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Section 3.7 Rational Functions 

 

In the previous sections, we have built polynomials based on the positive whole number 

power functions.  In this section, we explore functions based on power functions with 

negative integer powers, called rational functions. 

 

 

Example 1 

You plan to drive 100 miles.  Find a formula for the time the trip will take as a function 

of the speed you drive. 

 

You may recall that multiplying speed by time will give you distance.  If we let t 

represent the drive time in hours, and v represent the velocity (speed or rate) at which 

we drive, then distance=vt .  Since our distance is fixed at 100 miles, 100=vt .  

Solving this relationship for the time gives us the function we desired: 

1100
100

)( −== v
v

vt  

 

 

While this type of relationship can be written using the negative exponent, it is more 

common to see it written as a fraction.   

 

This particular example is one of an inversely proportional relationship – where one 

quantity is a constant divided by the other quantity, like 
5

y
x

= .  

Notice that this is a transformation of the reciprocal toolkit function, 
1

( )f x
x

=  

 

Several natural phenomena, such as gravitational force and volume of sound, behave in a 

manner inversely proportional to the square of another quantity.  For example, the 

volume, V, of a sound heard at a distance d from the source would be related by 
2d

k
V =  

for some constant value k. 

 

These functions are transformations of the reciprocal squared toolkit function 
2

1
( )f x

x
= . 

 

We have seen the graphs of the basic reciprocal function and the squared reciprocal 

function from our study of toolkit functions.  These graphs have several important 

features. 
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1
( )f x

x
=  

 

2

1
( )f x

x
=  

Let’s begin by looking at the reciprocal function, 
1

( )f x
x

= .  As you well know, dividing 

by zero is not allowed and therefore zero is not in the domain, and so the function is 

undefined at an input of zero. 

 

Short run behavior:  

As the input values approach zero from the left side (taking on very small, negative 

values), the function values become very large in the negative direction (in other words, 

they approach negative infinity). 

We write: as −→ 0x , −→)(xf . 

 

As we approach zero from the right side (small, positive input values), the function 

values become very large in the positive direction (approaching infinity). 

We write: as +→ 0x , →)(xf . 

 

This behavior creates a vertical asymptote.  An asymptote is a line that the graph 

approaches. In this case the graph is approaching the vertical line x = 0 as the input 

becomes close to zero.   

 

Long run behavior:  

As the values of x approach infinity, the function values approach 0. 

As the values of x approach negative infinity, the function values approach 0. 

Symbolically: as →x , 0)( →xf  

 

Based on this long run behavior and the graph we can see that the function approaches 0 

but never actually reaches 0, it just “levels off” as the inputs become large.  This behavior 

creates a horizontal asymptote.  In this case the graph is approaching the horizontal line 

( ) 0f x = as the input becomes very large in the negative and positive directions. 

 

 

Vertical and Horizontal Asymptotes 

A vertical asymptote of a graph is a vertical line x = a where the graph tends towards 

positive or negative infinity as the inputs approach a.  As ax → , →)(xf . 

 

A horizontal asymptote of a graph is a horizontal line y b=  where the graph 

approaches the line as the inputs get large. As →x , bxf →)( . 
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Try it Now: 

1. Use symbolic notation to describe the long run behavior and 

short run behavior for the reciprocal squared function. 

 

 

 

 

Example 2 

Sketch a graph of the reciprocal function shifted two units to the left and up three units.  

Identify the horizontal and vertical asymptotes of the graph, if any. 

 

Transforming the graph left 2 and up 3 would result in the function 

3
2

1
)( +

+
=

x
xf , or equivalently, by giving the terms a common denominator, 

2

73
)(

+

+
=

x

x
xf . 

 

Shifting the toolkit function would give us 

this graph.  Notice that this equation is 

undefined at x = -2, and the graph also is 

showing a vertical asymptote at x = -2. 

