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Section 3.1 Power Functions & Polynomial Functions 
A square is cut out of cardboard, with each side having length L.  If we wanted to write a 
function for the area of the square, with L as the input and the area as output, you may 
recall that the area of a rectangle can be found by multiplying the length times the width.  
Since our shape is a square, the length & the width are the same, giving the formula: 

2)( LLLLA =⋅=  
 
Likewise, if we wanted a function for the volume of a cube with each side having some 
length L, you may recall volume of a rectangular box can be found by multiplying length 
by width by height, which are all equal for a cube, giving the formula: 

3)( LLLLLV =⋅⋅=  
 
These two functions are examples of power functions, functions that are some power of 
the variable. 
 
 

Power Function 
A power function is a function that can be represented in the form 

pxxf =)(  
Where the base is a variable and the exponent, p, is a number. 

 
 
Example 1 

Which of our toolkit functions are power functions? 
 
The constant and identity functions are power functions, since they can be written as 

0)( xxf =  and 1)( xxf =  respectively. 
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The quadratic and cubic functions are both power functions with whole number powers: 
2)( xxf =  and 3)( xxf = . 

 
The reciprocal and reciprocal squared functions are both power functions with negative 
whole number powers since they can be written as 1)( −= xxf and 2)( −= xxf . 
 
The square and cube root functions are both power functions with fractional powers 
since they can be written as 21)( xxf = or 31)( xxf = . 

 
 
Try it Now 
1. What point(s) do the toolkit power functions have in common? 
 
 
Characteristics of Power Functions 
 
Shown to the right are the graphs of 

642 )(and,)(,)( xxfxxfxxf === , all even whole number 
powers.  Notice that all these graphs have a fairly similar 
shape, very similar to the quadratic toolkit, but as the power 
increases the graphs flatten somewhat near the origin, and 
become steeper away from the origin. 
 
To describe the behavior as numbers become larger and 
larger, we use the idea of infinity.  The symbol for positive infinity is ∞ , and ∞−  for 
negative infinity.  When we say that “x approaches infinity”, which can be symbolically 
written as ∞→x , we are describing a behavior – we are saying that x is getting large in 
the positive direction.   
 
With the even power functions, as the x becomes large in either the positive or negative 
direction, the output values become very large positive numbers.  Equivalently, we could 
describe this by saying that as x approaches positive or negative infinity, the f(x) values 
approach positive infinity.  In symbolic form, we could write: as ±∞→x , ∞→)(xf . 
 
Shown here are the graphs of 

753 )(and,)(,)( xxfxxfxxf === , all odd whole number 
powers.  Notice all these graphs look similar to the cubic 
toolkit, but again as the power increases the graphs flatten 
near the origin and become steeper away from the origin. 
 
For these odd power functions, as x approaches negative 
infinity, f(x) approaches negative infinity.  As x approaches 
positive infinity, f(x) approaches positive infinity.  In 
symbolic form we write:  as −∞→x , −∞→)(xf  and as ∞→x , ∞→)(xf . 
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Long Run Behavior 
The behavior of the graph of a function as the input takes on large negative values,

−∞→x , and large positive values, ∞→x , is referred to as the long run behavior of 
the function. 

 
 
Example 2 

Describe the long run behavior of the graph of 8)( xxf = . 
 
Since 8)( xxf =  has a whole, even power, we would expect this function to behave 
somewhat like the quadratic function.  As the input gets large positive or negative, we 
would expect the output to grow without bound in the positive direction.  In symbolic 
form, as ±∞→x , ∞→)(xf .  

 
 
Example 3 

Describe the long run behavior of the graph of 9)( xxf −=  
 
Since this function has a whole odd power, we would expect it to behave somewhat like 
the cubic function.  The negative in front of the 9x  will cause a vertical reflection, so as 
the inputs grow large positive, the outputs will grow large in the negative direction, and 
as the inputs grow large negative, the outputs will grow large in the positive direction.  
In symbolic form, for the long run behavior we would write: as ∞→x , −∞→)(xf
and as −∞→x , ∞→)(xf . 
 
You may use words or symbols to describe the long run behavior of these functions. 

 
 
Try it Now 
2. Describe in words and symbols the long run behavior of 4)( xxf −=  

 
 
Treatment of the rational and radical forms of power functions will be saved for later. 
 
 
Polynomials 
 
An oil pipeline bursts in the Gulf of Mexico, causing an oil slick in a roughly circular 
shape.  The slick is currently 24 miles in radius, but that radius is increasing by 8 miles 
each week.   If we wanted to write a formula for the area covered by the oil slick, we 
could do so by composing two functions together.  The first is a formula for the radius, r, 
of the spill, which depends on the number of weeks, w, that have passed.   
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Hopefully you recognized that this relationship is linear:   
wwr 824)( +=  

 
We can combine this with the formula for the area, A, of a circle:  

2)( rrA π=  
 
Composing these functions gives a formula for the area in terms of weeks: 

2)824()824())(()( wwAwrAwA +=+== π  
 
Multiplying this out gives the formula 

264384576)( wwwA πππ ++=  
 
This formula is an example of a polynomial.  A polynomial is simply the sum of terms 
each consisting of a vertically stretched or compressed power function with non-negative 
whole number power. 
 
