside 

the parentheses becomes a perfect square.  In other words, we are looking for values p 

and q so that ( ) 22 )(6 qxpxx −=+− .   

 

Notice that if multiplied out on the right, the middle term would be -2q, so q must be 

half of the middle term on the left; q = -3.  In that case, p must be (-3)2 = 9.  

( ) 22 )3(96 −=+− xxx  

 

Now, we can’t just add 9 into the expression – that would change the value of the 

expression.  In fact, adding 9 inside the parentheses actually adds 18 to the expression, 

since the 2 outside the parentheses will distribute.  To keep the expression balanced, we 

can subtract 18. 

( ) 1814962 2 −++− xx  

 

Simplifying, we are left with vertex form. 

( ) 432
2
−−x  

 

 

In addition to enabling us to more easily graph a quadratic written in standard form, 

finding the vertex serves another important purpose – it allows us to determine the 

maximum or minimum value of the function, depending on which way the graph opens. 

 

 

Example 5 

Returning to our backyard farmer from the beginning of the section, what dimensions 

should she make her garden to maximize the enclosed area? 

 

Earlier we determined the area she could enclose with 80 feet of fencing on three sides 

was given by the equation 2280)( LLLA −= .  Notice that quadratic has been vertically 

reflected, since the coefficient on the squared term is negative, so the graph will open 

downwards, and the vertex will be a maximum value for the area. 

 

In finding the vertex, we take care since the equation is not written in standard 

polynomial form with decreasing powers.  But we know that a is the coefficient on the 

squared term, so a = -2, b = 80, and c = 0.   

Finding the vertex: 

20
)2(2

80
=

−
−=h ,   800)20(2)20(80)20( 2 =−== Ak  

 

The maximum value of the function is an area of 800 square feet, which occurs when L 

= 20 feet.  When the shorter sides are 20 feet, that leaves 40 feet of fencing for the 

longer side.  To maximize the area, she should enclose the garden so the two shorter 

sides have length 20 feet, and the longer side parallel to the existing fence has length 40 

feet. 
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Example 6 

A local newspaper currently has 84,000 subscribers, at a quarterly charge of $30.  

Market research has suggested that if they raised the price to $32, they would lose 5,000 

subscribers.  Assuming that subscriptions are linearly related to the price, what price 

should the newspaper charge for a quarterly subscription to maximize their revenue? 

 

Revenue is the amount of money a company brings in.  In this case, the revenue can be 

found by multiplying the charge per subscription times the number of subscribers.  We 

can introduce variables, C for charge per subscription and S for the number subscribers, 

giving us the equation 

Revenue = CS 

 

Since the number of subscribers changes with the price, we need to find a relationship 

between the variables.  We know that currently S = 84,000 and C = 30, and that if they 

raise the price to $32 they would lose 5,000 subscribers, giving a second pair of values, 

C = 32 and S = 79,000.  From this we can find a linear equation relating the two 

quantities.  Treating C as the input and S as the output, the equation will have form 

bmCS += .  The slope will be  

500,2
2

000,5

3032

000,84000,79
−=

−
=

−

−
=m  

 

This tells us the paper will lose 2,500 subscribers for each dollar they raise the price.  

We can then solve for the vertical intercept 

 

bCS +−= 2500     Plug in the point S = 84,000 and C = 30 

b+−= )30(2500000,84    Solve for b 

000,159=b  

 

This gives us the linear equation 000,159500,2 +−= CS  relating cost and subscribers.  

We now return to our revenue equation. 

 

CS=Revenue     Substituting the equation for S from above 

)000,159500,2(Revenue +−= CC   Expanding 

CC 000,159500,2Revenue 2 +−=  

 

We now have a quadratic equation for revenue as a function of the subscription charge.  

To find the price that will maximize revenue for the newspaper, we can find the vertex: 

8.31
)500,2(2

000,159
=

−
−=h  

 

The model tells us that the maximum revenue will occur if the newspaper charges 

$31.80 for a subscription.  To find what the maximum revenue is, we can evaluate the 

revenue equation: 

Maximum Revenue = =+− )8.31(000,159)8.31(500,2 2 $2,528,100 
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Short run Behavior: Intercepts 

 

As with any function, we can find the vertical intercepts of a quadratic by evaluating the 

function at an input of zero, and we can find the horizontal intercepts by solving for when 

the output will be zero.  Notice that depending upon the location of the graph, we might 

have zero, one, or two horizontal intercepts. 

 

   

zero horizontal intercepts one horizontal intercept two horizontal intercepts 

 

 

Example 7 

Find the vertical and horizontal intercepts of the quadratic 253)( 2 −+= xxxf  

 

We can find the vertical intercept by evaluating the function at an input of zero: 

22)0(5)0(3)0( 2 −=−+=f   Vertical intercept at (0,-2) 

 

For the horizontal intercepts, we solve for when the output will be zero 

2530 2 −+= xx  

 

In this case, the quadratic can be factored easily, providing the simplest method for 

solution 
)2)(13(0 +−= xx  

3

1

130

=

−=

x

x

 or 
2

20

−=

+=

x

x
  Horizontal intercepts at 








0,

3

1
 and (-2,0) 

 

 

Notice that in the standard form of a quadratic, the constant term c reveals the vertical 

intercept of the graph. 

 

 

Example 8 

Find the horizontal intercepts of the quadratic 442)( 2 −+= xxxf  

 

Again we will solve for when the output will be zero 

4420 2 −+= xx  
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Since the quadratic is not easily factorable in this case, we solve for the intercepts by 

first rewriting the quadratic into transformation form. 

1
)2(2

4

2
−=−=−=

a

b
h  64)1(4)1(2)1( 2 −=−−+−=−= fk  

6)1(2)( 2 −+= xxf  

 

Now we can solve for when the output will be zero 

31

31

)1(3

)1(26

6)1(20

2

2

2

−=

=+

+=

+=

−+=

x

x

x

x

x

  

 

The graph has horizontal intercepts at )0,31( −− and )0,31( +−  

 

 

Try it Now 

3. In Try it Now problem 2 we found the standard & transformation form for the function 

xxxg 613)( 2 −+= .  Now find the Vertical & Horizontal intercepts (if any). 

 

 

The process in the last example is done commonly enough that sometimes people find it 

easier to solve the problem once in general and remember the formula for the result, 

rather than repeating the process each time.  Based on our previous work we showed that 

any quadratic in standard form can be written into transformation form as: 

a

b
c

a

b
xaxf

42
)(

22

−+







+=  

 

Solving for the horizontal intercepts using this general equation gives: 

a

b
c

a

b
xa

42
0

22

−+







+=  start to solve for x by moving the constants to the other side 

22

24








+=−

a

b
xac

a

b
  divide both sides by a 

2

2

2

24








+=−

a

b
x

a

c

a

b
  find a common denominator to combine fractions 

2

22

2

24

4

4








+=−

a

b
x

a

ac

a

b
 combine the fractions on the left side of the equation 

2

2

2

24

4








+=

−

a

b
x

a

acb
  take the square root of both sides 
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a

b
x

a

acb

24

4
2

2

+=
−

  subtract b/2a from both sides 

x
a

acb

a

b
=

−
−

2

4

2

2

 combining the fractions 

a

acbb
x

2

42 −−
=   Notice that this can yield two different answers for x 

 

 

Quadratic Formula 

For a quadratic function given in standard form 2( )f x ax bx c= + + , the quadratic 

formula gives the horizontal intercepts of the graph of this function. 

a

acbb
x

2

42 −−
=  

 

 

Example 9 

A ball is thrown upwards from the top of a 40-foot-tall building at a speed of 80 feet per 

second.  The ball’s height above ground can be modeled by the equation 
2( ) 16 80 40H t t t= − + + .   

What is the maximum height of the ball? 

When does the ball hit the ground? 

 

To find the maximum height of the ball, we would need to know the vertex of the 

quadratic. 

2

5

32

80

)16(2

80
==

−
−=h ,   

2
5 5 5

16 80 40 140
2 2 2

k H
     

= = − + + =     
     

 

 

The ball reaches a maximum height of 140 feet after 2.5 seconds. 

To find when the ball hits the ground, we need to determine when the height is zero – 

when H(t) = 0.  While we could do this using the transformation form of the quadratic, 

we can also use the quadratic formula: 

32

896080

)16(2

)40)(16(48080 2

−

−
=

−

−−−
=t  

 

Since the square root does not simplify nicely, we can use a calculator to approximate 

the values of the solutions: 

458.5
32

896080


−

−−
=t  or  458.0

32

896080
−

−

+−
=t  

 

The second answer is outside the reasonable domain of our model, so we conclude the 

ball will hit the ground after about 5.458 seconds. 
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Try it Now 

4. For these two equations determine if the vertex will be a maximum value or a 

minimum value. 

a.  78)( 2 ++−= xxxg  

b.  2)3(3)( 2 +−−= xxg  

 

 

Important Topics of this Section 

Quadratic functions 

 Standard form 

 Transformation form/Vertex form 

 Vertex as a maximum / Vertex as a minimum 

Short run behavior 

 Vertex / Horizontal & Vertical intercepts  

Quadratic formula 

 

 

Try it Now Answers 

1. The path passes through the origin with vertex at (-4, 7).  

27
( ) ( 4) 7

16
h x x= − + + .  To make the shot, h(-7.5) would 

need to be about 4.  ( 7.5) 1.64h −  ; he doesn’t make it. 

 

2. 136)( 2 +−= xxxg  in Standard form;   

Finding the vertex, 3
)1(2

)6(
=

−−
=h .  413)3(63)3( 2 =+−== gk . 

4)3()( 2 +−= xxg in Transformation form 

 

3. Vertical intercept at (0, 13),  No horizontal intercepts since the vertex is above the x-

axis and the graph opens upwards. 

 

4. a. Vertex is a minimum value, since a > 0 and the graph opens upwards 

    b. Vertex is a maximum value, since a < 0 and the graph opens downwards
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Section 3.2 Exercises 

 
Write an equation for the quadratic function graphed. 

1.     2.  

3.     4.  

5.       6.  

 

For each of the follow quadratic functions, find a) the vertex, b) the vertical intercept, and 

c) the horizontal intercepts. 

7. ( ) 22 10 12y x x x= + +    8. ( ) 23 6 9z p x x= + −   

9. ( ) 22 10 4f x x x= − +    10. ( ) 22 14 12g x x x= − − +  

11. ( ) 24 6 1h t t t= − + −    12. ( ) 22 4 15 k t x x= + −   

 

Rewrite the quadratic function into vertex form. 

13. ( ) 2 12 32f x x x= − +    14. ( ) 2 2 3g x x x= + −  

15. ( ) 22 8 10h x x x= + −    16. ( ) 23 6 9k x x x= − −   

 

17. Find the values of b and c so ( ) 28f x x bx c= − + +  has vertex ( )2,  7−  

18. Find the values of b and c so ( ) 26f x x bx c= + +  has vertex (7,  9)−  
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Write an equation for a quadratic with the given features 

 

19. x-intercepts (-3, 0) and (1, 0), and y intercept (0, 2) 

20. x-intercepts (2, 0) and (-5, 0), and y intercept (0, 3) 

21. x-intercepts (2, 0) and (5, 0), and y intercept (0, 6) 

22. x-intercepts (1, 0) and (3, 0), and y intercept (0, 4) 

23. Vertex at (4, 0), and y intercept (0, -4) 

24. Vertex at (5, 6), and y intercept (0, -1) 

25. Vertex at (-3, 2), and passing through (3, -2) 

26. Vertex at (1, -3), and passing through (-2, 3) 

 

27. A rocket is launched in the air.  Its height, in meters above sea level, as a function of 

time, in seconds, is given by ( ) 24.9 229 234h t t t= − + + .   

a. From what height was the rocket launched? 

b. How high above sea level does the rocket reach its peak? 

c. Assuming the rocket will splash down in the ocean, at what time does 

splashdown occur? 

 

28. A ball is thrown in the air from the top of a building.  Its height, in meters above 

ground, as a function of time, in seconds, is given by ( ) 24.9 24 8h t t t= − + + .   

a. From what height was the ball thrown? 

b. How high above ground does the ball reach its peak? 

c. When does the ball hit the ground? 

 

29. The height of a ball thrown in the air is given by ( ) 21
6 3

12
h x x x= − + + , where x is 

the horizontal distance in feet from the point at which the ball is thrown. 

a. How high is the ball when it was thrown? 

b. What is the maximum height of the ball? 

c. How far from the thrower does the ball strike the ground? 

 

30. A javelin is thrown in the air.  Its height is given by ( ) 21
8 6

20
h x x x= − + + , where x 

is the horizontal distance in feet from the point at which the javelin is thrown. 

a. How high is the javelin when it was thrown? 

b. What is the maximum height of the javelin? 

c. How far from the thrower does the javelin strike the ground? 
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31. A box with a square base and no top is to be made from a square piece of cardboard 

by cutting 6 in. squares out of each corner and folding up the sides. The box needs to 

hold 1000 in3. How big a piece of cardboard is needed? 

 

32. A box with a square base and no top is to be made from a square piece of cardboard 

by cutting 4 in. squares out of each corner and folding up the sides. The box needs to 

hold 2700 in3. How big a piece of cardboard is needed? 

 

33. A farmer wishes to enclose two pens with fencing, as shown.  

If the farmer has 500 feet of fencing to work with, what 

dimensions will maximize the area enclosed? 

 

34. A farmer wishes to enclose three pens with fencing, as shown.  

If the farmer has 700 feet of fencing to work with, what 

dimensions will maximize the area enclosed? 

 

35. You have a wire that is 56 cm long. You wish to cut it into two pieces. One piece will 

be bent into the shape of a square. The other piece will be bent into the shape of a 

circle. Let A represent the total area enclosed by the square and the circle. What is the 

circumference of the circle when A is a minimum? 

 

36. You have a wire that is 71 cm long. You wish to cut it into two pieces. One piece will 

be bent into the shape of a right triangle with legs of equal length. The other piece 

will be bent into the shape of a circle. Let A represent the total area enclosed by the 

triangle and the circle. What is the circumference of the circle when A is a minimum? 