As 2x −→− , ( )f x →− , and  

as 2x +→− , ( )f x →  

 

As the inputs grow large, the graph appears 

to be leveling off at output values of 3, 

indicating a horizontal asymptote at 3y = .  

As →x , 3)( →xf . 

  

Notice that horizontal and vertical asymptotes get shifted left 2 and up 3 along with the 

function. 

 

 

Try it Now 

2. Sketch the graph and find the horizontal and vertical asymptotes of the reciprocal 

squared function that has been shifted right 3 units and down 4 units.  

 

 

In the previous example, we shifted a toolkit function in a way that resulted in a function 

of the form 
2

73
)(

+

+
=

x

x
xf .  This is an example of a more general rational function. 
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Rational Function 

A rational function is a function that can be written as the ratio of two polynomials, 

P(x) and Q(x). 
2

0 1 2

2

0 1 2

( )
( )

( )

p

p

q

q

a a x a x a xP x
f x

Q x b b x b x b x

+ + + +
= =

+ + + +
   

 

 

Example 3 

A large mixing tank currently contains 100 gallons of water, into which 5 pounds of 

sugar have been mixed.  A tap will open pouring 10 gallons per minute of water into the 

tank at the same time sugar is poured into the tank at a rate of 1 pound per minute.  Find 

the concentration (pounds per gallon) of sugar in the tank after t minutes.   

 

Notice that the amount of water in the tank is changing linearly, as is the amount of 

sugar in the tank.  We can write an equation independently for each: 

twater 10100 +=  
tsugar 15 +=  

 

The concentration, C, will be the ratio of pounds of sugar to gallons of water 

t

t
tC

10100

5
)(

+

+
=  

 

 

Finding Asymptotes and Intercepts 

 

Given a rational function, as part of investigating the short run behavior we are interested 

in finding any vertical and horizontal asymptotes, as well as finding any vertical or 

horizontal intercepts, as we have done in the past. 

 

To find vertical asymptotes, we notice that the vertical asymptotes in our examples occur 

when the denominator is zero, so the function is undefined.  With one exception, a 

vertical asymptote will occur whenever the denominator is zero. 

 

 

Example 4 

Find the vertical asymptotes of the function 
2

2

2

25
)(

xx

x
xk

−−

+
=  

 

To find the vertical asymptotes, we determine where this function will be undefined by 

setting the denominator equal to zero: 

1,2

0)1)(2(

02 2

−=

=−+

=−−

x

xx

xx
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This indicates two vertical asymptotes, which a look 

at a graph confirms. 

 

 

 

 

 

 

 

The exception to this rule can occur when both the 

numerator and denominator of a rational function are zero at the same input. 

 

 

Example 5 

Find the vertical asymptotes of the function 
2

2
( )

4

x
k x

x

−
=

−
. 

 

To find the vertical asymptotes, we determine where this function will be undefined by 

finding where denominator will be zero.  We can do this by factoring: 

( ) 2

2 2

4 ( 2)( 2)

x x
k x

x x x

− −
= =

− − +
 , so the denominator is zero at 2, 2x = −  

 

However, the numerator of this function is also 

equal to zero when x = 2.  The function will still 

be undefined at 2, since 
0

0
 is undefined, but if 

2x   then 
2 1

( 2)( 2) 2

x

x x x

−
=

− + +
 which does 

not have a vertical asymptote at x = 2. 

 

The graph of k(x) will have a vertical asymptote 

at x = -2, but at x = 2 the graph will have a hole: 

a single point where the graph is not defined, 

indicated by an open circle. 

 

 

Vertical Asymptotes and Holes of Rational Functions 

At points where the denominator of a rational function equals zero and the numerator 

is not zero, the rational function has a vertical asymptote. 

