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Section 8.6 Parametric Equations 

 

Many shapes, even ones as simple as circles, cannot be represented as an equation where 

y is a function of x.  Consider, for example, the path a moon follows as it orbits around a 

planet, which simultaneously rotates around a sun.  In some cases, polar equations 

provide a way to represent such a path.  In others, we need a more versatile approach that 

allows us to represent both the x and y coordinates in terms of a third variable, or 

parameter. 

 

 

Parametric Equations 

A system of parametric equations is a pair of functions x(t) and y(t) in which the x 

and y coordinates are the output, represented in terms of a third input parameter, t.  

 

 

Example 1 

Moving at a constant speed, an object moves at a steady rate along a straight path from 

coordinates (-5, 3) to the coordinates (3, -1) in 4 seconds, where the coordinates are 

measured in meters.  Find parametric equations for the position of the object. 

 

The x coordinate of the object starts at -5 meters, and goes to +3 meters, this means the 

x direction has changed by 8 meters in 4 seconds, giving us a rate of 2 meters per 

second.  We can now write the x coordinate as a linear function with respect to time, t, 

ttx 25)( +−= .  Similarly, the y value starts at 3 and goes to -1, giving a change in y 

value of 4 meters, meaning the y values have decreased by 

4 meters in 4 seconds, for a rate of -1 meter per second, 

giving equation tty −= 3)( .  Together, these are the 

parametric equations for the position of the object: 

tty

ttx

−=

+−=

3)(

25)(
 

 

Using these equations, we can build a table of t, x, and y values.  Because of the context, 

we limited ourselves to non-negative t values for this example, but in general you can 

use any values. 

 

From this table, we could create three possible graphs: a graph of x vs. t, which would 

show the horizontal position over time, a graph of y vs. t, which would show the vertical 

position over time, or a graph of y vs. x, showing the position of the object in the plane.   

 

 

 

 

 

 

t x y 

0 -5 3 

1 -3 2 

2 -1 1 

3 1 0 

4 3 -1 
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Position of x as a function of time  Position of y as a function of time 

                                 
 

Position of y relative to x 

 
 

Notice that the parameter t does not explicitly show up in this third graph.  Sometimes, 

when the parameter t does represent a quantity like time, we might indicate the direction 

of movement on the graph using an arrow, as shown above. 

 

 

There is often no single parametric representation for a curve. In 

Example 1 we assumed the object was moving at a steady rate 

along a straight line. If we kept the assumption about the path 

(straight line) but did not assume the speed was constant, we might 

get a system like: 

2

2

3)(

25)(

tty

ttx

−=

+−=
 

 

This starts at (-5, 3) when t = 0 and ends up at (3, -1) 

when t = 2.  If we graph the x(t) and y(t) function 

separately, we can see that those are no longer linear, 

but if we graph x vs. y we will see that we still get a 

straight-line path. 

t 
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Example 2 

Sketch a graph of  

tty

ttx

+=

+=

2)(

1)( 2

 

 

We can begin by creating a table of values.  From this table, we 

can plot the (x, y) points in the plane, sketch in a rough graph of 

the curve, and indicate the direction of motion with respect to 

time by using arrows. 

 
 

 

Notice that here the parametric equations describe a shape for which y is not a function of 

x.  This is an example of why using parametric equations can be useful – since they can 

represent such a graph as a set of functions.  This particular graph also appears to be a 

parabola where x is a function of y, which we will soon verify. 

 

 

Example 3 

Sketch a graph of  

( ) 3cos( )

( ) 3sin( )

x t t

y t t

=

=
 

 

These equations should look familiar.  Back when we first 

learned about sine and cosine we found that the coordinates 

of a point on a circle of radius r at an angle of θ will be 

cos( ), sin( )x r y rθ θ= = .  The equations above are in the 

same form, with 3r = , and t used in place of θ. 

 

This suggests that for each value of t, these parametric 

equations give a point on a circle of radius 3 at the angle 

corresponding to t.  At 0t = , the graph would be at 

3cos(0), 3sin(0)x y= = , the point (3,0).  Indeed, these 

equations describe the equation of a circle, drawn 

counterclockwise. 

 

t x y 

-3 10 -1 

-2 5 0 

-1 2 1 

0 1 2 

1 2 3 

2 5 4 

 

(rcos(θ), rsin(θ)) 

r 

θ 

y 

x 
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Interestingly, these similar parametric equations also describe the circle of radius 3: 

( ) 3sin( )

( ) 3cos( )

x t t

y t t

=

=
 

 

The difference with these equations it the graph would start at 3sin(0), 3cos(0)x y= = , 

the point (0,3).  As t increases from 0, the x value will increase, indicating these 

equations would draw the graph in a clockwise direction. 