 

37. A soccer stadium holds 62,000 spectators. With a ticket price of $11, the average 

attendance has been 26,000. When the price dropped to $9, the average attendance 

rose to 31,000. Assuming that attendance is linearly related to ticket price, what ticket 

price would maximize revenue? 

 

38. A farmer finds that if she plants 75 trees per acre, each tree will yield 20 bushels of 

fruit. She estimates that for each additional tree planted per acre, the yield of each tree 

will decrease by 3 bushels. How many trees should she plant per acre to maximize her 

harvest? 
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39. A hot air balloon takes off from the 

edge of a mountain lake. Impose a 

coordinate system as pictured and 

assume that the path of the balloon 

follows the graph of 

( ) 22 4

2500 5
f x x x= − + . The land rises 

at a constant incline from the lake at the 

rate of 2 vertical feet for each 20 

horizontal feet. [UW] 

a. What is the maximum height of the balloon above water level? 

b. What is the maximum height of the balloon above ground level? 

c. Where does the balloon land on the ground? 

d. Where is the balloon 50 feet above the ground? 

  

 

40. A hot air balloon takes off from 

the edge of a plateau. Impose a 

coordinate system as pictured 

below and assume that the path 

the balloon follows is the graph 

of the quadratic function 

( ) 24 4

2500 5
f x x x= − + . The 

land drops at a constant incline 

from the plateau at the rate of 1 

vertical foot for each 5 

horizontal feet. [UW] 

a. What is the maximum height of the balloon above plateau level? 

b. What is the maximum height of the balloon above ground level? 

c. Where does the balloon land on the ground? 

d. Where is the balloon 50 feet above the ground? 
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Section 3.3 Graphs of Polynomial Functions 

 

In the previous section, we explored the short run behavior of quadratics, a special case 

of polynomials.  In this section, we will explore the short run behavior of polynomials in 

general. 

 

Short run Behavior:  Intercepts 

 

As with any function, the vertical intercept can be found by evaluating the function at an 

input of zero.  Since this is evaluation, it is relatively easy to do it for a polynomial of any 

degree. 

 

To find horizontal intercepts, we need to solve for when the output will be zero.  For 

general polynomials, this can be a challenging prospect.  While quadratics can be solved 

using the relatively simple quadratic formula, the corresponding formulas for cubic and 

4th degree polynomials are not simple enough to remember, and formulas do not exist for 

general higher-degree polynomials.  Consequently, we will limit ourselves to three cases: 

1) The polynomial can be factored using known methods: greatest common 

factor and trinomial factoring.   

2) The polynomial is given in factored form. 

3) Technology is used to determine the intercepts. 

 

Other techniques for finding the intercepts of general polynomials will be explored in the 

next section. 

 

 

Example 1 

Find the horizontal intercepts of 246 23)( xxxxf +−= . 

 

We can attempt to factor this polynomial to find solutions for f(x) = 0. 

023 246 =+− xxx   Factoring out the greatest common factor 

( ) 023 242 =+− xxx   Factoring the inside as a quadratic in x2 

( )( ) 021 222 =−− xxx  Then break apart to find solutions 

0

02

=

=

x

x
 or 

( )

1

1

01

2

2

=

=

=−

x

x

x

 or  

( )

2

2

02

2

2

=

=

=−

x

x

x

 

 

This gives us 5 horizontal intercepts. 
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Example 2 

Find the vertical and horizontal intercepts of )32()2()( 2 +−= tttg  

 

The vertical intercept can be found by evaluating g(0).   

12)3)0(2()20()0( 2 =+−=g  

 

The horizontal intercepts can be found by solving g(t) = 0 

0)32()2( 2 =+− tt    Since this is already factored, we can break it apart: 

2

02

0)2( 2

=

=−

=−

t

t

t

 or 

2

3

0)32(

−
=

=+

t

t

 

 

We can always check our answers are reasonable by graphing the polynomial. 

 

 

Example 3 

Find the horizontal intercepts of 64)( 23 −++= tttth  

 

Since this polynomial is not in factored form, has no 

common factors, and does not appear to be factorable 

using techniques we know, we can turn to technology to 

find the intercepts.   

 

Graphing this function, it appears there are horizontal 

intercepts at t = -3, -2, and 1. 

 

We could check these are correct by plugging in these 

values for t and verifying that ( 3) ( 2) (1) 0h h h− = − = = . 

 

 

Try it Now 

1. Find the vertical and horizontal intercepts of the function 24 4)( tttf −= . 

 

 

Graphical Behavior at Intercepts 

 

If we graph the function 32 )1()2)(3()( +−+= xxxxf , 

notice that the behavior at each of the horizontal 

intercepts is different. 

 

At the horizontal intercept x = -3, coming from the 

)3( +x  factor of the polynomial, the graph passes 

directly through the horizontal intercept.   
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The factor )3( +x  is linear (has a power of 1), so the behavior near the intercept is like 

that of a line - it passes directly through the intercept. We call this a single zero, since the 

zero corresponds to a single factor of the function. 

 

At the horizontal intercept x = 2, coming from the 2)2( −x  factor of the polynomial, the 

graph touches the axis at the intercept and changes direction.  The factor is quadratic 

(degree 2), so the behavior near the intercept is like that of a quadratic – it bounces off 

the horizontal axis at the intercept.  Since )2)(2()2( 2 −−=− xxx , the factor is repeated 

twice, so we call this a double zero. We could also say the zero has multiplicity 2. 

 

At the horizontal intercept x = -1, coming from the 3)1( +x  factor of the polynomial, the 

graph passes through the axis at the intercept, but flattens out a bit first.  This factor is 

cubic (degree 3), so the behavior near the intercept is like that of a cubic, with the same 

“S” type shape near the intercept that the toolkit 3x  has. We call this a triple zero. We 

could also say the zero has multiplicity 3.  

 

By utilizing these behaviors, we can sketch a reasonable graph of a factored polynomial 

function without needing technology. 

 

 

Graphical Behavior of Polynomials at Horizontal Intercepts 

If a polynomial contains a factor of the form phx )( − , the behavior near the horizontal 

intercept h is determined by the power on the factor. 

 p = 1    p = 2    p = 3  

   

 Single zero      Double zero          Triple zero  

  Multiplicity 1      Multiplicity 2         Multiplicity 3 

 

For higher even powers 4,6,8 etc.… the graph will still bounce off the horizontal axis 

but the graph will appear flatter with each increasing even power as it approaches and 

leaves the axis. 

 

For higher odd powers, 5,7,9 etc… the graph will still pass through the horizontal axis 

but the graph will appear flatter with each increasing odd power as it approaches and 

leaves the axis. 
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Example 4 

Sketch a graph of )5()3(2)( 2 −+−= xxxf . 

 

This graph has two horizontal intercepts.  At x = -3, the factor is squared, indicating the 

graph will bounce at this horizontal intercept.  At x = 5, the factor is not squared, 

indicating the graph will pass through the axis at this intercept. 

 

Additionally, we can see the leading term, if this polynomial were multiplied out, would 

be 32x− , so the long-run behavior is that of a vertically reflected cubic, with the 

outputs decreasing as the inputs get large positive, and the inputs increasing as the 

inputs get large negative. 

 

To sketch this we consider the following: 

As −→x  the function →)(xf  so we know the graph starts in the 2nd quadrant 

and is decreasing toward the horizontal axis. 

 

At (-3, 0) the graph bounces off the horizontal axis and so the function must start 

increasing. 

 

At (0, 90) the graph crosses the vertical axis at the vertical intercept. 

 

Somewhere after this point, the graph must turn back down or start decreasing toward 

the horizontal axis since the graph passes through the next intercept at (5,0). 

 

As →x  the function −→)(xf  so we know the 

graph continues to decrease and we can stop drawing 

the graph in the 4th quadrant. 

 

Using technology we can verify the shape of the 

graph. 

 

 

 

 

  

 

Try it Now 

2. Given the function xxxxg 6)( 23 −−=  use the methods that we have learned so far to 

find the vertical & horizontal intercepts, determine where the function is negative and 

positive, describe the long run behavior and sketch the graph without technology. 
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Solving Polynomial Inequalities 

 

One application of our ability to find intercepts and sketch a graph of polynomials is the 

ability to solve polynomial inequalities.  It is a very common question to ask when a 

function will be positive and negative.  We can solve polynomial inequalities by either 

utilizing the graph, or by using test values. 

 

 

 

Example 5 

Solve 0)4()1)(3( 2 −++ xxx  

 

As with all inequalities, we start by solving the equality 0)4()1)(3( 2 =−++ xxx , 

which has solutions at x = -3, -1, and 4.  We know the function can only change from 

positive to negative at these values, so these divide the inputs into 4 intervals.   

 

We could choose a test value in each interval and evaluate the function 

)4()1)(3()( 2 −++= xxxxf  at each test value to determine if the function is positive or 

negative in that interval 

 

 
 

On a number line this would look like: 

 

 
 

From our test values, we can determine this function is positive when x < -3 or x > 4, or 

in interval notation, ),4()3,( −−  

 

 

We could have also determined on which intervals the function was positive by sketching 

a graph of the function.  We illustrate that technique in the next example 

 

 

 

 

 

 

 

Interval Test x in interval f( test value) >0 or <0? 

x < -3 -4 72 > 0 

-3 < x < -1 -2 -6 < 0 

-1 < x < 4 0 -12 < 0 

x > 4 5 288 > 0 

 

 

0 0 0 positive negative negative positive 
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Example 6 

Find the domain of the function 
256)( tttv −−= . 

 

A square root is only defined when the quantity we are taking the square root of, the 

quantity inside the square root, is zero or greater.  Thus, the domain of this function will 

be when 056 2 −− tt . 

 

We start by solving the equality 056 2 =−− tt .  While we could use the quadratic 

formula, this equation factors nicely to 0)1)(6( =−+ tt , giving horizontal intercepts t = 

1 and t = -6.   

 

 

 

Sketching a graph of this quadratic will allow us to 

determine when it is positive. 

 

From the graph we can see this function is positive 

for inputs between the intercepts.  So 056 2 −− tt  

for 16 − t , and this will be the domain of the v(t) 

function. 

 

 

 

Writing Equations using Intercepts 

 

Since a polynomial function written in factored form will have a horizontal intercept 

where each factor is equal to zero, we can form a function that will pass through a set of 

horizontal intercepts by introducing a corresponding set of factors. 

 

 

Writing an Equation for a Polynomial from Intercepts 

If we know the horizontal intercepts and the behavior or multiplicity at those 

intercepts, we can write a polynomial of minimal degree with those intercepts. 

 

1. Determine the horizontal intercepts 
1 2, , , kx x x x=  

2. Examine the behavior at each intercept to determine the corresponding multiplicity 

of each intercept, 
1 2, , , kp p p  

3. Write the polynomial in factored form 1 2

1 2( ) ( ) ( ) ( ) kpp p

kf x a x x x x x x= − − −  

4. Use another point on the graph to solve for the stretch factor a 

 

Notice the degree of the polynomial will be the sum of the multiplicities ip . 
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Example 7  

Write a formula for the polynomial function 

graphed here. 

 
 

This graph has three horizontal intercepts: x = -3, 

2, and 5.  At x = -3 and 5 the graph passes through 

the axis, suggesting the corresponding factors of 

the polynomial will be linear.  At x = 2 the graph 

bounces at the intercept, suggesting the 

corresponding factor of the polynomial will be 2nd 

degree (quadratic).   

 

Together, this gives us: 

)5()2)(3()( 2 −−+= xxxaxf  

 

To determine the stretch factor, we can utilize another point on the graph.  Here, the 

vertical intercept appears to be (0,-2), so we can plug in those values to solve for a: 

30

1

602

)50()20)(30(2 2

=

−=−

−−+=−

a

a

a

 

 

The graphed polynomial appears to represent the function 

)5()2)(3(
30

1
)( 2 −−+= xxxxf . 

 

 

Try it Now 

3. Given the graph, write a formula for the function shown. 
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Estimating Extrema 

 

With quadratics, we were able to algebraically find the maximum or minimum value of 

the function by finding the vertex.  For general polynomials, finding these turning points 

is not possible without more advanced techniques from calculus.  Even then, finding 

where extrema occur can still be algebraically challenging.  For now, we will estimate the 

locations of turning points using technology to generate a graph. 

 

 

Example 8 

An open-top box is to be constructed by cutting out squares from each corner of a 14cm 

by 20cm sheet of plastic then folding up the sides.  Find the size of squares that should 

be cut out to maximize the volume enclosed by the box. 

 

We will start this problem by drawing a picture, labeling the 

width of the cut-out squares with a variable, w.       

 

Notice that after a square is cut out from each end, it leaves a 

)214( w− cm by )2120( w− cm rectangle for the base of the 

box, and the box will be w cm tall.  This gives the volume: 
32 468280)220)(214()( wwwwwwwV +−=−−=  

 

Using technology to sketch a graph allows us to estimate the maximum value for the 

volume, restricted to reasonable values for w: values from 0 to 7. 

 

 
 

From this graph, we can estimate the maximum value is around 340, and occurs when 

the squares are about 2.75cm square.  To improve this estimate, we could use advanced 

features of our technology, if available, or simply change our window to zoom in on our 

graph. 

w 

w 
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From this zoomed-in view, we can refine our estimate for the max volume to about 339, 

when the squares are 2.7cm square. 

 

 

Try it Now 

4. Use technology to find the maximum and minimum values on the interval [-1, 4] of the 

function )4()1()2(2.0)( 23 −+−−= xxxxf .  