 

Terminology of Polynomial Functions 

A polynomial is function that can be written as n
n xaxaxaaxf ++++= 

2
210)(  

 
Each of the ai constants are called coefficients and can be positive, negative, or zero, 
and be whole numbers, decimals, or fractions. 
 
A term of the polynomial is any one piece of the sum, that is any i

i xa . Each 
individual term is a transformed power function. 
 
The degree of the polynomial is the highest power of the variable that occurs in the 
polynomial. 
 
The leading term is the term containing the highest power of the variable: the term 
with the highest degree.  
 
The leading coefficient is the coefficient of the leading term. 
 
Because of the definition of the “leading” term we often rearrange polynomials so that 
the powers are descending. 

01
2

2.....)( axaxaxaxf n
n ++++=  
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Example 4 
Identify the degree, leading term, and leading coefficient of these polynomials: 
 
a) 32 423)( xxxf −+=  b) ttttg 725)( 35 +−=  c) 26)( 3 −−= ppph  
 
a) For the function f(x), the degree is 3, the highest power on x.  The leading term is the 
term containing that power, 34x− .  The leading coefficient is the coefficient of that 
term, -4. 
 
b) For g(t), the degree is 5, the leading term is 55t , and the leading coefficient is 5. 
 
c) For h(p), the degree is 3, the leading term is 3p− , so the leading coefficient is -1. 

 
 

Long Run Behavior of Polynomials 
For any polynomial, the long run behavior of the polynomial will match the long run 
behavior of the leading term. 

 
 
Example 5 

What can we determine about the long run behavior and 
degree of the equation for the polynomial graphed here? 
 
Since the output grows large and positive as the inputs 
grow large and positive, we describe the long run 
behavior symbolically by writing: as ∞→x , 

∞→)(xf .  Similarly, as −∞→x , −∞→)(xf . 
 
In words, we could say that as x values approach 
infinity, the function values approach infinity, and as x 
values approach negative infinity the function values 
approach negative infinity. 
 
We can tell this graph has the shape of an odd degree power function which has not 
been reflected, so the degree of the polynomial creating this graph must be odd, and the 
leading coefficient would be positive. 

 
 
Try it Now 
3. Given the function )5)(1)(2(2.0)( −+−= xxxxf use your algebra skills to write the 

function in standard polynomial form (as a sum of terms) and determine the leading 
term, degree, and long run behavior of the function.  
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Short Run Behavior 
 
Characteristics of the graph such as vertical and horizontal intercepts and the places the 
graph changes direction are part of the short run behavior of the polynomial.   
 
Like with all functions, the vertical intercept is where the graph crosses the vertical axis, 
and occurs when the input value is zero.  Since a polynomial is a function, there can only 
be one vertical intercept, which occurs at the point ),0( 0a .  The horizontal intercepts 
occur at the input values that correspond with an output value of zero.  It is possible to 
have more than one horizontal intercept. 
 
Horizontal intercepts are also called zeros, or roots of the function. 
 
 
Example 6 

Given the polynomial function )4)(1)(2()( −+−= xxxxf , written in factored form for 
your convenience, determine the vertical and horizontal intercepts.   
 
The vertical intercept occurs when the input is zero.   

8)40)(10)(20()0( =−+−=f .   
 
The graph crosses the vertical axis at the point (0, 8). 
 
The horizontal intercepts occur when the output is zero. 

)4)(1)(2(0 −+−= xxx  when x = 2, -1, or 4. 
f(x) has zeros, or roots, at x = 2, -1, and 4. 
 
The graph crosses the horizontal axis at the points (2, 0), (-1, 0), and (4, 0) 

 
 
Notice that the polynomial in the previous example, which would be degree three if 
multiplied out, had three horizontal intercepts and two turning points – places where the 
graph changes direction.  We will now make a general statement without justifying it – 
the reasons will become clear later in this chapter. 
 
 

Intercepts and Turning Points of Polynomials 
A polynomial of degree n will have: 
At most n horizontal intercepts.  An odd degree polynomial will always have at least 
one. 
At most n−1 turning points 
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Example 7 
What can we conclude about the graph of the 
polynomial shown here? 
 
Based on the long run behavior, with the graph 
becoming large positive on both ends of the graph, we 
can determine that this is the graph of an even degree 
polynomial.  The graph has 2 horizontal intercepts, 
suggesting a degree of 2 or greater, and 3 turning points, 
suggesting a degree of 4 or greater.  Based on this, it 
would be reasonable to conclude that the degree is even 
and at least 4, so it is probably a fourth degree 
polynomial. 

 
 
Try it Now 
4. Given the function )5)(1)(2(2.0)( −+−= xxxxf , determine the short run behavior. 

 
 

Important Topics of this Section 
Power Functions 
Polynomials 
Coefficients 
Leading coefficient 
Term 
Leading Term 
Degree of a polynomial  
Long run behavior 
Short run behavior 

 
 
Try it Now Answers 
1. (0, 0) and (1, 1) are common to all power functions. 
2. As x approaches positive and negative infinity, f(x) approaches negative infinity:  as 

±∞→x , −∞→)(xf  because of the vertical flip. 
3. The leading term is 32.0 x , so it is a degree 3 polynomial. 