 

 

While creating a t-x-y table, plotting points and connecting the dots with a smooth curve 

usually works to give us a rough idea of what the graph of a system of parametric 

equations looks like, it's generally easier to use technology to create these tables and 

(simultaneously) much nicer-looking graphs. 

 

 

Example 4 

Sketch a graph of 
)sin(3)(

)cos(2)(

tty

ttx

=

=
. 

 

Notice first that this equation looks very similar to the ones 

from the previous example, except the coefficients are not 

equal.  You might guess that the pairing of cos and sin will 

still produce rotation, but now x will vary from -2 to 2 while 

y will vary from -3 to 3, creating an ellipse. 

 

Using technology we can generate a graph of this equation, 

verifying it is indeed an ellipse. 

 

Similar to graphing polar equations, you must change the MODE on your calculator (or 

select parametric equations on your graphing technology) before graphing a system of 

parametric equations.  You will know you have successfully entered parametric mode 

when the equation input has changed to ask for a x(t)= and y(t)= pair of equations.   

 

 

Try it Now 

1. Sketch a graph of  
)2sin(3)(

)3cos(4)(

tty

ttx

=

=
.  This is an example of a Lissajous figure. 

 

 

 

 

 

 

 



  Section 8.6 Parametric Equations    567 

 

Example 5 

The populations of rabbits and wolves on an island over time are given by the graphs 

below.  Use these graphs to sketch a graph in the r-w plane showing the relationship 

between the number of rabbits and number of wolves. 

 

 
For each input t, we can determine the 

number of rabbits, r, and the number of wolves, w, from the respective graphs, and then 

plot the corresponding point in the r-w plane.   

 

 
This graph helps reveal the cyclical interaction between the two populations. 

 

 

Converting from Parametric to Cartesian 

 

In some cases, it is possible to eliminate the parameter t, allowing you to write a pair of 

parametric equations as a Cartesian equation. 

 

It is easiest to do this if one of the x(t) or y(t) functions can easily be solved for t, 

allowing you to then substitute the remaining expression into the second part. 

 

 

Example 6 

Write 
tty

ttx

+=

+=

2)(

1)( 2

 as a Cartesian equation, if possible. 

 

Here, the equation for y is linear, so is relatively easy to solve for t.  Since the resulting 

Cartesian equation will likely not be a function, and for convenience, we drop the 

function notation. 
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ty += 2   Solve for t 

ty =− 2   Substitute this for t in the x equation 

1)2( 2 +−= yx  

 

Notice that this is the equation of a parabola with x as a function of y, with vertex at 

(1,2), opening to the right.  Comparing this with the graph from Example 2, we see 

(unsurprisingly) that it yields the same graph in the x-y plane as did the original 

parametric equations. 

 

 

Try it Now 

2. Write   
6

3

)(

)(

tty

ttx

=

=
as a Cartesian equation, if possible. 

 

 

Example 7 

Write 
)log()(

2)(

tty

ttx

=

+=
 as a Cartesian equation, if possible. 

 

We could solve either the first or second equation for t.  Solving the first, 

2+= tx  

tx =− 2   Square both sides 

( ) tx =−
2

2   Substitute into the y equation 

( )( )2
2log −= xy  

 

Since the parametric equation is only defined for 0>t , this Cartesian equation is 

equivalent to the parametric equation on the corresponding domain.  The parametric 

equations show that when t > 0, x > 2 and y > 0, so the domain of the Cartesian equation 

should be limited to x > 2. 

 

 

To ensure that the Cartesian equation is as equivalent as possible to the original 

parametric equation, we try to avoid using domain-restricted inverse functions, such as 

the inverse trig functions, when possible.  For equations involving trig functions, we 

often try to find an identity to utilize to avoid the inverse functions. 
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Example 8 

Write 
)sin(3)(

)cos(2)(

tty

ttx

=

=
 as a Cartesian equation, if possible. 

 

To rewrite this, we can utilize the Pythagorean identity 1)(sin)(cos 22 =+ tt . 

)cos(2 tx =  so )cos(
2

t
x

=  

)sin(3 ty =  so )sin(
3

t
y

=  

 

Starting with the Pythagorean Identity, 

1)(sin)(cos 22 =+ tt   Substitute in the expressions from the parametric form 

1
32

22

=







+







 yx
  Simplify 

1
94

22

=+
yx

 

 

This is a Cartesian equation for the ellipse we graphed earlier. 

 

 

Parameterizing Curves 

 

While converting from parametric form to Cartesian can be useful, it is often more useful 

to parameterize a Cartesian equation – converting it into parametric form. 

 

If the Cartesian equation gives one variable as a function of the other, then 

parameterization is trivial – the independent variable in the function can simply be 

defined as t. 

 

 

Example 9 

Parameterize the equation yyx 23 −= . 