 

At points where both the numerator and denominator of a rational function equal zero, 

factor the numerator and denominator and simplify: either the simplified function will 

have a vertical asymptote (and the original function will as well) or the graph of the 

original function will have a hole. 
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To find horizontal asymptotes, we are interested in the behavior of the function as the 

input grows large, so we consider long run behavior of the numerator and denominator 

separately.  Recall that a polynomial’s long run behavior will mirror that of the leading 

term.  Likewise, a rational function’s long run behavior will mirror that of the ratio of the 

leading terms of the numerator and denominator functions. 

 

There are three distinct outcomes when this analysis is done: 

 

 

Case 1:  The degree of the denominator > degree of the numerator 

Example: 
54

23
)(

2 −+

+
=

xx

x
xf  

In this case, the long run behavior is 
2

3 3
( )

x
f x

x x
 = .  This tells us that as the inputs grow 

large, this function will behave similarly to the function 
3

( )g x
x

= .  As the inputs grow 

large, the outputs will approach zero, resulting in a horizontal asymptote at 0y = . 

As →x , 0)( →xf  

 

 

Case 2:  The degree of the denominator < degree of the numerator 

Example: 
5

23
)(

2

−

+
=

x

x
xf  

In this case, the long run behavior is
23

( ) 3
x

f x x
x

 = .  This tells us that as the inputs 

grow large, this function will behave similarly to the function ( ) 3g x x= .  As the inputs 

grow large, the outputs will grow and not level off, so this graph has no horizontal 

asymptote.  

As →x , →)(xf , respectively. 

 

 

Case 3:  The degree of the denominator = degree of the numerator 

Example: 
54

23
)(

2

2

−+

+
=

xx

x
xf  

In this case, the long run behavior is 
2

2

3
( ) 3

x
f x

x
 = .  This tells us that as the inputs grow 

large, this function will behave like the function ( ) 3g x = , which is a horizontal line. As 

→x , 3)( →xf , resulting in a horizontal asymptote at 3y = . 
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Horizontal Asymptote of Rational Functions 

The horizontal asymptote of a rational function can be determined by looking at the 

degrees of the numerator and denominator. 

Degree of denominator > degree of numerator: Horizontal asymptote at 0y =  

Degree of denominator < degree of numerator: No horizontal asymptote 

Degree of denominator = degree of numerator: Horizontal asymptote at ratio of 

leading coefficients. 

 

 

Example 6 

In the sugar concentration problem from earlier, we created the equation 

t

t
tC

10100

5
)(

+

+
= .   

Find the horizontal asymptote and interpret it in context of the scenario. 

 

Both the numerator and denominator are linear (degree 1), so since the degrees are 

equal, there will be a horizontal asymptote at the ratio of the leading coefficients.  In the 

numerator, the leading term is t, with coefficient 1.  In the denominator, the leading 

term is 10t, with coefficient 10.  The horizontal asymptote will be at the ratio of these 

values: As t → , 
1

( )
10

C t → .  This function will have a horizontal asymptote at 

1

10
y = . 

 

This tells us that as the input gets large, the output values will approach 1/10.  In 

context, this means that as more time goes by, the concentration of sugar in the tank will 

approach one tenth of a pound of sugar per gallon of water or 1/10 pounds per gallon. 

 

 

Example 7 

Find the horizontal and vertical asymptotes of the function 

)5)(2)(1(

)3)(2(
)(

−+−

+−
=

xxx

xx
xf  

 

First, note this function has no inputs that make both the numerator and denominator 

zero, so there are no potential holes.  The function will have vertical asymptotes when 

the denominator is zero, causing the function to be undefined.  The denominator will be 

zero at x = 1, -2, and 5, indicating vertical asymptotes at these values. 