As x approaches infinity (or gets very large in the positive direction) f(x) approaches 
infinity; as x approaches negative infinity (or gets very large in the negative direction) 
f(x) approaches negative infinity.  (Basically the long run behavior is the same as the 
cubic function). 

4. Horizontal intercepts are (2, 0) (-1, 0) and (5, 0), the vertical intercept is (0, 2) and 
there are 2 turns in the graph. 
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Section 3.1 Exercises 
 
Find the long run behavior of each function as x →∞  and x →−∞  
1. ( ) 4f x x=   2. ( ) 6f x x=    3. ( ) 3f x x=   4. ( ) 5f x x=  

5. ( ) 2f x x= −   6. ( ) 4f x x= −   7. ( ) 7f x x= −   8. ( ) 9f x x= −  
 
Find the degree and leading coefficient of each polynomial 
9. 74x       10. 65x    
11. 25 x−      12. 36 3 4x x+ −  
13. 4 22  3   1 x x x− − + −       14. 5 4 26 2    3x x x− + +  
15. ( )( )2 3 4 (3 1)x x x+ − +    16. ( )( )3 1 1 (4 3)x x x+ + +   
 
Find the long run behavior of each function as x →∞  and x →−∞  
17. 4 22  3   1 x x x− − + −       18. 5 4 26 2    3x x x− + +  
19. 23   2x x+ −      20. 3 22   3x x x− + − +  
 
21. What is the maximum number of x-intercepts and turning points for a polynomial of 
degree 5?  
 
22. What is the maximum number of x-intercepts and turning points for a polynomial of 
degree 8?  
 
What is the least possible degree of the polynomial function shown in each graph? 

23. 24. 25. 26.  

27. 28. 29. 30.  
 
Find the vertical and horizontal intercepts of each function. 
31. ( ) ( )( )2 1 2 ( 3)f t t t t= − + −   32. ( ) ( )( )3 1 4 ( 5)f x x x x= + − +  

33. ( ) ( )2 3 1 (2 1)g n n n= − − +   34. ( ) ( )3 4 (4 3)k u n n= − − +    
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Section 3.2 Quadratic Functions 
 
In this section, we will explore the family of 2nd degree polynomials, the quadratic 
functions.  While they share many characteristics of polynomials in general, the 
calculations involved in working with quadratics is typically a little simpler, which makes 
them a good place to start our exploration of short run behavior.  In addition, quadratics 
commonly arise from problems involving area and projectile motion, providing some 
interesting applications. 
 
 
Example 1 

A backyard farmer wants to enclose a rectangular space for a new garden.  She has 
purchased 80 feet of wire fencing to enclose 3 sides, and will put the 4th side against the 
backyard fence.  Find a formula for the area enclosed by the fence if the sides of fencing 
perpendicular to the existing fence have length L. 
 
In a scenario like this involving geometry, it is often 
helpful to draw a picture.  It might also be helpful to 
introduce a temporary variable, W, to represent the side 
of fencing parallel to the 4th side or backyard fence.   
 
Since we know we only have 80 feet of fence available, 
we know that 80=++ LWL , or more simply, 

802 =+WL .  This allows us to represent the width, W, in terms of L:  LW 280 −=  
 
Now we are ready to write an equation for the area the fence encloses.  We know the 
area of a rectangle is length multiplied by width, so  

)280( LLLWA −==  
2280)( LLLA −=   

This formula represents the area of the fence in terms of the variable length L. 
 
 
Short run Behavior: Vertex 
 
We now explore the interesting features of the graphs of quadratics.  In addition to 
intercepts, quadratics have an interesting feature where they change direction, called the 
vertex.  You probably noticed that all quadratics are related to transformations of the 
basic quadratic function 2)( xxf = . 
 
 
 
 
 
 

Backyard 

Garden 

W 

L 
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Example 2 
Write an equation for the quadratic graphed below as a transformation of 2)( xxf = , 
then expand the formula and simplify terms to write the equation in standard 
polynomial form. 

 
We can see the graph is the basic quadratic shifted to the left 2 and down 3, giving a 
formula in the form 3)2()( 2 −+= xaxg .  By plugging in a point that falls on the grid, 
such as (0,-1), we can solve for the stretch factor: 

2
1
42

3)20(1 2

=

=
−+=−

a

a
a

 

 

Written as a transformation, the equation for this formula is 3)2(
2
1)( 2 −+= xxg .  To 

write this in standard polynomial form, we can expand the formula and simplify terms: 

12
2
1)(

322
2
1)(

3)44(
2
1)(

3)2)(2(
2
1)(

3)2(
2
1)(

2

2

2

2

−+=

−++=

−++=

−++=

−+=

xxxg

xxxg

xxxg

xxxg

xxg

 

 
 
Notice that the horizontal and vertical shifts of the basic quadratic determine the location 
of the vertex of the parabola; the vertex is unaffected by stretches and compressions. 
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Try it Now 
1. A coordinate grid has been superimposed 

over the quadratic path of a basketball1.  
Find an equation for the path of the ball.  
Does he make the basket? 