 

 

Important Topics of this Section 

Short Run Behavior 

 Intercepts (Horizontal & Vertical) 

Methods to find Horizontal intercepts 

 Factoring Methods 

 Factored Forms 

 Technology 

Graphical Behavior at intercepts 

Single, Double and Triple zeros (or multiplicity 1, 2, and 3 behaviors) 

Solving polynomial inequalities using test values & graphing techniques 

Writing equations using intercepts 

Estimating extrema 
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Try it Now Answers 

1.  Vertical intercept (0, 0).  24 40 tt −=  factors as ( ) ( )( )2240 222 +−=−= ttttt  

Horizontal intercepts (0, 0), (-2, 0), (2, 0) 

 

2. Vertical intercept (0, 0),  

Horizontal intercepts (-2, 0), (0, 0), (3, 0) 

    The function is negative on ( − , -2) and (0, 3) 

    The function is positive on (-2, 0) and (3, ) 

    The leading term is 3x so as −→x , −→)(xg and as

→x , →)(xg  

 

3. Double zero at x=-1, triple zero at x=2. Single zero at x=4. 

)4()1()2()( 23 −+−= xxxaxf .  Substituting (0,-4) and solving for a,  

3 21
( ) ( 2) ( 1) ( 4)

8
f x x x x= − − + −  

 

4.  The minimum occurs at approximately the point (0, -6.5), and the maximum occurs at 

approximately the point (3.5, 7). 
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Section 3.3 Exercises 

 
Find the C and t intercepts of each function. 

1. ( ) ( )( )2 4 1 ( 6)C t t t t= − + −   2. ( ) ( )( )3 2 3 ( 5)C t t t t= + − +   

3. ( ) ( )
2

4 2 ( 1)C t t t t= − +    4. ( ) ( )( )
2

2 3 1C t t t t= − +  

5. ( ) 4 3 22 8 6C t t t t= − +    6. ( ) 4 3 24 12 40C t t t t= + −  

 

Use your calculator or other graphing technology to solve graphically for the zeros of the 

function. 

7. ( ) 3 27 4 30f x x x x= − + +    8. ( ) 3 26 28g x x x x= − + +   

 

Find the long run behavior of each function as t →  and t →−  

9. ( ) ( ) ( )
3 3

3 5 3 ( 2)h t t t t= − − −   10. ( ) ( ) ( )
2 3

2 3 1 ( 2)k t t t t= − + +  

11. ( ) ( )( )
2

2 1 3p t t t t= − − −    12. ( ) ( )( )
3

4 2 1q t t t t= − − +  

 

Sketch a graph of each equation. 

13. ( ) ( )
2

3 ( 2)f x x x= + −    14. ( ) ( )( )
2

4 1g x x x= + −  

15. ( ) ( ) ( )
3 2

1 3h x x x= − +    16. ( ) ( ) ( )
3 2

3 2k x x x= − −  

17. ( ) ( )2 1 ( 3)m x x x x= − − +    18. ( ) ( )3 2 ( 4)n x x x x= − + −    

 

Solve each inequality. 

19. ( )( )
2

3 2 0x x− −    20. ( )( )
2

5 1 0x x− +   

21. ( )( )( )1 2 3 0x x x− + −     22. ( )( )( )4 3 6 0x x x− + +     

 

Find the domain of each function. 

23. ( ) 242 19 2f x x x= − + −    24. ( ) 228 17 3g x x x= − −  

25. ( ) 24 5h x x x= − +    26. ( ) 22 7 3k x x x= + +  

27. ( ) ( )( )
2

3 2n x x x= − +    28. ( ) ( )
2

1 ( 3)m x x x= − +  

29. ( ) 2

1

2 8
p t

t t
=

+ −
    30. ( ) 2

4

4 5
q t

x x
=

− −
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Write an equation for a polynomial the given features. 

31. Degree 3.  Zeros at x = -2, x = 1, and x = 3.  Vertical intercept at (0, -4) 

32. Degree 3.  Zeros at x = -5, x = -2, and x = 1.  Vertical intercept at (0, 6) 

33. Degree 5.  Roots of multiplicity 2 at x = 3 and x = 1, and a root of multiplicity 1 at     

x = -3.  Vertical intercept at (0, 9) 

34. Degree 4.  Root of multiplicity 2 at x = 4, and a roots of multiplicity 1 at x = 1 and     

x = -2.  Vertical intercept at (0, -3) 

35. Degree 5.  Double zero at x = 1, and triple zero at x = 3.  Passes through the point    

(2, 15) 

36. Degree 5.  Single zero at x = -2 and x = 3, and triple zero at x = 1.  Passes through the 

point (2, 4) 

 

Write a formula for each polynomial function graphed. 

37.  38.  39.  

 

40.  41.  42.   

 

43.  44.  
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Write a formula for each polynomial function graphed. 

 

45.   46.  

 

47.   48.  

 

49.   50.  

 

51. A rectangle is inscribed with its base on the x axis and its upper corners on the 

parabola 25y x= − .  What are the dimensions of such a rectangle that has the greatest 

possible area? 

 

52. A rectangle is inscribed with its base on the x axis and its upper corners on the curve 
416y x= − .  What are the dimensions of such a rectangle that has the greatest 

possible area?
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Section 3.4 Factor Theorem and Remainder Theorem 

 

In the last section, we limited ourselves to finding the intercepts, or zeros, of polynomials 

that factored simply, or we turned to technology.  In this section, we will look at 

algebraic techniques for finding the zeros of polynomials like 3 2( ) 4 6h t t t t= + + − . 

 

Long Division 

 

In the last section we saw that we could write a polynomial as a product of factors, each 

corresponding to a horizontal intercept.  If we knew that x = 2 was an intercept of the 

polynomial , we might guess that the polynomial could be factored as 
3 24 5 14 ( 2)(something)x x x x+ − − = − .   To find that "something," we can use 

polynomial division. 

 

 

Example 1 

Divide 3 24 5 14x x x+ − −  by 2x −  

 

Start by writing the problem out in long division form 

3 22 4 5 14x x x x− + − −    

 

Now we divide the leading terms: 3 2x x x = .  It is best to align it above the same-

powered term in the dividend.  Now, multiply that 
2x  by 2x−  and write the result 

below the dividend. 

 
2

3 2

3 2

2 4 5 14

2

x

x x x x

x x

− + − −

−

  Now subtract that expression from the dividend. 

 

( )

2

3 2

3 2

2

2 4 5 14

2

6 5 14

x

x x x x

x x

x x

− + − −

− −

− −

   

 

Again, divide the leading term of the remainder by the leading term of the divisor.  
26 6x x x = .  We add this to the result, multiply 6x by 2x− , and subtract. 

 

1454 23 −−+ xxx
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( )

( )

2

3 2

3 2

2

2

6

2 4 5 14

2

6 5 14

6 12

7 14

x x

x x x x

x x

x x

x x

x

+

− + − −

− −

− −

− −

−

  Repeat the process one last time. 

 

( )

( )

( )

2

3 2

3 2

2

2

6 7

2 4 5 14

2

6 5 14

6 12

7 14

7 14

0

x x

x x x x

x x

x x

x x

x

x

+ +

− + − −

− −

− −

− −

−

− −

 

 

This tells us 3 24 5 14x x x+ − −  divided by 2x −  is 
2 6 7x x+ + , with a remainder of 

zero.  This also means that we can factor 
3 24 5 14x x x+ − −  as ( )( )22 6 7x x x− + + . 

 

 

This gives us a way to find the intercepts of this polynomial. 

 

 

Example 2 

Find the horizontal intercepts of  3 2( ) 4 5 14h x x x x= + − − . 

 

To find the horizontal intercepts, we need to solve h(x) = 0.  From the previous 

example, we know the function can be factored as ( )( )2( ) 2 6 7h x x x x= − + + .   

 

( )( )2( ) 2 6 7 0h x x x x= − + + =  when x = 2 or when 
2 6 7 0x x+ + = .  This doesn't factor 

nicely, but we could use the quadratic formula to find the remaining two zeros. 
26 6 4(1)(7)

3 2
2(1)

x
−  −

= = −  . 

 

The horizontal intercepts will be at (2,0) , ( )3 2,0− − , and ( )3 2,0− + . 
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Try it Now 

1. Divide 32 7 3x x− +  by 3x+  using long division. 

 

 

The Factor and Remainder Theorems 

 

When we divide a polynomial, p(x) by some divisor polynomial d(x), we will get a 

quotient polynomial q(x) and possibly a remainder r(x).  In other words,  

( ) ( ) ( ) ( )p x d x q x r x= + . 

 

Because of the division, the remainder will either be zero, or a polynomial of lower 

degree than d(x).  Because of this, if we divide a polynomial by a term of the form x c− , 

then the remainder will be zero or a constant.   

 

If ( ) ( ) ( )p x x c q x r= − + , then ( ) ( ) ( ) 0p c c c q c r r r= − + = + = , which establishes the 

Remainder Theorem. 

 

 

The Remainder Theorem 

If ( )p x  is a polynomial of degree 1 or greater and c is a real number, then when p(x) 

is divided by x c− , the remainder is ( )p c . 

 

 

If x c−  is a factor of the polynomial p, then ( ) ( ) ( )p x x c q x= −  for some polynomial q.  

Then ( ) ( ) ( ) 0p c c c q c= − = , showing c is a zero of the polynomial.  This shouldn't 

surprise us - we already knew that if the polynomial factors it reveals the roots. 

 

If ( ) 0p c = , then the remainder theorem tells us that if p is divided by x c− , then the 

remainder will be zero, which means x c−  is a factor of p.  

 

 

The Factor Theorem 

If ( )p x  is a nonzero polynomial, then the real number c is a zero of ( )p x  if and only 

if x c−  is a factor of ( )p x . 

 

 

Synthetic Division 

 

Since dividing by x c−  is a way to check if a number is a zero of the polynomial, it 

would be nice to have a faster way to divide by x c−  than having to use long division 

every time.  Happily, quicker ways have been discovered. 
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Let's look back at the long division we did in Example 1 and try to streamline it. First, 

let's change all the subtractions into additions by distributing through the negatives. 

 
2

3 2

3 2

2

2

6 7

2 4 5 14

2

6 5 14

6 12

7 14

7 14

0

x x

x x x x

x x

x x

x x

x

x

+ +

− + − −

− +

− −

− +

−

− +

 

Next, observe that the terms 
3x− , 

26x− , and 7x−  are the exact opposite of the terms 

above them.  The algorithm we use ensures this is always the case, so we can omit them 

without losing any information. Also note that the terms we ‘bring down’ (namely the 

−5x and −14) aren’t really necessary to recopy, so we omit them, too. 

 
2

3 2

2

2

6 7

2 4 5 14

2

6

12

7

14

0

x x

x x x x

x

x

x

x

+ +

− + − −  

 

Now, let’s move things up a bit and, for reasons which will become clear in a moment, 

copy the 
3x  into the last row. 

 
2

3 2

2

3 2

6 7

2 4 5 14

2 12 14

6 7 0

x x

x x x x

x x

x x x

+ +

− + − −  

 

Note that by arranging things in this manner, each term in the last row is obtained by 

adding the two terms above it. Notice also that the quotient polynomial can be obtained 

by dividing each of the first three terms in the last row by x and adding the results. If you 

take the time to work back through the original division problem, you will find that this is 

exactly the way we determined the quotient polynomial.  
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This means that we no longer need to write the quotient polynomial down, nor the x in 

the divisor, to determine our answer. 

 
3 2

2

3 2

2 4 5 14

2 12 14

6 7 0

x x x x

x x

x x x

− + − −  

 

We’ve streamlined things quite a bit so far, but we can still do more.  Let’s take a 

moment to remind ourselves where the 22x , 12x and 14 came from in the second row.  

Each of these terms was obtained by multiplying the terms in the quotient, 2x , 6x and 7, 

respectively, by the −2 in x − 2, then by −1 when we changed the subtraction to addition.  

Multiplying by −2 then by −1 is the same as multiplying by 2, so we replace the −2 in the 

divisor by 2.  Furthermore, the coefficients of the quotient polynomial match the 

coefficients of the first three terms in the last row, so we now take the plunge and write 

only the coefficients of the terms to get 

 

2 1 4 -5 -14 

  2 12 14 

 1 6 7 0 

 

We have constructed a synthetic division tableau for this polynomial division problem.  

Let’s re-work our division problem using this tableau to see how it greatly streamlines the 

division process.  To divide 
3 24 5 14x x x+ − −  by 2x− , we write 2 in the place of the 

divisor and the coefficients of 
3 24 5 14x x x+ − − in for the dividend.  Then "bring down" 

the first coefficient of the dividend. 

 

 
Next, take the 2 from the divisor and multiply by the 1 that was "brought down" to get 2.  

Write this underneath the 4, then add to get 6. 

 

 
 

Now take the 2 from the divisor times the 6 to get 12, and add it to the −5 to get 7. 

 

 
 

2 1 4 -5 -14 

     

     

 

2 1 4 -5 -14 

 ↓    

 1    

 

2 1 4 -5 -14 

 ↓ 2   

 1    

 

2 1 4 -5 -14 

 ↓ 2   

 1 6   

 

2 1 4 -5 -14 

 ↓ 2 12  

 1 6   

 

2 1 4 -5 -14 

 ↓ 2 12  

 1 6 7  
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Finally, take the 2 in the divisor times the 7 to get 14, and add it to the −14 to get 0. 

 

 
 

The first three numbers in the last row of our tableau are the coefficients of the quotient 

polynomial.  Remember, we started with a third degree polynomial and divided by a first 

degree polynomial, so the quotient is a second degree polynomial. Hence the quotient is 

762 ++ xx .  The number in the box is the remainder.  Synthetic division is our tool of 

choice for dividing polynomials by divisors of the form x − c.  It is important to note that 

it works only for these kinds of divisors.  Also take note that when a polynomial (of 

degree at least 1) is divided by x − c, the result will be a polynomial of exactly one less 

degree.  Finally, it is worth the time to trace each step in synthetic division back to its 

corresponding step in long division.   

 

 

Example 3 

Use synthetic division to divide 
3 25 2 1x x− +  by 3x− . 

 

When setting up the synthetic division tableau, we need to enter 0 for the coefficient of 

x in the dividend.  Doing so gives 

 

 
 

Since the dividend was a third degree polynomial, the quotient is a quadratic 

polynomial with coefficients 5, 13 and 39.  Our quotient is 2( ) 5 13 39q x x x= + +  and 

the remainder is r(x) = 118.  This means 
3 2 25 2 1 ( 3)(5 13 39) 118x x x x x− + = − + + + .   

 

It also means that 3x−  is not a factor of 
3 25 2 1x x− + . 

 

 

Example 4 

Divide 
3 8x +  by 2x+  

 

For this division, we rewrite 2x+  as ( )2x − −  and proceed as before. 