 

The numerator has degree 2, while the denominator has degree 3.  Since the degree of 

the denominator is greater than that of the numerator, the denominator will grow faster 

than the numerator, causing the outputs to tend towards zero as the inputs get large, and 

so as →x , 0)( →xf .  This function will have a horizontal asymptote at 0y = . 
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Try it Now 

3. Find the vertical and horizontal asymptotes of the function 
)3)(2(

)12)(12(
)(

+−

+−
=

xx

xx
xf  

 

 

Intercepts 

 

As with all functions, a rational function will have a vertical intercept when the input is 

zero, if the function is defined at zero.  It is possible for a rational function to not have a 

vertical intercept if the function is undefined at zero. 

 

Likewise, a rational function will have horizontal intercepts at the inputs that cause the 

output to be zero (unless that input corresponds to a hole).  It is possible there are no 

horizontal intercepts.  Since a fraction is only equal to zero when the numerator is zero, 

horizontal intercepts will occur when the numerator of the rational function is equal to 

zero. 

 

 

Example 8 

Find the intercepts of 
)5)(2)(1(

)3)(2(
)(

−+−

+−
=

xxx

xx
xf  

 

We can find the vertical intercept by evaluating the function at zero 

5

3

10

6

)50)(20)(10(

)30)(20(
)0( −=

−
=

−+−

+−
=f  

 

 

The horizontal intercepts will occur when the function is equal to zero: 

)5)(2)(1(

)3)(2(
0

−+−

+−
=

xxx

xx
  This is zero when the numerator is zero 

3,2

)3)(2(0

−=

+−=

x

xx
 

 

 

Try it Now 

4. Given the reciprocal squared function that is shifted right 3 units and down 4 units, 

write this as a rational function and find the horizontal and vertical intercepts and the 

horizontal and vertical asymptotes. 
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Graphical Behavior at Intercepts and Vertical Asymptotes 

 

As with polynomials, factors of the numerator may have integer powers greater than one.  

Happily, the effect on the shape of the graph at those intercepts is the same as we saw 

with polynomials: if the factor giving the intercept is not squared, the graph passes 

through the axis; if the factor is squared, the graph will bounce off the axis at that 

intercept.  The behavior at vertical asymptotes also depends on the power on the factor. 

 

 

Graphical Behavior of Rational Functions at Vertical Asymptotes 

If a rational function contains a factor of the form phx )( −  in the denominator, the 

behavior near the asymptote h is determined by the power on the factor. 

  p = 1             p = 1    p = 2            p = 2 

            

When the factor is not squared, on one side of the asymptote the graph heads towards 

positive infinity and on the other side the graph heads towards negative infinity. 

 

When the factor is squared, the graph either heads toward positive infinity on both 

sides of the vertical asymptote, or heads toward negative infinity on both sides. 

 

 

For example, the graph of  

)2()3(

)3()1(
)(

2

2

−+

−+
=

xx

xx
xf  is shown here. 

 

At the horizontal intercept x = -1 

corresponding to the 2)1( +x factor of the 

numerator, the graph bounces at the 

intercept, consistent with the quadratic 

nature of the factor.   

 

At the horizontal intercept x = 3 corresponding to the )3( −x factor of the numerator, the 

graph passes through the axis as we’d expect from a linear factor.   

 

At the vertical asymptote x = -3 corresponding to the 2)3( +x  factor of the denominator, 

the graph heads towards positive infinity on both sides of the asymptote, consistent with 

the behavior of the  
2

1

x
 toolkit. 
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At the vertical asymptote x = 2 corresponding to the )2( −x  factor of the denominator, 

the graph heads towards positive infinity on the left side of the asymptote and towards 

negative infinity on the right side, consistent with the behavior of the  
x

1
 toolkit. 

 

 

Example 9 

Sketch a graph of 
2

( 2)( 3)
( )

( 1) ( 2)

x x
f x

x x

+ −
=

+ −
. 

 

We can start our sketch by finding intercepts and asymptotes.  Evaluating the function 

at zero gives the vertical intercept: 

2

(0 2)(0 3)
(0) 3

(0 1) (0 2)
f

+ −
= =

+ −
 

 

Looking at when the numerator of the function is zero, we can determine the graph will 

have horizontal intercepts at x = -2 and x = 3.  At each, the behavior will be linear, with 

the graph passing through the intercept. 