 

In this equation, x is expressed as a function of y.  By defining ty =  we can then 

substitute that into the Cartesian equation, yielding ttx 23 −= .  Together, this produces 

the parametric form: 

tty

tttx

=

−=

)(

2)( 3
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Try it Now 

3. Write 322 =+ yx  in parametric form, if possible. 

 

 

In addition to parameterizing Cartesian equations, we also can parameterize behaviors 

and movements. 

 

 

Example 10 

A robot follows the path shown.  Create a table of values for the 

x(t) and y(t) functions, assuming the robot takes one second to 

make each movement. 

 

Since we know the direction of motion, we can introduce 

consecutive values for t along the path of the robot.  Using these 

values with the x and y coordinates of the robot, we can create the 

tables.  For example, we designate the starting point, at (1, 1), as 

the position at t = 0, the next point at (3, 1) as the position at t = 1, 

and so on. 

 

 

 

 

Notice how this also ties back to vectors.  The journey of the robot as it moves through 

the Cartesian plane could also be displayed as vectors and total distance traveled and 

displacement could be calculated. 

 

 

Example 11 

A light is placed on the edge of a bicycle tire as shown and the bicycle starts rolling 

down the street.  Find a parametric equation for the position of the light after the wheel 

has rotated through an angle of θ. 

 

 
 

Relative to the center of the wheel, the position of the light can be found as the 

coordinates of a point on a circle, but since the x coordinate begins at 0 and moves in 

the negative direction, while the y coordinate starts at the lowest value, the coordinates 

of the point will be given by: 

θ 

Starting Rotated by θ 

r 

t 0 1 2 3 4 5 6 

x 1 3 3 2 4 1 1 

t 0 1 2 3 4 5 6 

y 1 1 2 2 4 5 4 
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)cos(

)sin(

θ

θ

ry

rx

−=

−=
 

 

The center of the wheel, meanwhile, is moving horizontally.  It remains at a constant 

height of r, but the horizontal position will move a distance equivalent to the arclength 

of the circle drawn out by the angle, θrs = .  The position of the center of the circle is 

then 

ry

rx

=

= θ
 

 

Combining the position of the center of the wheel with the position of the light on the 

wheel relative to the center, we get the following parametric equationw, with θ as the 

parameter: 

( )
( ))cos(1)cos(

)sin()sin(

θθ

θθθθ

−=−=

−=−=

rrry

rrrx
 

 

The result graph is called a cycloid. 

 
 

 

Example 12 

A moon travels around a planet 

as shown, orbiting once every 10 

days.  The planet travels around 

a sun as shown, orbiting once 

every 100 days.  Find a 

parametric equation for the 

position of the moon, relative to 

the center of the sun, after t days. 

 

For this example, we’ll assume 

the orbits are circular, though in 

real life they’re actually 

elliptical.   

 

 

 

 

6 

30 
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The coordinates of a point on a circle can always be written in the form 

)sin(

)cos(

θ

θ

ry

rx

=

=
 

 

Since the orbit of the moon around the planet has a period of 10 days, the equation for 

the position of the moon relative to the planet will be 









=








=









=








=

ttty

tttx

5
sin6

10

2
sin6)(

5
cos6

10

2
cos6)(

ππ

ππ

 

 

With a period of 100 days, the equation for the position of the planet relative to the sun 

will be 









=








=









=








=

ttty

tttx

50
sin30

100

2
sin30)(

50
cos30

100

2
cos30)(

ππ

ππ

 

 

Combining these together, we can find the 

position of the moon relative to the sun as the 

sum of the components. 









+







=









+







=

ttty

tttx

50
sin30

5
sin6)(

50
cos30

5
cos6)(

ππ

ππ

 

 

The resulting graph is shown here. 

 

 

Try it Now 

4. A wheel of radius 4 is rolled around the outside of a circle of radius 7.  Find a 

parametric equation for the position of a point on the boundary of the smaller wheel.  

This shape is called an epicycloid. 
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Important Topics of This Section 

Parametric equations 

Graphing x(t) , y(t) and the corresponding x-y graph 

Sketching graphs and building a table of values 

Converting parametric to Cartesian 

Converting Cartesian to parametric (parameterizing curves) 

 

 

Try it Now Answers 

1.  

 

2. ( )23
ty = , so 2

xy =  

 

3. 
)sin(3)(

)cos(3)(

tty

ttx

=

=
 

 

4. The center of the small wheel rotates in circle with radius 7+4=11. 

Since the circumference of the small circle is π8  and the circumference of the large 

circle is π22 , in the time it takes to roll around the large circle, the small circle will 

have rotated 
4

11

8

22
=

π

π
 rotations.  We use this as the stretch factor.  The position of a 

point on the small circle will be the combination of the position of the center of the 

small wheel around the center of the large wheel, and the position of the point around 

the small wheel: 

( )

( )

11
( ) 11cos 4cos

4

11
( ) 11sin 4sin

4

x t t t

y t t t

 
= −  

 

 
= −  

 
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Section 8.6 Exercises 

 

Match each set of equations with one of the graphs below. 