 

2 1 4 -5 -14 

 ↓ 2 12 14 

 1 6 7  

 

2 1 4 -5 -14 

 ↓ 2 12 14 

 1 6 7 0 

 

3 5 -2 0 1 

 ↓ 15 39 117 

 5 13 39 118 

 

-2 1 0 0 8 

 ↓ -2 4 -8 

 1 -2 4 0 
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The quotient is 2 2 4x x− +  and the remainder is zero.  Since the remainder is zero, 

2x+  is a factor of 
3 8x + . 

 

( )3 28 ( 2) 2 4x x x x+ = + − +  

 

 

Try it Now 

2. Divide 
4 24 8 5x x x− −  by 3x−  using synthetic division. 

 

 

Using this process allows us to find the real zeros of polynomials, presuming we can 

figure out at least one root.  We'll explore how to do that in the next section. 

 

 

Example 5 

The polynomial 4 3 2( ) 4 4 11 12 3p x x x x x= − − + −  has a horizontal intercept at 
1

2
x =  

with multiplicity 2.  Find the other intercepts of p(x). 

 

Since 
1

2
x =  is an intercept with multiplicity 2, then 

1

2
x −  is a factor twice.  Use 

synthetic division to divide by 
1

2
x −  twice. 

 

 

 
 

From the first division, we get ( )4 3 2 3 21
4 4 11 12 3 4 2 12 6

2
x x x x x x x x

 
− − + − = − − − − 

 
 

The second division tells us 

( )4 3 2 21 1
4 4 11 12 3 4 12

2 2
x x x x x x x

  
− − + − = − − −  

  
. 

 

To find the remaining intercepts, we set 
24 12 0x − =  and get 3x =  . 

 

Note this also means ( )( )4 3 2 1 1
4 4 11 12 3 4 3 3

2 2
x x x x x x x x

  
− − + − = − − − +  

  
. 

1/2 4 -4 -11 12 -3 

 ↓ 2 -1 -6 3 

 4 -2 -12 6 0 

 
1/2 4 -2 -12 6 

 ↓ 2 0 -6 

 4 0 -12 0 
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Important Topics of this Section 

Long division of polynomials 

Remainder Theorem 

Factor Theorem 

Synthetic division of polynomials 

 

 

Try it Now Answers 

1. 

( )

( )

( )

2

3 2

3 2

2

2

2 6 11

3 2 0 7 3

2 6

6 7 3

6 18

11 3

11 33

30

x x

x x x x

x x

x x

x x

x

x

− +

+ + − +

− +

− − +

− − −

+

− +

−             

The quotient is 
22 6 11x x− +  with remainder -30. 

 

2.  

 
 

4 24 8 5x x x− −  divided by 3x−  is 
3 24 12 28 79x x x+ + +  with remainder 237 

3 4 0 -8 -5 0 

 ↓ 12 36 84 237 

 4 12 28 79 237 
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Section 3.4 Exercises 

 

Use polynomial long division to perform the indicated division. 

 

1. ( )24 3 1 ( 3)x x x+ −  −    2. ( ) ( )3 22 1 1x x x x− +  + +  

3. ( ) ( )4 3 2 25 3 2 1 4x x x x− + −  +   4. ( ) ( )5 3 3 27 1x x x x x− + −  − +  

5. ( ) ( )39 5 2 3x x+  −     6. ( ) ( )2 24 23 1x x x− −  −  

 

Use synthetic division to perform the indicated division. 

 

7. ( ) ( )23 2 1 1x x x− +  −    8. ( ) ( )2 5 5x x−  −  

9. ( ) ( )23 4 2 1x x x− −  +    10. ( ) ( )24 5 3 3x x x− +  +  

11. ( ) ( )3 8 2x x+  +     12. ( ) ( )34 2 3 3x x x+ −  −  

13. ( )2 5
18 15 25

3
x x x

 
− −  − 

 
  14. ( )2 1

4 1
2

x x
 

−  − 
 

 

15. ( )3 2 1
2 2 1

2
x x x x

 
+ + +  + 

 
  16. ( )3 2

3 4
3

x x x
 

− +  − 
 

 

17. ( )3 1
2 3 1

2
x x x

 
− +  − 

 
   18. ( )4 3 2 3

4 12 13 12 9
2

x x x x x
 

− + − +  − 
 

 

19. ( ) ( )4 26 9 3x x x− +  −    20. ( ) ( )6 4 26 12 8 2x x x x− + −  +  

 

Below you are given a polynomial and one of its zeros. Use the techniques in this section 

to find the rest of the real zeros and factor the polynomial. 

21. 3 26 11 6, =1x x x c− + −    22. 3 224 192 512, = 8x x x c− + −  

23. 
3 2 2

3 4 2, =
3

x x x c+ − −    24. 
3 2 1

2 3 11 6, =
2

x x x c− − +  

25. 3 22 3 6, = 2x x x c+ − − −    26. 
3 2 1

2 10 5, =
2

x x x c− − +  

27. 
4 3 24 28 61 42 9x x x x− + − + , 

1
=

2
c  is a zero of multiplicity 2 

28. 
5 4 3 22 12 38 37 12x x x x x+ − − − − , = 1c −  is a zero of multiplicity 3 
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Section 3.5 Real Zeros of Polynomials 

 

In the last section, we saw how to determine if a real number 

was a zero of a polynomial.  In this section, we will learn how 

to find good candidates to test using synthetic division.  In the 

days before graphing technology was commonplace, 

mathematicians discovered a lot of clever tricks for determining 

the likely locations of zeros.  Technology has provided a much 

simpler approach to narrow down potential candidates, but it is 

not always sufficient by itself.  For example, the function 

shown to the right does not have any clear intercepts. 

 

There are two results that can help us identify where the zeros of a polynomial are.  The 

first gives us an interval on which all the real zeros of a polynomial can be found. 

 

 

Cauchy's Bound 

Given a polynomial 1

1 1 0( ) n n

n nf x a x a x a x a−

−= + + + + , let M be the largest of the 

coefficients in absolute value.  Then all the real zeros of f(x) lie in the interval 

1, 1
n n

M M

a a

 
− − + 
  

 

 

 

Example 1 

Let 4 3 2( ) 2 4 6 3f x x x x x= + − − − .  Determine an interval which contains all the real 

zeros of f. 

 

To find the M from Cauchy's Bound, we take the absolute value of the coefficients and 

pick the largest, in this case 6 6− = .  Divide this by the absolute value of the leading 

coefficient, 2, to get 3.  All the real zeros of f lie in the interval  

 
6 6

1, 1 3 1, 3 1 [ 4, 4]
2 2

 
− − + = − − + = − 
  

.  

 

 

Knowing this bound can be very helpful when using a graphing calculator, since we can 

use it to set the display bounds.  This helps avoid missing a zero because it is graphed 

outside of the viewing window. 
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Try it Now 

1. Determine an interval which contains all the real zeros of 3 2( ) 3 12 6 8f x x x x= − + −  

 

 

Now that we know where we can find the real zeros, we still need a list of possible real 

zeros.  The Rational Roots Theorem provides us a list of potential integer and rational 

zeros.   

 

 

Rational Roots Theorem 

Given a polynomial 1

1 1 0( ) n n

n nf x a x a x a x a−

−= + + + +  with integer coefficients, if r 

is a rational zero of f, then r is of the form 
p

r
q

=  , where p is a factor of the constant 

term 
0a , and q is a factor of the leading coefficient, na . 

 

 

This gives us a list of numbers to try in our synthetic division, which is a nicer place to 

start than simply guessing.  If none of the numbers in the list are zeros, then either the 

polynomial has no real zeros at all, or all the real zeros are irrational numbers. 

 

 

Example 2 

Let 4 3 2( ) 2 4 6 3f x x x x x= + − − − .  Use the Rational Roots Theorem to list all the 

possible rational zeros of f(x). 

 

To generate a complete list of rational zeros, we need to take each of the factors of the 

constant term, 0 3a = − , and divide them by each of the factors of the leading coefficient 

4 2a = .  The factors of −3 are ±1 and ±3. Since the Rational Roots Theorem tacks on a 

± anyway, for the moment, we consider only the positive factors 1 and 3. The factors of 

2 are 1 and 2, so the Rational Roots Theorem gives the list  

1 1 3 3
, , ,

1 2 1 2

 
    
 

, or 
1 3

1, , 3,
2 2

 
    
 

 

 

 

Now we can use synthetic division to test these possible zeros.  To narrow the list first, 

we could use graphing technology to help us identify some good possibilities. 
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Example 3 

Find the horizontal intercepts of 4 3 2( ) 2 4 6 3f x x x x x= + − − − . 

 

From Example 1, we know that the real zeros lie in the interval [-4, 4].  Using a 

graphing calculator, we could set the window accordingly and get the graph below. 

      

In Example 2, we learned that any rational zero must be on the list 
1 3

1, , 3,
2 2

 
    
 

. 

From the graph, it looks like −1 is a good possibility, so we try that using synthetic 

division. 

 

 
 

Success!  Remembering that f was a fourth degree polynomial, we know that our 

quotient is a third degree polynomial.  If we can do one more successful division, we 

will have knocked the quotient down to a quadratic, and, if all else fails, we can use the 

quadratic formula to find the last two zeros.  Since there seems to be no other rational 

zeros to try, we continue with −1.  Also, the shape of the crossing at x = −1 leads us to 

wonder if the zero x = −1 has multiplicity 3. 

 

 
 

Success again!  Our quotient polynomial is now 
22 3x − .  Setting this to zero gives 

22 3 0x − = , giving 
3 6

2 2
x =  =  .  Since a fourth degree polynomial can have at 

most four zeros, including multiplicities, then the intercept x = -1 must only have 

multiplicity 2, which we had found through division, and not 3 as we had guessed. 

 

 

 

 

 

-1 2 4 -1 -6 -3 

 ↓ -2 -2 3 3 

 2 2 -3 -3 0 

 

-1 2 2 -3 -3 

 ↓ -2 0 3 

 2 0 -3 0 
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It is interesting to note that we could greatly improve on the graph of ( )y f x= in the 

previous example given to us by the calculator.  For instance, from our determination of 

the zeros of f and their multiplicities, we know the graph crosses at 
6

2
x = − ≈ −1.22 

then turns back upwards to touch the x−axis at x = −1.  This tells us that, despite what the 

calculator showed us the first time, there is a relative maximum occurring at x = −1 and 

not a "flattened crossing" as we originally believed.   

 

After resizing the window, we see not only the relative maximum but also a relative 

minimum just to the left of x = −1.   

 

    
 
In this case, mathematics helped reveal something that was hidden in the initial graph. 

 

 

Example 4 

Find the real zeros of 3 2( ) 4 10 2 2f x x x x= − − + . 

 

Cauchy's Bound tells us that the real zeros lie in the 

interval 
10 10

1, 1 [ 3.5, 3.5]
4 4

 
− − + = − 
  

.   

 

Graphing on this interval reveals no clear integer 

zeros.  Turning to the rational roots theorem, we need 

to take each of the factors of the constant term, 0 2a =

, and divide them by each of the factors of the leading 

coefficient 3 4a = .  The factors of 2 are 1 and 2. The 

factors of 4 are 1, 2, and 4, so the Rational Roots 

Theorem gives the list  

1 1 1 2 2 2
, , , , ,

1 2 4 1 2 4

 
      
 

, or 
1 1

1, , , 2
2 4

 
    
 

 

 

The two most likely candidates are 
1

2
 .   
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Trying 
1

2
, 

 
 

The remainder is not zero, so this is not a zero.  Trying 
1

2
− , 

 

Success!  This tells us ( )3 2 21
4 10 2 2 4 12 4

2
x x x x x x

 
− − + = + − + 

 
, and that the graph 

has a horizontal intercept at 
1

2
x = − . 

 

To find the remaining two intercepts, we can use the quadratic equation, setting 
24 12 4 0x x− + = .  First, we might pull out the common factor, ( )24 3 1 0x x− + = . 

23 ( 3) 4(1)(1) 3 5
2.618, 0.382

2(1) 2
x

 − − 
= =   

 

 

Try it Now 

2. Find the real zeros of 3 2( ) 3 6 2f x x x x= − − +  

 

 

Important Topics of this Section 

Cauchy’s Bound for all real zeros of a polynomial 

Rational Roots Theorem 

Finding real zeros of a polynomial 

 

  

1/2 4 -10 -2 2 

 ↓ 2 -4 -3 

 4 -8 -6 -1 

 

-1/2 4 -10 -2 2 

 ↓ -2 6 -2 

 4 -12 4 0 
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Try it Now Answers 

1. The maximum coefficient in absolute value is 12.  Cauchy’s Bound for all real zeros is 

12 12
1, 1 [ 5,5]

3 3

 
− − + = − 
  

 

 

2. Cauchy’s Bound tells us the zeros lie in the interval 
6 6

1, 1 [ 3,3]
3 3

 
− − + = − 
  

.  

 

The rational roots theorem tells us the possible rational 

zeros of the polynomial are on the list 

1 1 2 2 1 2
, , , 1, , 2,

1 3 1 3 3 3

   
    =       
   

. 

 

Looking at a graph, the only likely candidate is 
1

3
 

 

Using synthetic division, 

 
 

( ) ( )3 2 2 21 1
3 6 2 3 6 3 2

3 3
x x x x x x x

   
− − + = − − = − −   

   
.   

 

Solving 
2 2 0x − =  gives zeros 2x =  . 

The real zeros of the polynomial are 
1

2, 2,
3

x = − . 

 

1/3 3 -1 -6 2 

 ↓ 1 0 -2 

 3 0 -6 0 
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Section 3.5 Exercises 

 

For each of the following polynomials, use Cauchy’s Bound to find an interval containing 

all the real zeros, then use Rational Roots Theorem to make a list of possible rational 

zeros. 