 
 
 
 
 
 

Forms of Quadratic Functions 

The standard form of a quadratic function is cbxaxxf ++= 2)(  

The transformation form of a quadratic function is khxaxf +−= 2)()(  
The vertex of the quadratic function is located at (h, k), where h and k are the numbers 
in the transformation form of the function.  Because the vertex appears in the 
transformation form, it is often called the vertex form. 

 
 
In the previous example, we saw that it is possible to rewrite a quadratic function given in 
transformation form and rewrite it in standard form by expanding the formula.  It would 
be useful to reverse this process, since the transformation form reveals the vertex. 
 
Expanding out the general transformation form of a quadratic gives: 

kahahxaxkhxhxaxf
khxhxakhxaxf

++−=++−=

+−−=+−=
2222

2

2)2()(
))(()()(

 

 
This should be equal to the standard form of the quadratic: 

cbxaxkahahxax ++=++− 222 2  
 
The second degree terms are already equal.  For the linear terms to be equal, the 
coefficients must be equal: 

bah =− 2 , so 
a

bh
2

−=  

 
This provides us a method to determine the horizontal shift of the quadratic from the 
standard form.  We could likewise set the constant terms equal to find: 

ckah =+2 , so 
a

bc
a

bac
a

bacahck
442

2

2

22
2 −=−=






−−=−=  

                                                 
1 From http://blog.mrmeyer.com/?p=4778, © Dan Meyer, CC-BY 

http://blog.mrmeyer.com/?p=4778
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In practice, though, it is usually easier to remember that k is the output value of the 
function when the input is h, so )(hfk = . 
 

Finding the Vertex of a Quadratic 
For a quadratic given in standard form, the vertex (h, k) is located at: 

a
bh
2

−= ,   ( )
2

bk f h f
a
− = =  

 
 

 
 
Example 3 

Find the vertex of the quadratic 762)( 2 +−= xxxf .  Rewrite the quadratic into 
transformation form (vertex form). 
 

The horizontal coordinate of the vertex will be at 
2
3

4
6

)2(2
6

2
==

−
−=−=

a
bh  

The vertical coordinate of the vertex will be at 
2
57

2
36

2
32

2
3 2

=+





−






=






f  

 
Rewriting into transformation form, the stretch factor will be the same as the a in the 
original quadratic.  Using the vertex to determine the shifts,  

2
5

2
32)(

2

+





 −= xxf  

 
 
Try it Now 
2. Given the equation xxxg 613)( 2 −+=  write the equation in standard form and then in 

transformation/vertex form. 
 
 
As an alternative to using a formula for finding the vertex, the equation can also be 
written into vertex form by completing the square.  This process is most easily 
explained through example.  In most cases, using the formula for finding the vertex will 
be quicker and easier than completing the square, but completing the square is a useful 
technique when faced with some other algebraic problems. 
 
 
Example 4 

Rewrite 14122)( 2 +−= xxxf  into vertex form by completing the square. 
 
We start by factoring the leading coefficient from the quadratic and linear terms. 
( ) 1462 2 +− xx  
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Next, we are going to add something inside the parentheses so that the quadratic inside 
the parentheses becomes a perfect square.  In other words, we are looking for values p 
and q so that ( ) 22 )(6 qxpxx −=+− .   
 
Notice that if multiplied out on the right, the middle term would be -2q, so q must be 
half of the middle term on the left; q = -3.  In that case, p must be (-3)2 = 9.  
( ) 22 )3(96 −=+− xxx  
 
Now, we can’t just add 9 into the expression – that would change the value of the 
expression.  In fact, adding 9 inside the parentheses actually adds 18 to the expression, 
since the 2 outside the parentheses will distribute.  To keep the expression balanced, we 
can subtract 18. 
( ) 1814962 2 −++− xx  

 
Simplifying, we are left with vertex form. 
( ) 432 2 −−x  

 
 
In addition to enabling us to more easily graph a quadratic written in standard form, 
finding the vertex serves another important purpose – it allows us to determine the 
maximum or minimum value of the function, depending on which way the graph opens. 
 
 
Example 5 

Returning to our backyard farmer from the beginning of the section, what dimensions 
should she make her garden to maximize the enclosed area? 
 
Earlier we determined the area she could enclose with 80 feet of fencing on three sides 
was given by the equation 2280)( LLLA −= .  Notice that quadratic has been vertically 
reflected, since the coefficient on the squared term is negative, so the graph will open 
downwards, and the vertex will be a maximum value for the area. 
 
In finding the vertex, we take care since the equation is not written in standard 
polynomial form with decreasing powers.  But we know that a is the coefficient on the 
squared term, so a = -2, b = 80, and c = 0.   
Finding the vertex: 

20
)2(2

80
=

−
−=h ,   800)20(2)20(80)20( 2 =−== Ak  

 
The maximum value of the function is an area of 800 square feet, which occurs when L 
= 20 feet.  When the shorter sides are 20 feet, that leaves 40 feet of fencing for the 
longer side.  To maximize the area, she should enclose the garden so the two shorter 
sides have length 20 feet, and the longer side parallel to the existing fence has length 40 
feet. 
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Example 6 
A local newspaper currently has 84,000 subscribers, at a quarterly charge of $30.  
Market research has suggested that if they raised the price to $32, they would lose 5,000 
subscribers.  Assuming that subscriptions are linearly related to the price, what price 
should the newspaper charge for a quarterly subscription to maximize their revenue? 
 