 

Looking at when the denominator of the function is zero, we can determine the graph 

will have vertical asymptotes at x = -1 and x = 2.   

 

Finally, the degree of denominator is larger than the 

degree of the numerator, telling us this graph has a 

horizontal asymptote at y = 0. 

To sketch the graph, we might start by plotting the three 

intercepts.  Since the graph has no horizontal intercepts 

between the vertical asymptotes, and the vertical 

intercept is positive, we know the function must remain 

positive between the asymptotes, letting us fill in the 

middle portion of the graph. 

 

Since the factor associated with the vertical asymptote at x = -1 was squared, we know 

the graph will have the same behavior on both sides of the asymptote.  Since the graph 

heads towards positive infinity as the inputs approach the asymptote on the right, the 

graph will head towards positive infinity on the left as 

well.  For the vertical asymptote at x = 2, the factor was 

not squared, so the graph will have opposite behavior on 

either side of the asymptote. 

 

After passing through the horizontal intercepts, the graph 

will then level off towards an output of zero, as indicated 

by the horizontal asymptote. 
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Try it Now 

5. Given the function 
)3()1(2

)2()2(
)(

2

2

−−

−+
=

xx

xx
xf , use the characteristics of polynomials and 

rational functions to describe its behavior and sketch the function. 

 

 

Since a rational function written in factored form will have a horizontal intercept where 

each factor of the numerator is equal to zero, we can form a numerator that will pass 

through a set of horizontal intercepts by introducing a corresponding set of factors.  

Likewise, since the function will have a vertical asymptote where each factor of the 

denominator is equal to zero, we can form a denominator that will produce the vertical 

asymptotes by introducing a corresponding set of factors. 

 

 

Writing Rational Functions from Intercepts and Asymptotes 

If a rational function has horizontal intercepts at 
nxxxx ,,, 21 = , and vertical 

asymptotes at 
mvvvx ,,, 21 =  then the function can be written in the form 

n

n

q

m

qq

p

n

pp

vxvxvx

xxxxxx
axf

)()()(

)()()(
)(

21

21

21

21

−−−

−−−
=




 

where the powers pi or qi on each factor can be determined by the behavior of the 

graph at the corresponding intercept or asymptote, and the stretch factor a can be 

determined given a value of the function other than the horizontal intercept, or by the 

horizontal asymptote if it is nonzero. 

 

 

Example 10 

Write an equation for the rational function 

graphed here. 

 

The graph appears to have horizontal 

intercepts at x = -2 and x = 3.  At both, the 

graph passes through the intercept, 

suggesting linear factors. 

 

The graph has two vertical asymptotes.  

The one at x = -1 seems to exhibit the basic 

behavior similar to 
x

1
, with the graph 

heading toward positive infinity on one 

side and heading toward negative infinity on the other.   
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The asymptote at x = 2 is exhibiting a behavior similar to 
2

1

x
, with the graph heading 

toward negative infinity on both sides of the asymptote.   

 

Utilizing this information indicates an function of the form 

2)2)(1(

)3)(2(
)(

−+

−+
=

xx

xx
axf  

 

To find the stretch factor, we can use another clear point on the graph, such as the 

vertical intercept (0,-2): 

3

4

6

8

4

6
2

)20)(10(

)30)(20(
2

2

=
−

−
=

−
=−

−+

−+
=−

a

a

a

 

 

This gives us a final function of 
2)2)(1(3

)3)(2(4
)(

−+

−+
=

xx

xx
xf  

 

 

Oblique Asymptotes 

 

Earlier we saw graphs of rational functions that had no horizontal asymptote, which 

occurs when the degree of the numerator is larger than the degree of the denominator.  

We can, however, describe in more detail the long-run behavior of a rational function.   