 

1. 3 2( ) = 2 5 6f x x x x− − +    2. 4 3 2( ) = 2 12 40 32f x x x x x+ − − −  

3. 4 2( ) = 9 4 12f x x x x− − +    4. 3 2( ) = 4 11 6f x x x x+ − +  

5. 3 2( ) = 7 7f x x x x− + −    6. 3 2( ) = 2 19 49 20f x x x x− + − +  

7. 3 2( ) = 17 5 34 10f x x x x− + + −   8. 4 3 2( ) = 36 12 11 2 1f x x x x x− − + +  

9. 3 2( ) = 3 3 11 10f x x x x+ − −    10. 4 3 2( ) = 2 7 3 3f x x x x x+ − − +  

 

Find the real zeros of each polynomial. 

11. 3 2( ) = 2 5 6f x x x x− − +    12. 4 3 2( ) = 2 12 40 32f x x x x x+ − − −  

13. 4 2( ) = 9 4 12f x x x x− − +    14. 3 2( ) = 4 11 6f x x x x+ − +  

15. 3 2( ) = 7 7f x x x x− + −    16. 3 2( ) = 2 19 49 20f x x x x− + − +  

17. 3 2( ) = 17 5 34 10f x x x x− + + −   18. 4 3 2( ) = 36 12 11 2 1f x x x x x− − + +  

19. 3 2( ) = 3 3 11 10f x x x x+ − −   20. 4 3 2( ) = 2 7 3 3f x x x x x+ − − +  

21. 3 2( ) = 9 5f x x x x− −    22. 4 3 2( ) = 6 5 9f x x x x− −  

23. 4 2( ) = 2 15f x x x+ −    24. 4 2( ) = 9 14f x x x− +  

25. 4 2( ) = 3 14 5f x x x− −    26. 4 2( ) = 2 7 6f x x x− +  

27. 6 3( ) = 3 10f x x x− −    28. 6 3( ) = 2 9 10f x x x− +  

29. 5 4( ) = 2 4 8f x x x x− − +    30. 5 4( ) = 2 3 18 27f x x x x+ − −  

31. 5 3 2( ) = 60 80 960 2304f x x x x x− − + +   

32. 5 4 3 2( ) = 25 105 174 142 57 9f x x x x x x− + − + −  
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Section 3.6 Complex Zeros 

 

When finding the zeros of polynomials, at some point you're faced with the problem 
2 1x = − .  While there are clearly no real numbers that are solutions to this equation, 

leaving things there has a certain feel of incompleteness.  To address that, we will need 

utilize the imaginary unit, i. 

 

 

Imaginary Number i 

The most basic complex number is i, defined to be 1i = − , commonly called an 

imaginary number.  Any real multiple of i is also an imaginary number. 

 

 

Example 1 

Simplify 9− . 

 

We can separate 9−  as 9 1− .  We can take the square root of 9, and write the 

square root of -1 as i.   

9− = 9 1 3i− =  

 

 

A complex number is the sum of a real number and an imaginary number. 

 

 

Complex Number 

A complex number is a number z a bi= + , where a and b are real numbers 

a  is the real part of the complex number 

b  is the imaginary part of the complex number 

1i = −  

 

 

Arithmetic on Complex Numbers 

 

Before we dive into the more complicated uses of complex numbers, let’s make sure we 

remember the basic arithmetic involved.  To add or subtract complex numbers, we simply 

add the like terms, combining the real parts and combining the imaginary parts. 
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Example 3 

Add 3 4i−  and 2 5i+ . 

 

Adding (3 4 ) (2 5 )i i− + + , we add the real parts and the imaginary parts 

3 2 4 5i i+ − +  

5 i+  

 

 

Try it Now 

1. Subtract 2 5i+  from 3 4i− . 

 

 

We can also multiply and divide complex numbers. 

 

 

Example 4 

Multiply:  4(2 5 )i+ . 

 

To multiply the complex number by a real number, we simply distribute as we would 

when multiplying polynomials. 

 
4(2 5 )i+  

= 4 2 4 5i +   

8 20i= +  

 

 

Example 5 

Divide 
(2 5 )

(4 )

i

i

+

−
. 

 

To divide two complex numbers, we have to devise a way to write this as a complex 

number with a real part and an imaginary part.   

 

We start this process by eliminating the complex number in the denominator.  To do 

this, we multiply the numerator and denominator by a special complex number so that 

the result in the denominator is a real number.  The number we need to multiply by is 

called the complex conjugate, in which the sign of the imaginary part is changed.   

 

Here, 4+i  is the complex conjugate of 4–i.  Of course, obeying our algebraic rules, we 

must multiply by 4+i  on both the top and bottom. 

(2 5 ) (4 )

(4 ) (4 )

i i

i i

+ +


− +
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To multiply two complex numbers, we expand the product as we would with 

polynomials (the process commonly called FOIL – “first outer inner last”).  In the 

numerator: 

(2 5 )(4 )i i+ +    Expand 

28 20 2 5i i i= + + +    Since 1i = − , 
2 1i = −  

8 20 2 5( 1)i i= + + + −    Simplify 

3 22i= +  

 

Following the same process to multiply the denominator  

(4 )(4 )i i− +     Expand 

2(16 4 4 )i i i= − + −    Since 1i = − , 
2 1i = −  

(16 ( 1))= − −   

=17 

 

Combining this we get 
3 22 3 22

17 17 17

i i+
= +   

 

 

Try it Now 

2.  Multiply 3 4i−  and 2 3i+ . 

 

 

In the last example, we used the conjugate of a complex number 

 

 

Complex Conjugate 

The conjugate of a complex number a bi+  is the number a bi− . 

 

The notation commonly used for conjugation is a bar:  a bi a bi+ = −  
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Complex Zeros of Polynomials 

 

Complex numbers allow us a way to write solutions to quadratic equations that do not 

have real solutions. 

 

 

Example 6 

Find the zeros of 2( ) 2 5f x x x= − + . 

 

Using the quadratic formula,  
22 ( 2) 4(1)(5) 2 16 2 4

1 2
2(1) 2 2

i
x i

 − −  − 
= = = =  . 

 

 

Try it Now 

3.  Find the zeros of 2( ) 2 3 4f x x x= + + . 

 

 

Two things are important to note.  First, the zeros 1 2i+  and 1 2i−  are complex 

conjugates.  This will always be the case when we find non-real zeros to a quadratic 

function with real coefficients.   

 

Second, we could write ( )( ) ( )( )2( ) 2 5 1 2 1 2f x x x x i x i= − + = − + − −  if we really wanted 

to, so the Factor and Remainder Theorems hold. 

 

How do we know if a general polynomial has any complex zeros?  We have seen 

examples of polynomials with no real zeros; can there be polynomials with no zeros at 

all?  The answer to that last question, which comes from the Fundamental Theorem of 

Algebra, is "No."  

 

 

Fundamental Theorem of Algebra 

A non-constant polynomial f with real or complex coefficients will have at least one 

real or complex zero. 

 

 

This theorem is an example of an "existence" theorem in mathematics.  It guarantees the 

existence of at least one zero, but provides no algorithm to use for finding it. 

 

Now suppose we have a polynomial f(x) of degree n.  The Fundamental Theorem of 

Algebra guarantees at least one zero 1z , then the Factor Theorem guarantees that f can be 

factored as ( )1 1( ) ( )f x x z q x= − , where the quotient 1( )q x  will be of degree n-1.   
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If this function is non-constant, than the Fundamental Theorem of Algebra applies to it, 

and we can find another zero.  This can be repeated n times. 

 

 

Complex Factorization Theorem 

If f is a polynomial f with real or complex coefficients with degree n ≥ 1, then f has 

exactly n real or complex zeros, counting multiplicities. 

 

If 
1 2, , , kz z z  are the distinct zero of f with multiplicities 

1 2, , , km m m  respectively, 

then ( ) ( ) ( )1 2

1 2( )
km m m

kf x a x z x z x z= − − −  

 

 

Example 7 

Find all the real and complex zeros of 5 4 3 2( ) 12 20 19 6 2 1f x x x x x x= − + − − + . 

 

Using the Rational Roots Theorem, the possible real rational 

roots are  

1 1 1 1 1 1
, , , , ,

1 2 3 4 6 12

 
      
 

 

 

Testing 
1

2
, 

 
 

Success!  Because the graph bounces at this intercept, it is likely that this zero has 

multiplicity 2.  We can try synthetic division again to test that. 

 

 
 

The other real root appears to be 
1

3
−  or 

1

4
− .  Testing 

1

3
− , 

 
 

1/2 12 -20 19 -6 -2 1 

 ↓ 6 -7 6 0 -1 

 12 -14 12 0 -2 0 

 

1/2 12 -14 12 0 -2 

 ↓ 6 -4 4 2 

 12 -8 8 -4 0 

 

-1/3 12 -8 8 -4 

 ↓ -4 4 -4 

 12 -12 12 0 
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Excellent!  So far, we have factored the polynomial to 

( ) ( )
2 2

2 21 1 1 1
( ) 12 12 12 12 1

2 3 2 3
f x x x x x x x x x

       
= − + − + = − + − +       
       

 

 

We can use the quadratic formula to find the two remaining zeros by setting 
2 1 0x x− + = , which are likely complex zeros. 

21 ( 1) 4(1)(1) 1 3 1 3

2(1) 2 2

i
x

 − −  − 
= = = .   

 

The zeros of the function are 
1 1 1 3 1 3

, , ,
2 3 2 2

i i
x

+ −
= − .  We could write the function 

fully factored as 

2
1 1 1 3 1 3

( ) 12
2 3 2 2

i i
f x x x x x

  + −   
= − + − −            

. 

 

 

When factoring a polynomial like we did at the end of the last example, we say that it is 

factored completely over the complex numbers, meaning it is impossible to factor the 

polynomial any further using complex numbers.  If we wanted to factor the function over 

the real numbers, we would have stopped at ( )
2

21 1
( ) 12 1

2 3
f x x x x x

   
= − + − +   

   
.  

Since the zeros of 
2 1x x− +  are nonreal, we call 

2 1x x− +  an irreducible quadratic 

meaning it is impossible to break it down any further using real numbers. 

 

It turns out that a polynomial with real number coefficients can be factored into a product 

of linear factors corresponding to the real zeros of the function and irreducible quadratic 

factors which give the nonreal zeros of the function.  Consequently, any nonreal zeros 

will come in conjugate pairs, so if z is a zero of the polynomial, so is z . 

 

 

Try it Now 

4.  Find the real and complex zeros of 3 2( ) 4 9 10f x x x x= − + − . 

 

 

Important Topics of This Section 

Complex and Imaginary numbers 

Finding Complex zeros of polynomials 
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Try it Now Answers 

1. (3 4 ) (2 5 ) 1 9i i i− − + = −   

 

2. (3 4 )(2 3 ) 18i i i− + = +   

 

3. 
23 (3) 4(2)(4) 3 23 3 23 3 23

2(2) 4 4 4 4

i
x i

−  − −  − −  −
= = = =   

4. Cauchy’s Bound limits us to the interval [-11, 11].  The rational roots theorem gives a 

list of potential zeros:   1, 2, 5, 10    .  A quick graph shows that the likely rational 

root is x = 2. 

 
 

   Verifying this, 

 
 

So 2( ) ( 2)( 2 5)f x x x x= − − +  

 

Using quadratic formula, we can find the complex roots from the irreducible quadratic. 
2( 2) ( 2) 4(1)(5) 2 16 2 4

1 2
2(1) 2 2

i
x i

− −  − −  − − 
= = = = −  . 

 

The zeros of this polynomial are 2, 1 2 , 1 2x i i= − + − −  

2 1 -4 9 -10 

 ↓ 2 -4 10 

 1 -2 5 0 
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Section 3.6 Exercises 

 

Simplify each expression to a single complex number. 

1. 9−    2. 16−    3. 6 24− −    

4. 3 75− −    5. 
2 12

2

+ −
   6. 

4 20

2

+ −
 

 

Simplify each expression to a single complex number. 

7. ( )3 2 (5 3 )i i+ + −     8. ( ) ( )2 4 1 6i i− − + +  

9. ( )5 3 (6 )i i− + − −     10. ( )2 3 (3 2 )i i− − +  

11. ( )2 3 (4 )i i+     12. ( )5 2 (3 )i i−  

13. ( )6 2 (5)i−     14. ( )( )2 4 8i− +  

15. ( )2 3 (4 )i i+ −     16. ( )1 2 ( 2 3 )i i− + − +  

17. ( )4 2 (4 2 )i i− +     18. ( )( )3 4 3 4i i+ −  

19. 
3 4

2

i+
     20. 

6 2

3

i−
 

21. 
5 3

2

i

i

− +
     22. 

6 4i

i

+
 

23. 
2 3

4 3

i

i

−

+
     24. 

3 4

2

i

i

+

−
 

 

Find all of the zeros of the polynomial then completely factor it over the real numbers 

and completely factor it over the complex numbers. 

 

25. 2( ) = 4 13f x x x− +    26. 2( ) = 2 5f x x x− +  

27. 2( ) = 3 2 10f x x x+ +    28. 3 2( ) = 2 9 18f x x x x− + −  

29. 3 2( ) = 6 6 5f x x x x+ + +    30. 3 2( ) = 3 13 43 13f x x x x− + −  

31. 3 2( ) = 3 4 12f x x x x+ + +    32. 3 2( ) = 4 6 8 15f x x x x− − +  

33. 3 2( ) = 7 9 2f x x x x+ + −    34. 3( ) = 9 2 1f x x x+ +  

35. 4 3 2( ) = 4 4 13 12 3f x x x x x− + − +   36. 4 3 2( ) = 2 7 14 15 6f x x x x x− + − +  

37. 4 3 2( ) = 7 9 18f x x x x x+ + + −   38. 4 3 2( ) = 6 17 55 16 12f x x x x x+ − + +  

39. 4 3 2( ) = 3 8 12 12 5f x x x x x− − − − −  40. 4 3 2( ) = 8 50 43 2 4f x x x x x+ + + −  

41. 4 2( ) = 9 20f x x x+ +    42. 4 2( ) = 5 24f x x x+ −  
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Section 3.7 Rational Functions 

 

In the previous sections, we have built polynomials based on the positive whole number 

power functions.  In this section, we explore functions based on power functions with 

negative integer powers, called rational functions. 

 

 

Example 1 

You plan to drive 100 miles.  Find a formula for the time the trip will take as a function 

of the speed you drive. 