Revenue is the amount of money a company brings in.  In this case, the revenue can be 
found by multiplying the charge per subscription times the number of subscribers.  We 
can introduce variables, C for charge per subscription and S for the number subscribers, 
giving us the equation 
Revenue = CS 
 
Since the number of subscribers changes with the price, we need to find a relationship 
between the variables.  We know that currently S = 84,000 and C = 30, and that if they 
raise the price to $32 they would lose 5,000 subscribers, giving a second pair of values, 
C = 32 and S = 79,000.  From this we can find a linear equation relating the two 
quantities.  Treating C as the input and S as the output, the equation will have form 

bmCS += .  The slope will be  

500,2
2
000,5

3032
000,84000,79

−=
−

=
−
−

=m  

 
This tells us the paper will lose 2,500 subscribers for each dollar they raise the price.  
We can then solve for the vertical intercept 
 

bCS +−= 2500     Plug in the point S = 84,000 and C = 30 
b+−= )30(2500000,84    Solve for b 

000,159=b  
 
This gives us the linear equation 000,159500,2 +−= CS  relating cost and subscribers.  
We now return to our revenue equation. 
 

CS=Revenue     Substituting the equation for S from above 
)000,159500,2(Revenue +−= CC   Expanding 

CC 000,159500,2Revenue 2 +−=  
 
We now have a quadratic equation for revenue as a function of the subscription charge.  
To find the price that will maximize revenue for the newspaper, we can find the vertex: 

8.31
)500,2(2

000,159
=

−
−=h  

 
The model tells us that the maximum revenue will occur if the newspaper charges 
$31.80 for a subscription.  To find what the maximum revenue is, we can evaluate the 
revenue equation: 
Maximum Revenue = =+− )8.31(000,159)8.31(500,2 2 $2,528,100 



3.2 Quadratic Functions   173 

Short run Behavior: Intercepts 
 
As with any function, we can find the vertical intercepts of a quadratic by evaluating the 
function at an input of zero, and we can find the horizontal intercepts by solving for when 
the output will be zero.  Notice that depending upon the location of the graph, we might 
have zero, one, or two horizontal intercepts. 
 

   
zero horizontal intercepts one horizontal intercept two horizontal intercepts 

 
 
Example 7 

Find the vertical and horizontal intercepts of the quadratic 253)( 2 −+= xxxf  
 
We can find the vertical intercept by evaluating the function at an input of zero: 

22)0(5)0(3)0( 2 −=−+=f   Vertical intercept at (0,-2) 
 
For the horizontal intercepts, we solve for when the output will be zero 

2530 2 −+= xx  
 
In this case, the quadratic can be factored easily, providing the simplest method for 
solution 

)2)(13(0 +−= xx  

3
1

130

=

−=

x

x
 or 

2
20

−=
+=

x
x   Horizontal intercepts at 






 0,

3
1  and (-2,0) 

 
 
Notice that in the standard form of a quadratic, the constant term c reveals the vertical 
intercept of the graph. 
 
 
Example 8 

Find the horizontal intercepts of the quadratic 442)( 2 −+= xxxf  
 
Again we will solve for when the output will be zero 

4420 2 −+= xx  
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Since the quadratic is not easily factorable in this case, we solve for the intercepts by 
first rewriting the quadratic into transformation form. 

1
)2(2

4
2

−=−=−=
a

bh  64)1(4)1(2)1( 2 −=−−+−=−= fk  

6)1(2)( 2 −+= xxf  
 
Now we can solve for when the output will be zero 

31

31

)1(3
)1(26

6)1(20

2

2

2

±−=

±=+

+=

+=

−+=

x

x

x
x
x

  

 
The graph has horizontal intercepts at )0,31( −− and )0,31( +−  

 
 
Try it Now 
3. In Try it Now problem 2 we found the standard & transformation form for the function 

xxxg 613)( 2 −+= .  Now find the Vertical & Horizontal intercepts (if any). 

 
 
The process in the last example is done commonly enough that sometimes people find it 
easier to solve the problem once in general and remember the formula for the result, 
rather than repeating the process each time.  Based on our previous work we showed that 
any quadratic in standard form can be written into transformation form as: 

a
bc

a
bxaxf

42
)(

22

−+





 +=  

 
Solving for the horizontal intercepts using this general equation gives: 

a
bc

a
bxa

42
0

22

−+





 +=  start to solve for x by moving the constants to the other side 

22

24






 +=−

a
bxac

a
b   divide both sides by a 

2

2

2

24






 +=−

a
bx

a
c

a
b   find a common denominator to combine fractions 

2

22

2

24
4

4






 +=−

a
bx

a
ac

a
b  combine the fractions on the left side of the equation 
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2

2

2

24
4







 +=

−
a

bx
a

acb   take the square root of both sides 

a
bx

a
acb

24
4
2

2

+=
−

±  subtract b/2a from both sides 

x
a

acb
a

b
=

−
±−

2
4

2

2

 combining the fractions 

a
acbbx

2
42 −±−

=   Notice that this can yield two different answers for x 

 
 

Quadratic Formula 

For a quadratic function given in standard form 2( )f x ax bx c= + + , the quadratic 
formula gives the horizontal intercepts of the graph of this function. 

a
acbbx

2
42 −±−

=  

 
 
Example 9 

A ball is thrown upwards from the top of a 40-foot-tall building at a speed of 80 feet per 
second.  The ball’s height above ground can be modeled by the equation 

2( ) 16 80 40H t t t= − + + .   
What is the maximum height of the ball? 
When does the ball hit the ground? 
 