 

 

Example 11 

Describe the long-run behavior of 
5

23
)(

2

−

+
=

x

x
xf  

 

Earlier we explored this function when discussing horizontal asymptotes.  We found the 

long-run behavior is
23

( ) 3
x

f x x
x

 = , meaning that →x , →)(xf , respectively, 

and there is no horizontal asymptote. 

 

If we were to do polynomial long division, we could get a better understanding of the 

behavior as →x . 

 



Chapter 3 230 

( )

( )

2

2

3 15

5 3 0 2

3 15

15 2

15 75

77

x

x x x

x x

x

x

+

− + +

− −

+

− −

 

This means 
5

23
)(

2

−

+
=

x

x
xf  can be rewritten as 

77
( ) 3 15

5
f x x

x
= + +

−
. 

As →x , the term 
77

5x −
 will become very 

small and approach zero, becoming insignificant.  

The remaining 3 15x+ then describes the long-run 

behavior of the function:  as →x , 

( ) 3 15f x x→ + .   

 

We call this equation 3 15y x= +  the oblique 

asymptote of the function.   

 

In the graph, you can see how the function is 

approaching the line on the far left and far right.  

 

 

Oblique Asymptotes 

To explore the long-run behavior of a rational function, 

1) Perform polynomial long division (or synthetic division) 

2) The quotient will describe the asymptotic behavior of the function 

 

When this result is a line, we call it an oblique asymptote, or slant asymptote.  

 

 

Example 12 

Find the oblique asymptote of 
2 2 1

( )
1

x x
f x

x

− + +
=

+
 

 

Performing polynomial long division: 
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( )

( )

2

2

3

1 2 1

3 1

3 3

2

x

x x x

x x

x

x

− +

+ − + +

− − −

+

− +

−

 

This allows us to rewrite the function as 

2
( ) 3

1
f x x

x
= − + −

+
. 

 

The quotient, 3y x= − + , is the oblique asymptote 

of f(x).  Just like functions we saw earlier 

approached their horizontal asymptote in the long 

run, this function will approach this oblique 

asymptote in the long run. 

 

 

Try it Now 

6. Find the oblique asymptote of 

21 7 2
( )

2

x x
f x

x

+ −
=

−
 

 

 

While we primarily concern ourselves with oblique asymptotes, this same approach can 

describe other asymptotic behavior. 

 

 

Example 13 

Describe the long-run shape of 
3 2 4 2

( )
1

x x x
f x

x

− − + +
=

+
 

 

We could rewrite this using long division as 

2 2
( ) 4

1
f x x

x
= − + +

+
. 

 

Just looking at the quotient gives us the 

asymptote, 2 4y x= − + .   

 

This suggests that in the long run, the function 

will behave like a downwards opening parabola.  

The function will also have a vertical asymptote 

at 1x = − .   
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Important Topics of this Section 

Inversely proportional; Reciprocal toolkit function 

Inversely proportional to the square; Reciprocal squared toolkit function 

Horizontal Asymptotes 

Vertical Asymptotes 

Rational Functions 

 Finding intercepts, asymptotes, and holes. 

 Given equation sketch the graph  

 Identifying a function from its graph 

Oblique Asymptotes 

 

 

Try it Now Answers 

1. Long run behavior, as →x , 0)( →xf   

    Short run behavior, as 0→x , →)(xf  (there are no horizontal or vertical intercepts) 

 

2. The function and the asymptotes are shifted 3 units 

right and 4 units down.   

As 3→x , →)(xf  and as →x , 4)( −→xf  

 

 

3. Vertical asymptotes at x = 2 and x = -3; horizontal 

asymptote at y = 4 

 

4. For the transformed reciprocal squared function, we 

find the rational form. 