 

You may recall that multiplying speed by time will give you distance.  If we let t 

represent the drive time in hours, and v represent the velocity (speed or rate) at which 

we drive, then distance=vt .  Since our distance is fixed at 100 miles, 100=vt .  

Solving this relationship for the time gives us the function we desired: 

1100
( ) 100t v v

v

−= =  

 

 

While this type of relationship can be written using the negative exponent, it is more 

common to see it written as a fraction.   

 

This particular example is one of an inversely proportional relationship – where one 

quantity is a constant divided by the other quantity, like 
5

y
x

= .  

Notice that this is a transformation of the reciprocal toolkit function, 
1

( )f x
x

=  

 

Several natural phenomena, such as gravitational force and volume of sound, behave in a 

manner inversely proportional to the square of another quantity.  For example, the 

volume, V, of a sound heard at a distance d from the source would be related by 
2d

k
V =  

for some constant value k. 

 

These functions are transformations of the reciprocal squared toolkit function 
2

1
( )f x

x
= . 

 

We have seen the graphs of the basic reciprocal function and the squared reciprocal 

function from our study of toolkit functions.  These graphs have several important 

features. 
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1
( )f x

x
=  

 

2

1
( )f x

x
=  

Let’s begin by looking at the reciprocal function, 
1

( )f x
x

= .  As you well know, dividing 

by zero is not allowed and therefore zero is not in the domain, and so the function is 

undefined at an input of zero. 

 

Short run behavior:  

As the input values approach zero from the left side (taking on very small, negative 

values), the function values become very large in the negative direction (in other words, 

they approach negative infinity). 

We write: as
−→ 0x , −→)(xf . 

 

As we approach zero from the right side (small, positive input values), the function 

values become very large in the positive direction (approaching infinity). 

We write: as
+→ 0x , →)(xf . 

 

This behavior creates a vertical asymptote.  An asymptote is a line that the graph 

approaches. In this case the graph is approaching the vertical line x = 0 as the input 

becomes close to zero.   

 

Long run behavior:  

As the values of x approach infinity, the function values approach 0. 

As the values of x approach negative infinity, the function values approach 0. 

Symbolically: as →x , 0)( →xf  

 

Based on this long run behavior and the graph we can see that the function approaches 0 

but never actually reaches 0, it just “levels off” as the inputs become large.  This behavior 

creates a horizontal asymptote.  In this case the graph is approaching the horizontal line 

( ) 0f x = as the input becomes very large in the negative and positive directions. 

 

 

Vertical and Horizontal Asymptotes 

A vertical asymptote of a graph is a vertical line x = a where the graph tends towards 

positive or negative infinity as the inputs approach a.  As ax → , →)(xf . 

 

A horizontal asymptote of a graph is a horizontal line y b=  where the graph 

approaches the line as the inputs get large. As →x , bxf →)( . 
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Try it Now: 

1. Use symbolic notation to describe the long run behavior and 

short run behavior for the reciprocal squared function. 

 

 

 

 

Example 2 

Sketch a graph of the reciprocal function shifted two units to the left and up three units.  

Identify the horizontal and vertical asymptotes of the graph, if any. 

 

Transforming the graph left 2 and up 3 would result in the function 

3
2

1
)( +

+
=

x
xf , or equivalently, by giving the terms a common denominator, 

2

73
)(

+

+
=

x

x
xf . 

 

Shifting the toolkit function would give us 

this graph.  Notice that this equation is 

undefined at x = -2, and the graph also is 

showing a vertical asymptote at x = -2. 

As 2x −→− , ( )f x →− , and  

as 2x +→− , ( )f x →  

 

As the inputs grow large, the graph appears 

to be leveling off at output values of 3, 

indicating a horizontal asymptote at 3y = .  

As →x , 3)( →xf . 

  

Notice that horizontal and vertical asymptotes get shifted left 2 and up 3 along with the 

function. 

 

 

Try it Now 

2. Sketch the graph and find the horizontal and vertical asymptotes of the reciprocal 

squared function that has been shifted right 3 units and down 4 units.  

 

 

In the previous example, we shifted a toolkit function in a way that resulted in a function 

of the form 
2

73
)(

+

+
=

x

x
xf .  This is an example of a more general rational function. 
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Rational Function 

A rational function is a function that can be written as the ratio of two polynomials, 

P(x) and Q(x). 
2

0 1 2

2

0 1 2

( )
( )

( )

p

p

q

q

a a x a x a xP x
f x

Q x b b x b x b x

+ + + +
= =

+ + + +
   

 

 

Example 3 

A large mixing tank currently contains 100 gallons of water, into which 5 pounds of 

sugar have been mixed.  A tap will open pouring 10 gallons per minute of water into the 

tank at the same time sugar is poured into the tank at a rate of 1 pound per minute.  Find 

the concentration (pounds per gallon) of sugar in the tank after t minutes.   

 

Notice that the amount of water in the tank is changing linearly, as is the amount of 

sugar in the tank.  We can write an equation independently for each: 
twater 10100 +=  

tsugar 15 +=  

 

The concentration, C, will be the ratio of pounds of sugar to gallons of water 

t

t
tC

10100

5
)(

+

+
=  

 

 

Finding Asymptotes and Intercepts 

 

Given a rational function, as part of investigating the short run behavior we are interested 

in finding any vertical and horizontal asymptotes, as well as finding any vertical or 

horizontal intercepts, as we have done in the past. 

 

To find vertical asymptotes, we notice that the vertical asymptotes in our examples occur 

when the denominator is zero, so the function is undefined.  With one exception, a 

vertical asymptote will occur whenever the denominator is zero. 

 

 

Example 4 

Find the vertical asymptotes of the function 
2

2

2

25
)(

xx

x
xk

−−

+
=  

 

To find the vertical asymptotes, we determine where this function will be undefined by 

setting the denominator equal to zero: 

1,2

0)1)(2(

02 2

−=

=−+

=−−

x

xx

xx
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This indicates two vertical asymptotes, which a look 

at a graph confirms. 

 

 

 

 

 

 

 

The exception to this rule can occur when both the 

numerator and denominator of a rational function are zero at the same input. 

 

 

Example 5 

Find the vertical asymptotes of the function 
2

2
( )

4

x
k x

x

−
=

−
. 

 

To find the vertical asymptotes, we determine where this function will be undefined by 

finding where denominator will be zero.  We can do this by factoring: 

( ) 2

2 2

4 ( 2)( 2)

x x
k x

x x x

− −
= =

− − +
 , so the denominator is zero at 2, 2x = −  

 

However, the numerator of this function is also 

equal to zero when x = 2.  The function will still 

be undefined at 2, since 
0

0
 is undefined, but if 

2x   then 
2 1

( 2)( 2) 2

x

x x x

−
=

− + +
 which does 

not have a vertical asymptote at x = 2. 

 

The graph of k(x) will have a vertical asymptote 

at x = -2, but at x = 2 the graph will have a hole: 

a single point where the graph is not defined, 

indicated by an open circle. 

 

 

Vertical Asymptotes and Holes of Rational Functions 

At points where the denominator of a rational function equals zero and the numerator 

is not zero, the rational function has a vertical asymptote. 

 

At points where both the numerator and denominator of a rational function equal zero, 

factor the numerator and denominator and simplify: either the simplified function will 

have a vertical asymptote (and the original function will as well) or the graph of the 

original function will have a hole. 
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To find horizontal asymptotes, we are interested in the behavior of the function as the 

input grows large, so we consider long run behavior of the numerator and denominator 

separately.  Recall that a polynomial’s long run behavior will mirror that of the leading 

term.  Likewise, a rational function’s long run behavior will mirror that of the ratio of the 

leading terms of the numerator and denominator functions. 

 

There are three distinct outcomes when this analysis is done: 

 

 

Case 1:  The degree of the denominator > degree of the numerator 

Example: 
54

23
)(

2 −+

+
=

xx

x
xf  

In this case, the long run behavior is 
2

3 3
( )

x
f x

x x
 = .  This tells us that as the inputs grow 

large, this function will behave similarly to the function 
3

( )g x
x

= .  As the inputs grow 

large, the outputs will approach zero, resulting in a horizontal asymptote at 0y = . 

As →x , 0)( →xf  

 

 

Case 2:  The degree of the denominator < degree of the numerator 

Example: 
5

23
)(

2

−

+
=

x

x
xf  

In this case, the long run behavior is
23

( ) 3
x

f x x
x

 = .  This tells us that as the inputs 

grow large, this function will behave similarly to the function ( ) 3g x x= .  As the inputs 

grow large, the outputs will grow and not level off, so this graph has no horizontal 

asymptote.  

As →x , →)(xf , respectively. 

 

 

Case 3:  The degree of the denominator = degree of the numerator 

Example: 
54

23
)(

2

2

−+

+
=

xx

x
xf  

In this case, the long run behavior is 
2

2

3
( ) 3

x
f x

x
 = .  This tells us that as the inputs grow 

large, this function will behave like the function ( ) 3g x = , which is a horizontal line. As 

→x , 3)( →xf , resulting in a horizontal asymptote at 3y = . 
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Horizontal Asymptote of Rational Functions 

The horizontal asymptote of a rational function can be determined by looking at the 

degrees of the numerator and denominator. 

Degree of denominator > degree of numerator: Horizontal asymptote at 0y =  

Degree of denominator < degree of numerator: No horizontal asymptote 

Degree of denominator = degree of numerator: Horizontal asymptote at ratio of 

leading coefficients. 

 

 

Example 6 

In the sugar concentration problem from earlier, we created the equation 

t

t
tC

10100

5
)(

+

+
= .   

Find the horizontal asymptote and interpret it in context of the scenario. 

 

Both the numerator and denominator are linear (degree 1), so since the degrees are 

equal, there will be a horizontal asymptote at the ratio of the leading coefficients.  In the 

numerator, the leading term is t, with coefficient 1.  In the denominator, the leading 

term is 10t, with coefficient 10.  The horizontal asymptote will be at the ratio of these 

values: As t → , 
1

( )
10

C t → .  This function will have a horizontal asymptote at 

1

10
y = . 

 

This tells us that as the input gets large, the output values will approach 1/10.  In 

context, this means that as more time goes by, the concentration of sugar in the tank will 

approach one tenth of a pound of sugar per gallon of water or 1/10 pounds per gallon. 

 

 

Example 7 

Find the horizontal and vertical asymptotes of the function 

)5)(2)(1(

)3)(2(
)(

−+−

+−
=

xxx

xx
xf  

 

First, note this function has no inputs that make both the numerator and denominator 

zero, so there are no potential holes.  The function will have vertical asymptotes when 

the denominator is zero, causing the function to be undefined.  The denominator will be 

zero at x = 1, -2, and 5, indicating vertical asymptotes at these values. 

 

The numerator has degree 2, while the denominator has degree 3.  Since the degree of 

the denominator is greater than that of the numerator, the denominator will grow faster 

than the numerator, causing the outputs to tend towards zero as the inputs get large, and 

so as →x , 0)( →xf .  This function will have a horizontal asymptote at 0y = . 
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Try it Now 

3. Find the vertical and horizontal asymptotes of the function 
)3)(2(

)12)(12(
)(

+−

+−
=

xx

xx
xf  

 

 

Intercepts 

 

As with all functions, a rational function will have a vertical intercept when the input is 

zero, if the function is defined at zero.  It is possible for a rational function to not have a 

vertical intercept if the function is undefined at zero. 

 

Likewise, a rational function will have horizontal intercepts at the inputs that cause the 

output to be zero (unless that input corresponds to a hole).  It is possible there are no 

horizontal intercepts.  Since a fraction is only equal to zero when the numerator is zero, 

horizontal intercepts will occur when the numerator of the rational function is equal to 

zero. 

 

 

Example 8 

Find the intercepts of 
)5)(2)(1(

)3)(2(
)(

−+−

+−
=

xxx

xx
xf  

 

We can find the vertical intercept by evaluating the function at zero 

5

3

10

6

)50)(20)(10(

)30)(20(
)0( −=

−
=

−+−

+−
=f  

 

 

The horizontal intercepts will occur when the function is equal to zero: 

)5)(2)(1(

)3)(2(
0

−+−

+−
=

xxx

xx
  This is zero when the numerator is zero 

3,2

)3)(2(0

−=

+−=

x

xx
 

 

 

Try it Now 

4. Given the reciprocal squared function that is shifted right 3 units and down 4 units, 

write this as a rational function and find the horizontal and vertical intercepts and the 

horizontal and vertical asymptotes. 
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Graphical Behavior at Intercepts and Vertical Asymptotes 

 

As with polynomials, factors of the numerator may have integer powers greater than one.  

Happily, the effect on the shape of the graph at those intercepts is the same as we saw 

with polynomials: if the factor giving the intercept is not squared, the graph passes 

through the axis; if the factor is squared, the graph will bounce off the axis at that 

intercept.  The behavior at vertical asymptotes also depends on the power on the factor. 

 

 

Graphical Behavior of Rational Functions at Vertical Asymptotes 

If a rational function contains a factor of the form phx )( −  in the denominator, the 

behavior near the asymptote h is determined by the power on the factor. 

  p = 1             p = 1    p = 2            p = 2 

            

When the factor is not squared, on one side of the asymptote the graph heads towards 

positive infinity and on the other side the graph heads towards negative infinity. 

 

When the factor is squared, the graph either heads toward positive infinity on both 

sides of the vertical asymptote, or heads toward negative infinity on both sides. 

 

 

For example, the graph of  

)2()3(

)3()1(
)(

2

2

−+

−+
=

xx

xx
xf  is shown here. 

 

At the horizontal intercept x = -1 

corresponding to the 2)1( +x factor of the 

numerator, the graph bounces at the 

intercept, consistent with the quadratic 

nature of the factor.   

 

At the horizontal intercept x = 3 corresponding to the )3( −x factor of the numerator, the 

graph passes through the axis as we’d expect from a linear factor.   

 

At the vertical asymptote x = -3 corresponding to the 2)3( +x  factor of the denominator, 

the graph heads towards positive infinity on both sides of the asymptote, consistent with 

the behavior of the  
2

1

x
 toolkit. 
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At the vertical asymptote x = 2 corresponding to the )2( −x  factor of the denominator, 

the graph heads towards positive infinity on the left side of the asymptote and towards 

negative infinity on the right side, consistent with the behavior of the  
x

1
 toolkit. 