To find the maximum height of the ball, we would need to know the vertex of the 
quadratic. 

2
5

32
80

)16(2
80

==
−

−=h ,   
25 5 516 80 40 140

2 2 2
k H      = = − + + =     

     
 

 
The ball reaches a maximum height of 140 feet after 2.5 seconds. 
To find when the ball hits the ground, we need to determine when the height is zero – 
when H(t) = 0.  While we could do this using the transformation form of the quadratic, 
we can also use the quadratic formula: 

32
896080

)16(2
)40)(16(48080 2

−
±−

=
−

−−±−
=t  

 
Since the square root does not simplify nicely, we can use a calculator to approximate 
the values of the solutions: 
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458.5
32

896080
≈

−
−−

=t  or  458.0
32

896080
−≈

−
+−

=t  

 
The second answer is outside the reasonable domain of our model, so we conclude the 
ball will hit the ground after about 5.458 seconds. 

 
Try it Now 
4. For these two equations determine if the vertex will be a maximum value or a 

minimum value. 
a.  78)( 2 ++−= xxxg  
b.  2)3(3)( 2 +−−= xxg  

 
 

Important Topics of this Section 
Quadratic functions 
 Standard form 
 Transformation form/Vertex form 
 Vertex as a maximum / Vertex as a minimum 
Short run behavior 
 Vertex / Horizontal & Vertical intercepts  
Quadratic formula 

 
 
Try it Now Answers 
1. The path passes through the origin with vertex at (-4, 7).  

27( ) ( 4) 7
16

h x x= − + + .  To make the shot, h(-7.5) would 

need to be about 4.  ( 7.5) 1.64h − ≈ ; he doesn’t make it. 
 
2. 136)( 2 +−= xxxg  in Standard form;   

Finding the vertex, 3
)1(2
)6(
=

−−
=h .  413)3(63)3( 2 =+−== gk . 

4)3()( 2 +−= xxg in Transformation form 
 
3. Vertical intercept at (0, 13),  No horizontal intercepts since the vertex is above the x-

axis and the graph opens upwards. 
 
4. a. Vertex is a minimum value, since a > 0 and the graph opens upwards 
    b. Vertex is a maximum value, since a < 0 and the graph opens downwards
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Section 3.2 Exercises 
 
Write an equation for the quadratic function graphed. 

1.    2.  

3.     4.  

5.       6.  
 
For each of the follow quadratic functions, find a) the vertex, b) the vertical intercept, and 
c) the horizontal intercepts. 
7. ( ) 22 10 12y x x x= + +    8. ( ) 23 6 9z p x x= + −   

9. ( ) 22 10 4f x x x= − +    10. ( ) 22 14 12g x x x= − − +  

11. ( ) 24 6 1h t t t= − + −    12. ( ) 22 4 15 k t x x= + −   
 
Rewrite the quadratic function into vertex form. 
13. ( ) 2 12 32f x x x= − +    14. ( ) 2 2 3g x x x= + −  

15. ( ) 22 8 10h x x x= + −    16. ( ) 23 6 9k x x x= − −   
 
17. Find the values of b and c so ( ) 28f x x bx c= − + +  has vertex ( )2,  7−  

18. Find the values of b and c so ( ) 26f x x bx c= + +  has vertex (7,  9)−  
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Write an equation for a quadratic with the given features 
 
19. x-intercepts (-3, 0) and (1, 0), and y intercept (0, 2) 
20. x-intercepts (2, 0) and (-5, 0), and y intercept (0, 3) 
21. x-intercepts (2, 0) and (5, 0), and y intercept (0, 6) 
22. x-intercepts (1, 0) and (3, 0), and y intercept (0, 4) 
23. Vertex at (4, 0), and y intercept (0, -4) 
24. Vertex at (5, 6), and y intercept (0, -1) 
25. Vertex at (-3, 2), and passing through (3, -2) 
26. Vertex at (1, -3), and passing through (-2, 3) 

 
27. A rocket is launched in the air.  Its height, in meters above sea level, as a function of 

time, in seconds, is given by ( ) 24.9 229 234h t t t= − + + .   

a. From what height was the rocket launched? 
b. How high above sea level does the rocket reach its peak? 
c. Assuming the rocket will splash down in the ocean, at what time does 

splashdown occur? 
 

28. A ball is thrown in the air from the top of a building.  Its height, in meters above 
ground, as a function of time, in seconds, is given by ( ) 24.9 24 8h t t t= − + + .   

a. From what height was the ball thrown? 
b. How high above ground does the ball reach its peak? 
c. When does the ball hit the ground? 