96

35244

)3)(3(

)96(41

)3(

)3(41
4

)3(

1
)(

2

22

2

2

2 +−

−+−
=

−−

+−−
=

−

−−
=−

−
=

xx

xx

xx

xx

x

x

x
xf  

 

Since the numerator is the same degree as the denominator we know that as →x ,

4)( −→xf .  4y = −  is the horizontal asymptote.  Next, we set the denominator equal 

to zero to find the vertical asymptote at x = 3, because as 3→x , →)(xf .  We set 

the numerator equal to 0 and find the horizontal intercepts are at (2.5,0) and (3.5,0), 

then we evaluate at 0 and the vertical intercept is at 






 −

9

35
,0   
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Try it Now Answers, Continued 

5.  Horizontal asymptote at y = 1/2.   

Vertical asymptotes are at x = 1, and x = 3. 

Vertical intercept at (0, 4/3),  

Horizontal intercepts (2, 0) and (-2, 0)  

(-2, 0) is a double zero and the graph bounces off the 

axis at this point.   

(2, 0) is a single zero and crosses the axis at this point.  

 

6. Using long division:  

( )

( )

2

2

2 3

2 2 7 1

2 4

3 1

3 6

7

x

x x x

x x

x

x

− +

− − + +

− − +

+

− −

 

21 7 2 7
( ) 2 3

2 2

x x
f x x

x x

+ −
= = − + +

− −
 

 

The oblique asymptote is 2 3y x= − +  
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Section 3.7 Exercises 

 

Match each equation form with one of the graphs. 

1. ( )
x A

f x
x B

−
=

−
 2. ( )

( )
2

x A
g x

x B

−
=

−
 3. ( )

( )
2

x A
h x

x B

−
=

−
 4. ( )

( )

( )

2

2

x A
k x

x B

−
=

−
 

 

A  B   C   D  

 

For each function, find the horizontal intercepts, the vertical intercept, the vertical 

asymptotes, and the horizontal asymptote.  Use that information to sketch a graph. 

 

5. ( )
2 3

4

x
p x

x

−
=

+
    6. ( )

5

3 1

x
q x

x

−
=

−
 

 

7. ( )
( )

2

4

2
s x

x
=

−
    8. ( )

( )
2

5

1
r x

x
=

+
 

 

9. ( )
2

2

3 14 5

3 8 16

x x
f x

x x

− −
=

+ −
    10. ( )

2

2

2 7 15

3 14 15

x x
g x

x x

+ −
=

− +
 

 

 

11. ( )
2

2

2 3

1

x x
a x

x

+ −
=

−
    12. ( )

2

2

6

4

x x
b x

x

− −
=

−
 

 

13. ( )
22   1

4

x x
h x

x

+ −
=

−
    14. ( )

22 3 20

5

x x
k x

x

− −
=

−
 

 

15. ( )
2

3 2

3 4 4

4

x x
n x

x x

+ −
=

−
    16. ( ) 2

5

2 7 3

x
m x

x x

−
=

+ +
 

 

17. ( )
( )( )( )

( )
2

1 3 5

2 ( 4)

x x x
w x

x x

− + −
=

+ −
  18. ( )

( ) ( )

( )( )( )

2
2 5

3 1 4

x x
z x

x x x

+ −
=

− + +
 

 

 

 

Write an equation for a rational function with the given characteristics. 
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19. Vertical asymptotes at 5x =  and 5x = −  

x intercepts at (2, 0)  and ( 1, 0)−   y intercept at ( )0, 4  

 

20. Vertical asymptotes at 4x = −  and 1x = −  

x intercepts at ( )1, 0  and ( )5, 0   y intercept at (0, 7)  

 

21. Vertical asymptotes at 4x = −  and 5x = −  

x intercepts at ( )4, 0  and ( )6, 0−   Horizontal asymptote at 7y =  

 

22. Vertical asymptotes at 3x = −  and 6x =  

x intercepts at ( )2, 0−  and ( )1, 0   Horizontal asymptote at 2y = −  

 

23. Vertical asymptote at 1x = −   

Double zero at 2x =   y intercept at (0, 2)  

 

24. Vertical asymptote at 3x =   

Double zero at 1x =   y intercept at (0, 4)  

 

Write an equation for the function graphed. 