1. 
( )
( ) 2 1

x t t

y t t

 =


= −
  2. 

( )
( ) 2

1x t t

y t t

 = −


=
  3. 

( ) ( )
( ) ( )

4sin

2cos

x t t

y t t

 =


=
  

4. 
( )
( )

2sin( )

4 cos( )

x t t

y t t

 =


=
  5. 

( )
( )

2

3 2

x t t

y t t

 = +


= −
  6. 

( )
( )

2 2

3

x t t

y t t

 = − −


= +
  

A  B  C  

D  E  F  

 

From each pair of graphs in the t-x and t-y planes shown, sketch a graph in the x-y plane. 

7.  8.  
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From each graph in the x-y plane shown, sketch a graph of the parameter functions in the 

t-x and t-y planes. 

 

9.   10.  

 

 

Sketch the parametric equations for 2 2t− ≤ ≤ . 

11. 
( )
( ) 2

1 2x t t

y t t

 = +


=
    12. 

( )
( ) 3

2 2x t t

y t t

 = −


=
  

 

 

Eliminate the parameter t to rewrite the parametric equation as a Cartesian equation 

13. 
( )
( )

5

8 2

x t t

y t t

 = −


= −
    14. 

( )
( )

6 3

10

x t t

y t t

 = −


= −
  

15. 
( )

( )

2 1

3

x t t

y t t

 = +


=
    16. 

( )
( ) 2

3 1

2

x t t

y t t

 = −


=
  

17. 
( )
( )

2

1 5

t
x t e

y t t

 =


= −
    18. 

( ) ( )
( )

4 log

3 2

x t t

y t t

 =


= +
  

19. 
( )
( )

3

2

x t t t

y t t

 = −


=
    20. 

( )
( )

4

2

x t t t

y t t

 = −


= +
  

21. 
( )
( )

2

6

t

t

x t e

y t e

 =


=
    22. 

( )
( )

5

10

x t t

y t t

 =


=
  

23. 
( ) ( )
( ) ( )

4cos

5sin  

x t t

y t t

 =


=
    24. 

( ) ( )
( ) ( )

3sin

6cos

x t t

y t t

 =


=
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Parameterize (write a parametric equation for) each Cartesian equation  

25. ( ) 23 3y x x= +     26. ( ) ( )2sin 1y x x= +   

27. ( ) ( )3logx y y y= +     28. ( ) 2x y y y= +  

29. 
2 2

1
4 9

x y
+ =     30. 

2 2

1
16 36

x y
+ =   

 

Parameterize the graphs shown. 

31.   32.  

 

33.   34.  

 

35. Parameterize the line from ( 1,5)−  to (2,3)  so that the line is at ( 1,5)−  at t = 0, and at 

(2, 3)  at t = 1. 

 

36. Parameterize the line from (4,1)  to (6, 2)−  so that the line is at (4,1)  at t = 0, and at 

(6, 2)−  at t = 1. 
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The graphs below are created by parameteric equations of the form 
( ) ( )
( ) ( )

cos

sin

x t a bt

y t c dt

 =


=
.  

Find the values of a, b, c, and d to achieve each graph. 

 

37.   38.  

 

39.   40.  

 

41. An object is thrown in the air with vertical velocity 20 ft/s and horizontal velocity 15 

ft/s.  The object’s height can be described by the equation ( ) 216 20y t t t= − + , while 

the object moves horizontally with constant velocity 15 ft/s.  Write parametric 

equations for the object’s position, then eliminate time to write height as a function of 

horizontal position. 

 

42. A skateboarder riding on a level surface at a constant speed of 9 ft/s throws a ball in 

the air, the height of which can be described by the equation ( ) 216 10 5y t t t= − + + .  

Write parametric equations for the ball’s position, then eliminate time to write height 

as a function of horizontal position. 
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43. A carnival ride has a large rotating arm with 

diameter 40 feet centered 35 feet off the ground.  

At each end of the large arm are two smaller 

rotating arms with diameter 16 feet each.  The 

larger arm rotates once every 5 seconds, while the 

smaller arms rotate once every 2 seconds.  If you 

board the ride when the point P is closest to the 

ground, find parametric equations for your 

position over time.  

 

44. A hypocycloid is a shape generated by tracking a fixed 

point on a small circle as it rolls around the inside of a 

larger circle.  If the smaller circle has radius 1 and the 

large circle has radius 6, find parametric equations for 

the position of the point P as the smaller wheel rolls in 

the direction indicated. 
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