 

29. The height of a ball thrown in the air is given by ( ) 21 6 3
12

h x x x= − + + , where x is 

the horizontal distance in feet from the point at which the ball is thrown. 
a. How high is the ball when it was thrown? 
b. What is the maximum height of the ball? 
c. How far from the thrower does the ball strike the ground? 

 

30. A javelin is thrown in the air.  Its height is given by ( ) 21 8 6
20

h x x x= − + + , where x 

is the horizontal distance in feet from the point at which the javelin is thrown. 
a. How high is the javelin when it was thrown? 
b. What is the maximum height of the javelin? 
c. How far from the thrower does the javelin strike the ground? 
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31. A box with a square base and no top is to be made from a square piece of cardboard 
by cutting 6 in. squares out of each corner and folding up the sides. The box needs to 
hold 1000 in3. How big a piece of cardboard is needed? 
 

32. A box with a square base and no top is to be made from a square piece of cardboard 
by cutting 4 in. squares out of each corner and folding up the sides. The box needs to 
hold 2700 in3. How big a piece of cardboard is needed? 
 

33. A farmer wishes to enclose two pens with fencing, as shown.  
If the farmer has 500 feet of fencing to work with, what 
dimensions will maximize the area enclosed? 
 

34. A farmer wishes to enclose three pens with fencing, as shown.  
If the farmer has 700 feet of fencing to work with, what 
dimensions will maximize the area enclosed? 

 
35. You have a wire that is 56 cm long. You wish to cut it into two pieces. One piece will 

be bent into the shape of a square. The other piece will be bent into the shape of a 
circle. Let A represent the total area enclosed by the square and the circle. What is the 
circumference of the circle when A is a minimum? 
 

36. You have a wire that is 71 cm long. You wish to cut it into two pieces. One piece will 
be bent into the shape of a right triangle with legs of equal length. The other piece 
will be bent into the shape of a circle. Let A represent the total area enclosed by the 
triangle and the circle. What is the circumference of the circle when A is a minimum? 
 

37. A soccer stadium holds 62,000 spectators. With a ticket price of $11, the average 
attendance has been 26,000. When the price dropped to $9, the average attendance 
rose to 31,000. Assuming that attendance is linearly related to ticket price, what ticket 
price would maximize revenue? 
 

38. A farmer finds that if she plants 75 trees per acre, each tree will yield 20 bushels of 
fruit. She estimates that for each additional tree planted per acre, the yield of each tree 
will decrease by 3 bushels. How many trees should she plant per acre to maximize her 
harvest? 
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39. A hot air balloon takes off from the 
edge of a mountain lake. Impose a 
coordinate system as pictured and 
assume that the path of the balloon 
follows the graph of 

( ) 22 4
2500 5

f x x x= − + . The land rises 

at a constant incline from the lake at the 
rate of 2 vertical feet for each 20 
horizontal feet. [UW] 

a. What is the maximum height of the balloon above water level? 
b. What is the maximum height of the balloon above ground level? 
c. Where does the balloon land on the ground? 
d. Where is the balloon 50 feet above the ground? 

  
 
40. A hot air balloon takes off from 

the edge of a plateau. Impose a 
coordinate system as pictured 
below and assume that the path 
the balloon follows is the graph 
of the quadratic function 

( ) 24 4
2500 5

f x x x= − + . The 

land drops at a constant incline 
from the plateau at the rate of 1 
vertical foot for each 5 
horizontal feet. [UW] 

a. What is the maximum height of the balloon above plateau level? 
b. What is the maximum height of the balloon above ground level? 
c. Where does the balloon land on the ground? 
d. Where is the balloon 50 feet above the ground? 
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Section 3.3 Graphs of Polynomial Functions 
 
In the previous section, we explored the short run behavior of quadratics, a special case 
of polynomials.  In this section, we will explore the short run behavior of polynomials in 
general. 
 
Short run Behavior:  Intercepts 
 
As with any function, the vertical intercept can be found by evaluating the function at an 
input of zero.  Since this is evaluation, it is relatively easy to do it for a polynomial of any 
degree. 
 
To find horizontal intercepts, we need to solve for when the output will be zero.  For 
general polynomials, this can be a challenging prospect.  While quadratics can be solved 
using the relatively simple quadratic formula, the corresponding formulas for cubic and 
4th degree polynomials are not simple enough to remember, and formulas do not exist for 
general higher-degree polynomials.  Consequently, we will limit ourselves to three cases: 

1) The polynomial can be factored using known methods: greatest common 
factor and trinomial factoring.   

2) The polynomial is given in factored form. 
3) Technology is used to determine the intercepts. 

 
Other techniques for finding the intercepts of general polynomials will be explored in the 
next section. 
 
 
Example 1 

Find the horizontal intercepts of 246 23)( xxxxf +−= . 
 
We can attempt to factor this polynomial to find solutions for f(x) = 0. 

023 246 =+− xxx   Factoring out the greatest common factor 
( ) 023 242 =+− xxx   Factoring the inside as a quadratic in x2 

( )( ) 021 222 =−− xxx  Then break apart to find solutions 

0
02

=
=

x
x  or 

( )

1
1

01
2

2

±=
=

=−

x
x
x

 or  
( )

2

2
02

2

2

±=

=

=−

x

x
x

 

 
This gives us 5 horizontal intercepts. 
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Example 2 
Find the vertical and horizontal intercepts of )32()2()( 2 +−= tttg  
 
The vertical intercept can be found by evaluating g(0).   