25.     26.  

 

27.    28.  

 

Write an equation for the function graphed. 
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29.    30.  

 

31.   32.  

 

33.  34.  

 

35.  36.  
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Write an equation for the function graphed. 

 

37.  38.  

 

Find the oblique asymptote of each function. 

 

39.  
23 4

( )
2

x x
f x

x

+
=

+
    40.  

22 3 8
( )

1

x x
g x

x

+ −
=

−
 

 

41.  
2 3

( )
2 6

x x
h x

x

− −
=

−
    42.  

25 2
( )

2 1

x x
k x

x

+ −
=

+
 

 

43.  
3 2

2

2 6 7
( )

3

x x x
m x

x

− + − +
=

+
  44.  

3 2

2

2
( )

1

x x x
n x

x x

+ +
=

+ +
 

 

45. A scientist has a beaker containing 20 mL of a solution containing 20% acid.  To 

dilute this, she adds pure water.   

a. Write an equation for the concentration in the beaker after adding n mL of 

water. 

b. Find the concentration if 10 mL of water has been added. 

c. How many mL of water must be added to obtain a 4% solution? 

d. What is the behavior as n → , and what is the physical significance of this? 

 

46. A scientist has a beaker containing 30 mL of a solution containing 3 grams of 

potassium hydroxide.  To this, she mixes a solution containing 8 milligrams per mL 

of potassium hydroxide.   

a. Write an equation for the concentration in the tank after adding n mL of the 

second solution. 

b. Find the concentration if 10 mL of the second solution has been added. 

c. How many mL of water must be added to obtain a 50 mg/mL solution? 

d. What is the behavior as n → , and what is the physical significance of this? 

 

47. Oscar is hunting magnetic fields with his gauss meter, a device for measuring the 

strength and polarity of magnetic fields. The reading on the meter will increase as 
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Oscar gets closer to a magnet. Oscar is in a long hallway at the end of which is a 

room containing an extremely strong magnet. When he is far down the hallway from 

the room, the meter reads a level of 0.2. He then walks down the hallway and enters 

the room. When he has gone 6 feet into the room, the meter reads 2.3. Eight feet into 

the room, the meter reads 4.4.  [UW] 

a. Give a rational model of form ( )
ax b

m x
cx d

+
=

+
 relating the meter reading ( )m x  

to how many feet x Oscar has gone into the room. 

b. How far must he go for the meter to reach 10? 100? 

c. Considering your function from part (a) and the results of part (b), how far 

into the room do you think the magnet is? 

48. The more you study for a certain exam, the better your performance on it. If you 

study for 10 hours, your score will be 65%. If you study for 20 hours, your score will 

be 95%. You can get as close as you want to a perfect score just by studying long 

enough. Assume your percentage score, ( )p n , is a function of the number of hours, n, 

that you study in the form ( )
an b

p n
cn d

+
=

+
. If you want a score of 80%, how long do 

you need to study? [UW] 

 

49. A street light is 10 feet north of a 

straight bike path that runs east-

west. Olav is bicycling down the 

path at a rate of 15 miles per 

hour. At noon, Olav is 33 feet 

west of the point on the bike path 

closest to the street light. (See the 

picture). The relationship between the intensity C of light (in candlepower) and the 

distance d (in feet) from the light source is given by 
2

k
C

d
= , where k is a constant 

depending on the light source.  [UW] 

a. From 20 feet away, the street light has an intensity of 1 candle. What is k? 

b. Find a function which gives the intensity of the light shining on Olav as a 

function of time, in seconds. 

c. When will the light on Olav have maximum intensity? 

d. When will the intensity of the light be 2 candles? 
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