 

 

Example 9 

Sketch a graph of 
2

( 2)( 3)
( )

( 1) ( 2)

x x
f x

x x

+ −
=

+ −
. 

 

We can start our sketch by finding intercepts and asymptotes.  Evaluating the function 

at zero gives the vertical intercept: 

2

(0 2)(0 3)
(0) 3

(0 1) (0 2)
f

+ −
= =

+ −
 

 

Looking at when the numerator of the function is zero, we can determine the graph will 

have horizontal intercepts at x = -2 and x = 3.  At each, the behavior will be linear, with 

the graph passing through the intercept. 

 

Looking at when the denominator of the function is zero, we can determine the graph 

will have vertical asymptotes at x = -1 and x = 2.   

 

Finally, the degree of denominator is larger than the 

degree of the numerator, telling us this graph has a 

horizontal asymptote at y = 0. 

To sketch the graph, we might start by plotting the three 

intercepts.  Since the graph has no horizontal intercepts 

between the vertical asymptotes, and the vertical 

intercept is positive, we know the function must remain 

positive between the asymptotes, letting us fill in the 

middle portion of the graph. 

 

Since the factor associated with the vertical asymptote at x = -1 was squared, we know 

the graph will have the same behavior on both sides of the asymptote.  Since the graph 

heads towards positive infinity as the inputs approach the asymptote on the right, the 

graph will head towards positive infinity on the left as 

well.  For the vertical asymptote at x = 2, the factor was 

not squared, so the graph will have opposite behavior on 

either side of the asymptote. 

 

After passing through the horizontal intercepts, the graph 

will then level off towards an output of zero, as indicated 

by the horizontal asymptote. 
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Try it Now 

5. Given the function 
)3()1(2

)2()2(
)(

2

2

−−

−+
=

xx

xx
xf , use the characteristics of polynomials and 

rational functions to describe its behavior and sketch the function. 

 

 

Since a rational function written in factored form will have a horizontal intercept where 

each factor of the numerator is equal to zero, we can form a numerator that will pass 

through a set of horizontal intercepts by introducing a corresponding set of factors.  

Likewise, since the function will have a vertical asymptote where each factor of the 

denominator is equal to zero, we can form a denominator that will produce the vertical 

asymptotes by introducing a corresponding set of factors. 

 

 

Writing Rational Functions from Intercepts and Asymptotes 

If a rational function has horizontal intercepts at 
nxxxx ,,, 21 = , and vertical 

asymptotes at 
mvvvx ,,, 21 =  then the function can be written in the form 

n

n

q

m

qq

p

n

pp

vxvxvx

xxxxxx
axf

)()()(

)()()(
)(

21

21

21

21

−−−

−−−
=




 

where the powers pi or qi on each factor can be determined by the behavior of the 

graph at the corresponding intercept or asymptote, and the stretch factor a can be 

determined given a value of the function other than the horizontal intercept, or by the 

horizontal asymptote if it is nonzero. 

 

 

Example 10 

Write an equation for the rational function 

graphed here. 

 

The graph appears to have horizontal 

intercepts at x = -2 and x = 3.  At both, the 

graph passes through the intercept, 

suggesting linear factors. 

 

The graph has two vertical asymptotes.  

The one at x = -1 seems to exhibit the basic 

behavior similar to 
x

1
, with the graph 

heading toward positive infinity on one 

side and heading toward negative infinity on the other.   
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The asymptote at x = 2 is exhibiting a behavior similar to 
2

1

x
, with the graph heading 

toward negative infinity on both sides of the asymptote.   

 

Utilizing this information indicates an function of the form 

2)2)(1(

)3)(2(
)(

−+

−+
=

xx

xx
axf  

 

To find the stretch factor, we can use another clear point on the graph, such as the 

vertical intercept (0,-2): 

3

4

6

8

4

6
2

)20)(10(

)30)(20(
2

2

=
−

−
=

−
=−

−+

−+
=−

a

a

a

 

 

This gives us a final function of 
2)2)(1(3

)3)(2(4
)(

−+

−+
=

xx

xx
xf  

 

 

Oblique Asymptotes 

 

Earlier we saw graphs of rational functions that had no horizontal asymptote, which 

occurs when the degree of the numerator is larger than the degree of the denominator.  

We can, however, describe in more detail the long-run behavior of a rational function.   

 

 

Example 11 

Describe the long-run behavior of 
5

23
)(

2

−

+
=

x

x
xf  

 

Earlier we explored this function when discussing horizontal asymptotes.  We found the 

long-run behavior is
23

( ) 3
x

f x x
x

 = , meaning that →x , →)(xf , 

respectively, and there is no horizontal asymptote. 

 

If we were to do polynomial long division, we could get a better understanding of the 

behavior as →x . 
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( )

( )

2

2

3 15

5 3 0 2

3 15

15 2

15 75

77

x

x x x

x x

x

x

+

− + +

− −

+

− −

 

This means 
5

23
)(

2

−

+
=

x

x
xf  can be rewritten as 

77
( ) 3 15

5
f x x

x
= + +

−
. 

As →x , the term 
77

5x −
 will become very 

small and approach zero, becoming insignificant.  

The remaining 3 15x+ then describes the long-run 

behavior of the function:  as →x , 

( ) 3 15f x x→ + .   

 

We call this equation 3 15y x= +  the oblique 

asymptote of the function.   

 

In the graph, you can see how the function is 

approaching the line on the far left and far right.  

 

 

Oblique Asymptotes 

To explore the long-run behavior of a rational function, 

1) Perform polynomial long division (or synthetic division) 

2) The quotient will describe the asymptotic behavior of the function 

 

When this result is a line, we call it an oblique asymptote, or slant asymptote.  

 

 

Example 12 

Find the oblique asymptote of 
2 2 1

( )
1

x x
f x

x

− + +
=

+
 

 

Performing polynomial long division: 
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( )

( )

2

2

3

1 2 1

3 1

3 3

2

x

x x x

x x

x

x

− +

+ − + +

− − −

+

− +

−

 

This allows us to rewrite the function as 

2
( ) 3

1
f x x

x
= − + −

+
. 

 

The quotient, 3y x= − + , is the oblique asymptote 

of f(x).  Just like functions we saw earlier 

approached their horizontal asymptote in the long 

run, this function will approach this oblique 

asymptote in the long run. 

 

 

Try it Now 

6. Find the oblique asymptote of 

21 7 2
( )

2

x x
f x

x

+ −
=

−
 

 

 

While we primarily concern ourselves with oblique asymptotes, this same approach can 

describe other asymptotic behavior. 

 

 

Example 13 

Describe the long-run shape of 
3 2 4 2

( )
1

x x x
f x

x

− − + +
=

+
 

 

We could rewrite this using long division as 

2 2
( ) 4

1
f x x

x
= − + +

+
. 

 

Just looking at the quotient gives us the 

asymptote, 2 4y x= − + .   

 

This suggests that in the long run, the function 

will behave like a downwards opening parabola.  

The function will also have a vertical asymptote 

at 1x = − .   
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Important Topics of this Section 

Inversely proportional; Reciprocal toolkit function 

Inversely proportional to the square; Reciprocal squared toolkit function 

Horizontal Asymptotes 

Vertical Asymptotes 

Rational Functions 

 Finding intercepts, asymptotes, and holes. 

 Given equation sketch the graph  

 Identifying a function from its graph 

Oblique Asymptotes 

 

 

Try it Now Answers 

1. Long run behavior, as →x , 0)( →xf   

    Short run behavior, as 0→x , →)(xf  (there are no horizontal or vertical 

intercepts) 

 

2. The function and the asymptotes are shifted 3 units 

right and 4 units down.   

As 3→x , →)(xf  and as →x , 4)( −→xf  

 

 

3. Vertical asymptotes at x = 2 and x = -3; horizontal 

asymptote at y = 4 

 

4. For the transformed reciprocal squared function, we 

find the rational form. 

96

35244

)3)(3(

)96(41

)3(

)3(41
4

)3(

1
)(

2

22

2

2

2 +−

−+−
=

−−

+−−
=

−

−−
=−

−
=

xx

xx

xx

xx

x

x

x
xf  

 

Since the numerator is the same degree as the denominator we know that as →x ,

4)( −→xf .  4y = −  is the horizontal asymptote.  Next, we set the denominator equal 

to zero to find the vertical asymptote at x = 3, because as 3→x , →)(xf .  We set 

the numerator equal to 0 and find the horizontal intercepts are at (2.5,0) and (3.5,0), 

then we evaluate at 0 and the vertical intercept is at 






 −

9

35
,0   
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Try it Now Answers, Continued 

5.  Horizontal asymptote at y = 1/2.   

Vertical asymptotes are at x = 1, and x = 3. 

Vertical intercept at (0, 4/3),  

Horizontal intercepts (2, 0) and (-2, 0)  

(-2, 0) is a double zero and the graph bounces off the 

axis at this point.   

(2, 0) is a single zero and crosses the axis at this point.  

 

6. Using long division:  

( )

( )

2

2

2 3

2 2 7 1

2 4

3 1

3 6

7

x

x x x

x x

x

x

− +

− − + +

− − +

+

− −

 

21 7 2 7
( ) 2 3

2 2

x x
f x x

x x

+ −
= = − + +

− −
 

 

The oblique asymptote is 2 3y x= − +  
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Section 3.7 Exercises 

 

Match each equation form with one of the graphs. 

1. ( )
x A

f x
x B

−
=

−
 2. ( )

( )
2

x A
g x

x B

−
=

−
 3. ( )

( )
2

x A
h x

x B

−
=

−
 4. ( )

( )

( )

2

2

x A
k x

x B

−
=

−
 

 

A  B   C   D  

 

For each function, find the horizontal intercepts, the vertical intercept, the vertical 

asymptotes, and the horizontal asymptote.  Use that information to sketch a graph. 

 

5. ( )
2 3

4

x
p x

x

−
=

+
    6. ( )

5

3 1

x
q x

x

−
=

−
 

 

7. ( )
( )

2

4

2
s x

x
=

−
    8. ( )

( )
2

5

1
r x

x
=

+
 

 

9. ( )
2

2

3 14 5

3 8 16

x x
f x

x x

− −
=

+ −
    10. ( )

2

2

2 7 15

3 14 15

x x
g x

x x

+ −
=

− +
 

 

 

11. ( )
2

2

2 3

1

x x
a x

x

+ −
=

−
    12. ( )

2

2

6

4

x x
b x

x

− −
=

−
 

 

13. ( )
22   1

4

x x
h x

x

+ −
=

−
    14. ( )

22 3 20

5

x x
k x

x

− −
=

−
 

 

15. ( )
2

3 2

3 4 4

4

x x
n x

x x

+ −
=

−
    16. ( ) 2

5

2 7 3

x
m x

x x

−
=

+ +
 

 

17. ( )
( )( )( )

( )
2

1 3 5

2 ( 4)

x x x
w x

x x

− + −
=

+ −
  18. ( )

( ) ( )

( )( )( )

2
2 5

3 1 4

x x
z x

x x x

+ −
=

− + +
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Write an equation for a rational function with the given characteristics. 

 

19. Vertical asymptotes at 5x =  and 5x = −  

x intercepts at (2, 0)  and ( 1, 0)−   y intercept at ( )0, 4  

 

20. Vertical asymptotes at 4x = −  and 1x = −  

x intercepts at ( )1, 0  and ( )5, 0   y intercept at (0, 7)  

 

21. Vertical asymptotes at 4x = −  and 5x = −  

x intercepts at ( )4, 0  and ( )6, 0−   Horizontal asymptote at 7y =  

 

22. Vertical asymptotes at 3x = −  and 6x =  

x intercepts at ( )2, 0−  and ( )1, 0   Horizontal asymptote at 2y = −  

 

23. Vertical asymptote at 1x = −   

Double zero at 2x =   y intercept at (0, 2)  

 

24. Vertical asymptote at 3x =   

Double zero at 1x =   y intercept at (0, 4)  

 

Write an equation for the function graphed. 

25.     26.  

 

27.    28.  
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Write an equation for the function graphed. 

 

29.    30.  

 

31.   32.  

 

33.  34.  

 

35.  36.  
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Write an equation for the function graphed. 

 

37.  38.  

 

Find the oblique asymptote of each function. 

 

39.  
23 4

( )
2

x x
f x

x

+
=

+
    40.  

22 3 8
( )

1

x x
g x

x

+ −
=

−
 

 

41.  
2 3

( )
2 6

x x
h x

x

− −
=

−
    42.  

25 2
( )

2 1

x x
k x

x

+ −
=

+
 

 

43.  
3 2

2

2 6 7
( )

3

x x x
m x

x

− + − +
=

+
  44.  

3 2

2

2
( )

1

x x x
n x

x x

+ +
=

+ +
 

 

45. A scientist has a beaker containing 20 mL of a solution containing 20% acid.  To 

dilute this, she adds pure water.   

a. Write an equation for the concentration in the beaker after adding n mL of 

water. 

b. Find the concentration if 10 mL of water has been added. 

c. How many mL of water must be added to obtain a 4% solution? 

d. What is the behavior as n → , and what is the physical significance of this? 

 

46. A scientist has a beaker containing 30 mL of a solution containing 3 grams of 

potassium hydroxide.  To this, she mixes a solution containing 8 milligrams per mL 

of potassium hydroxide.   

a. Write an equation for the concentration in the tank after adding n mL of the 

second solution. 

b. Find the concentration if 10 mL of the second solution has been added. 

c. How many mL of water must be added to obtain a 50 mg/mL solution? 

d. What is the behavior as n → , and what is the physical significance of this? 
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47. Oscar is hunting magnetic fields with his gauss meter, a device for measuring the 

strength and polarity of magnetic fields. The reading on the meter will increase as 

Oscar gets closer to a magnet. Oscar is in a long hallway at the end of which is a 

room containing an extremely strong magnet. When he is far down the hallway from 

the room, the meter reads a level of 0.2. He then walks down the hallway and enters 

the room. When he has gone 6 feet into the room, the meter reads 2.3. Eight feet into 

the room, the meter reads 4.4.  [UW] 

a. Give a rational model of form ( )
ax b

m x
cx d

+
=

+
 relating the meter reading ( )m x  

to how many feet x Oscar has gone into the room. 

b. How far must he go for the meter to reach 10? 100? 

c. Considering your function from part (a) and the results of part (b), how far 

into the room do you think the magnet is? 

 

48. The more you study for a certain exam, the better your performance on it. If you 

study for 10 hours, your score will be 65%. If you study for 20 hours, your score will 

be 95%. You can get as close as you want to a perfect score just by studying long 

enough. Assume your percentage score, ( )p n , is a function of the number of hours, n, 

that you study in the form ( )
an b

p n
cn d

+
=

+
. If you want a score of 80%, how long do 

you need to study? [UW] 

 

49. A street light is 10 feet north of a 

straight bike path that runs east-

west. Olav is bicycling down the 

path at a rate of 15 miles per 

hour. At noon, Olav is 33 feet 

west of the point on the bike path 

closest to the street light. (See the 

picture). The relationship between the intensity C of light (in candlepower) and the 

distance d (in feet) from the light source is given by 
2

k
C

d
= , where k is a constant 

depending on the light source.  [UW] 

a. From 20 feet away, the street light has an intensity of 1 candle. What is k? 

b. Find a function which gives the intensity of the light shining on Olav as a 

function of time, in seconds. 

c. When will the light on Olav have maximum intensity? 

d. When will the intensity of the light be 2 candles? 
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Section 3.8 Inverses and Radical Functions 

 

In this section, we will explore the inverses of polynomial and rational functions, and in 

particular the radical functions that arise in the process. 

 

 

Example 1 

A water runoff collector is built in the shape of a parabolic trough as shown below.  

Find the surface area of the water in the trough as a function of the depth of the water. 

 

 

 

 

 

 

 

 

Since it will be helpful to have an equation for the parabolic cross-sectional shape, we 

will impose a coordinate system at the cross section, with x measured horizontally and y 

measured vertically, with the origin at the vertex of the parabola.   

 

        
 

From this we find an equation for the parabolic shape.  Since we placed the origin at the 

vertex of the parabola, we know the equation will have form 2)( axxy = .  Our equation 

will need to pass through the point (6,18), from which we can solve for the stretch 

factor a: 

2

1

36

18

618 2

==

=

a

a

 

Our parabolic cross section has equation 
2

2

1
)( xxy =  

 

Since we are interested in the surface area of the water, we are interested in determining 

the width at the top of the water as a function of the water depth.  For any depth y the 

width will be given by 2x, so we need to solve the equation above for x.  However 

notice that the original function is not one-to-one, and indeed given any output there are 

two inputs that produce the same output, one positive and one negative. 

3ft 
12 in 

18 in 

x 
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To find an inverse, we can restrict our original function to a limited domain on which it 

is one-to-one.  In this case, it makes sense to restrict ourselves to positive x values.  On 

this domain, we can find an inverse by solving for the input variable: 

2

2

2

2

1

xy

xy

=

=
 

yx 2=   

 

This is not a function as written.  Since we are limiting ourselves to positive x values, 

we eliminate the negative solution, giving us the inverse function we’re looking for 

yyx 2)( =  

 

Since x measures from the center out, the entire width of the water at the top will be 2x.  

Since the trough is 3 feet (36 inches) long, the surface area will then be 36(2x), or in 

terms of y: 

yxArea 27272 ==  

 

 

The previous example illustrated two important things:  

1) When finding the inverse of a quadratic, we have to limit ourselves to a domain      

on which the function is one-to-one. 

2) The inverse of a quadratic function is a square root function.  Both are toolkit 

functions and different types of power functions.  

 

Functions involving roots are often called radical functions. 

 

 

Example  2 

Find the inverse of 143)2()( 22 +−=−−= xxxxf  

 

From the transformation form of the function, we can see this is a transformed quadratic 

with vertex at (2,-3) that opens upwards.   Since the graph will be decreasing on one 

side of the vertex, and increasing on the other side, we can restrict this function to a 

domain on which it will be one-to-one by limiting the domain to 2x . 

 

To find the inverse, we will use the vertex form of the quadratic.  We start by replacing 

the f(x) with a simple variable y, then solve for x. 

3)2( 2 −−= xy    Add 3 to both sides 
2)2(3 −=+ xy    Take the square root 

23 −=+ xy    Add 2 to both sides 

xy =+ 32  
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Of course, as written this is not a function.  Since we restricted our original function to a 

domain of 2x , the outputs of the inverse should be the same, telling us to utilize the 

positive case: 

32)(1 ++== − yyfx  

 

If the quadratic had not been given in vertex form, rewriting it into vertex form is 

probably the best approach.  Alternatively, we could have taken the standard equation 

and rewritten it equal to zero: 

yxx −+−= 140 2  

 

We would then be able to use the quadratic formula with 1a = , 4b = − , and (1 )c y= − , 

resulting in the same solutions we found above: 
2( 4) ( 4) 4(1)(1 ) 12 4

2 2 3
2 2

y y
x y

− −  − − − +
= =  =  +  

 

 

Try it Now 

1. Find the inverse of the function 2( ) 1f x x= + , on the domain 0x  . 

 

 

While it is not possible to find an inverse of most polynomial functions, some other basic 

polynomials are invertible. 

 

 

Example 3 

Find the inverse of the function 15)( 3 += xxf . 

 

This is a transformation of the basic cubic toolkit function, and based on our knowledge 

of that function, we know it is one-to-one.  Solving for the inverse by solving for x 

3
1

3

3

3

5

1
)(

5

1

51

15

−
==

=
−

=−

+=

− y
yfx

x
y

xy

xy

 

 

 

Notice that this inverse is also a transformation of a power function with a fractional 

power, x1/3. 
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Try it Now 

2.  Which toolkit functions have inverse functions without restricting their domain?  

 

 

Besides being important as an inverse function, radical functions are common in 

important physical models. 

 

 

Example 4 

The velocity, v in feet per second, of a car that slammed on its brakes can be determined 

based on the length of skid marks that the tires left on the ground.  This relationship is 

given by 

gfddv 2)( =  

In this formula, g represents acceleration due to gravity (32 ft/sec2), d is the length of 

the skid marks in feet, and f is a constant representing the friction of the surface.  A car 

lost control on wet asphalt, with a friction coefficient of 0.5, leaving 200 foot skid 

marks.  How fast was the car travelling when it lost control? 

 

Using the given values of f = 0.5 and d = 200, we can evaluate the given formula: 

(200) 2(32)(0.5)(200) 80 ft/secv = = , which is about 54.5 miles per hour. 

 

 

When radical functions are composed with other functions, determining domain can 

become more complicated. 

 

 

Example 5 

Find the domain of the function 
)1(

)3)(2(
)(

−

−+
=

x

xx
xf . 

 

Since a square root is only defined when the quantity under the radical is non-negative, 

we need to determine where 0
)1(

)3)(2(


−

−+

x

xx
.  A rational function can change signs 

(change from positive to negative or vice versa) at horizontal intercepts and at vertical 

asymptotes.  For this equation, the graph could change signs at x = -2, 1, and 3.   

 

To determine on which intervals the rational expression is positive, we could evaluate 

the expression at test values, or sketch a graph.  While both approaches work equally 

well, for this example we will use a graph. 

 

This function has two horizontal intercepts, both of which exhibit linear behavior, 

where the graph will pass through the intercept.  There is one vertical asymptote, 

corresponding to a linear factor, leading to a behavior similar to the basic reciprocal 

toolkit function.  There is a vertical intercept at (0, 6).   
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This graph does not have a horizontal asymptote, since the degree of the numerator is 

larger than the degree of the denominator.   

 

From the vertical intercept and horizontal intercept at x = -2, we can sketch the left side 

of the graph.  From the behavior at the asymptote, 

we can sketch the right side of the graph. 

 
 
 

From the graph, we can now tell on which 

intervals this expression will be non-negative, so 

the original function f(x) will be defined. 

f(x) has domain 312 − xorx , or in interval 

notation, ),3[)1,2[ − . 

 

 

Like with finding inverses of quadratic functions, it is sometimes desirable to find the 

inverse of a rational function, particularly of rational functions that are the ratio of linear 

functions, such as our concentration examples. 

 

 

Example 6 

The function 
n

n
nC

+

+
=

100

4.020
)(  was used in the previous section to represent the 

concentration of an acid solution after n mL of 40% solution has been added to 100 mL 

of a 20% solution.  We might want to be able to determine instead how much 40% 

solution has been added based on the current concentration of the mixture.  

 

To do this, we would want the inverse of this function: 

n

n
C

+

+
=

100

4.020
  multiply both sides by the denominator 

nnC 4.020)100( +=+  distribute 

nCnC 4.020100 +=+  group everything with n on one side 

CnnC −=− 4.020100  factor out n 

nCC )4.0(20100 −=−  divide to find the inverse 

C

C
Cn

−

−
=

4.0

20100
)(  

 

If, for example, we wanted to know how many mL of 40% solution need to be added to 

obtain a concentration of 35%, we can simply evaluate the inverse rather than solving 

an equation involving the original function: 

300
05.0

15

35.04.0

20)35.0(100
)35.0( ==

−

−
=n mL of 40% solution would need to be added. 
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Try it Now 

3. Find the inverse of the function 
3

( )
2

x
f x

x

+
=

−
. 

 

 

Important Topics of this Section 

Imposing a coordinate system 

Finding an inverse function 

 Restricting the domain 

Invertible toolkit functions 

Radical Functions  

Inverses of rational functions 

 

 

Try it Now Answers 

1. 12 += xy  
21 xy =−  

1)(1 −== − yyfx  

 

2. identity, cubic, square root, cube root 

 

3. 
2

3

−

+
=

x

x
y  

3)2( +=− xxy  

32 +=− xyyx  

32 +=− yxyx  

32)1( +=− yyx  

1 2 3
( )

1

y
f y

y

− +
=

−
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Section 3.8 Exercises 

 

For each function, find a domain on which the function is one-to-one and non-decreasing, 

then find an inverse of the function on this domain. 

1. ( ) ( )
2

4f x x= −    2. ( ) ( )
2

2f x x= +  

3. ( ) 212f x x= −    4. ( ) 29f x x= −  

5. ( ) 33 1f x x= +    6. ( ) 34 2f x x= −  

 

Find the inverse of each function. 

7. ( ) 9 4 4f x x= + −    8. ( ) 6 8 5f x x= − +  

9. ( ) 39 2f x x= +    10. ( ) 33f x x= −  

11. ( )
2

8
f x

x
=

+
   12. ( )

3

4
f x

x
=

−
 

13. ( )
3

7

x
f x

x

+
=

+
   14. ( )

2

7

x
f x

x

−
=

+
 

15. ( )
3 4

5 4

x
f x

x

+
=

−
    16. ( )

5 1

2 5

x
f x

x

+
=

−
 

 

Police use the formula 20v L=  to estimate the speed of a car, v, in miles per hour, 

based on the length, L, in feet, of its skid marks when suddenly braking on a dry, asphalt 

road.  

 

17. At the scene of an accident, a police officer measures a car's skid marks to be 215 feet 

long. Approximately how fast was the car traveling? 

 

18. At the scene of an accident, a police officer measures a car's skid marks to be 135 feet 

long. Approximately how fast was the car traveling? 

The formula 2.7v r=  models the maximum safe speed, v, in miles per hour, at which a 

car can travel on a curved road with radius of curvature r, in feet.  

 

19. A highway crew measures the radius of curvature at an exit ramp on a highway as 

430 feet. What is the maximum safe speed? 

 

20. A highway crew measures the radius of curvature at a tight corner on a highway as 

900 feet. What is the maximum safe speed? 
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21. A drainage canal has a cross-

section in the shape of a parabola. 

Suppose that the canal is 10 feet 

deep and 20 feet wide at the top. 

If the water depth in the ditch is 5 

feet, how wide is the surface of 

the water in the ditch? [UW] 

 

 

22. Brooke is located 5 miles out from the nearest point A along a straight shoreline in her 

sea kayak. Hunger strikes and she wants to 

make it to Kono’s for lunch; see picture. 

Brooke can paddle 2 mph and walk 4 mph. 

[UW] 

a. If she paddles along a straight line 

course to the shore, find an 

expression that computes the total 

time to reach lunch in terms of the location where Brooke beaches her kayak. 

b. Determine the total time to reach Kono’s if she paddles directly to the point A. 

c. Determine the total time to reach Kono’s if she paddles directly to Kono’s. 

d. Do you think your answer to b or c is the minimum time required for Brooke 

to reach lunch? 

e. Determine the total time to reach Kono’s if she paddles directly to a point on 

the shore half way between point A and Kono’s. How does this time compare 

to the times in parts b or c?  Do you need to modify your answer to part d?  

 

23. Clovis is standing at the edge of a dropoff, which slopes 4 feet downward from him 

for every 1 horizontal foot. He launches a small model rocket from where he is 

standing. With the origin of the coordinate system located where he is standing, and 

the x-axis extending horizontally, the path of the rocket is described by the formula 
22 120y x x= − + . [UW] 

a. Give a function ( )h f x=  relating the height h of the rocket above the sloping 

ground to its x-coordinate. 

b. Find the maximum height of the rocket above the sloping ground. What is its 

x-coordinate when it is at its maximum height? 

c. Clovis measures the height h of the rocket above the sloping ground while it is 

going up. Give a function ( )x g h=  relating the x-coordinate of the rocket to 

h. 

d. Does the function from (c) still work when the rocket is going down? Explain. 
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24. A trough has a semicircular 

cross section with a radius 

of 5 feet. Water starts 

flowing into the trough in 

such a way that the depth of 

the water is increasing at a 

rate of 2 inches per hour. 

[UW] 

a. Give a function 

( )w f t=  relating 

the width w of the surface of the water to the time t, in hours. Make sure to 

specify the domain and compute the range too. 

b. After how many hours will the surface of the water have width of 6 feet? 

c. Give a function ( )1t f w−=  relating the time to the width of the surface of the 

water. Make sure to specify the domain and compute the range too. 
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