12)3)0(2()20()0( 2 =+−=g  
 
The horizontal intercepts can be found by solving g(t) = 0 

0)32()2( 2 =+− tt    Since this is already factored, we can break it apart: 

2
02

0)2( 2

=
=−

=−

t
t
t

 or 
2
3

0)32(
−

=

=+

t

t
 

 
We can always check our answers are reasonable by graphing the polynomial. 

 
 
Example 3 

Find the horizontal intercepts of 64)( 23 −++= tttth  
 
Since this polynomial is not in factored form, has no 
common factors, and does not appear to be factorable 
using techniques we know, we can turn to technology to 
find the intercepts.   
 
Graphing this function, it appears there are horizontal 
intercepts at t = -3, -2, and 1. 
 
We could check these are correct by plugging in these 
values for t and verifying that ( 3) ( 2) (1) 0h h h− = − = = . 

 
 
Try it Now 
1. Find the vertical and horizontal intercepts of the function 24 4)( tttf −= . 

 
 
Graphical Behavior at Intercepts 
 
If we graph the function 32 )1()2)(3()( +−+= xxxxf , 
notice that the behavior at each of the horizontal 
intercepts is different. 
 
At the horizontal intercept x = -3, coming from the 

)3( +x  factor of the polynomial, the graph passes 
directly through the horizontal intercept.   
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The factor )3( +x  is linear (has a power of 1), so the behavior near the intercept is like 
that of a line - it passes directly through the intercept. We call this a single zero, since the 
zero corresponds to a single factor of the function. 
 
At the horizontal intercept x = 2, coming from the 2)2( −x  factor of the polynomial, the 
graph touches the axis at the intercept and changes direction.  The factor is quadratic 
(degree 2), so the behavior near the intercept is like that of a quadratic – it bounces off 
the horizontal axis at the intercept.  Since )2)(2()2( 2 −−=− xxx , the factor is repeated 
twice, so we call this a double zero. We could also say the zero has multiplicity 2. 
 
At the horizontal intercept x = -1, coming from the 3)1( +x  factor of the polynomial, the 
graph passes through the axis at the intercept, but flattens out a bit first.  This factor is 
cubic (degree 3), so the behavior near the intercept is like that of a cubic, with the same 
“S” type shape near the intercept that the toolkit 3x  has. We call this a triple zero. We 
could also say the zero has multiplicity 3.  
 
By utilizing these behaviors, we can sketch a reasonable graph of a factored polynomial 
function without needing technology. 
 
 

Graphical Behavior of Polynomials at Horizontal Intercepts 

If a polynomial contains a factor of the form phx )( − , the behavior near the horizontal 
intercept h is determined by the power on the factor. 
 p = 1    p = 2    p = 3  

   
 Single zero      Double zero          Triple zero  
  Multiplicity 1      Multiplicity 2         Multiplicity 3 
 
For higher even powers 4,6,8 etc.… the graph will still bounce off the horizontal axis 
but the graph will appear flatter with each increasing even power as it approaches and 
leaves the axis. 
 
For higher odd powers, 5,7,9 etc… the graph will still pass through the horizontal axis 
but the graph will appear flatter with each increasing odd power as it approaches and 
leaves the axis. 
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Example 4 
Sketch a graph of )5()3(2)( 2 −+−= xxxf . 
 
This graph has two horizontal intercepts.  At x = -3, the factor is squared, indicating the 
graph will bounce at this horizontal intercept.  At x = 5, the factor is not squared, 
indicating the graph will pass through the axis at this intercept. 
 
Additionally, we can see the leading term, if this polynomial were multiplied out, would 
be 32x− , so the long-run behavior is that of a vertically reflected cubic, with the 
outputs decreasing as the inputs get large positive, and the inputs increasing as the 
inputs get large negative. 
 
To sketch this we consider the following: 
As −∞→x  the function ∞→)(xf  so we know the graph starts in the 2nd quadrant 
and is decreasing toward the horizontal axis. 
 
At (-3, 0) the graph bounces off the horizontal axis and so the function must start 
increasing. 
 
At (0, 90) the graph crosses the vertical axis at the vertical intercept. 
 
Somewhere after this point, the graph must turn back down or start decreasing toward 
the horizontal axis since the graph passes through the next intercept at (5,0). 
 
As ∞→x  the function −∞→)(xf  so we know the 
graph continues to decrease and we can stop drawing 
the graph in the 4th quadrant. 
 
Using technology we can verify the shape of the 
graph. 
 
 
 
 

  
 
Try it Now 
2. Given the function xxxxg 6)( 23 −−=  use the methods that we have learned so far to 

find the vertical & horizontal intercepts, determine where the function is negative and 
positive, describe the long run behavior and sketch the graph without technology. 
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Solving Polynomial Inequalities 
 
One application of our ability to find intercepts and sketch a graph of polynomials is the 
ability to solve polynomial inequalities.  It is a very common question to ask when a 
function will be positive and negative.  We can solve polynomial inequalities by either 
utilizing the graph, or by using test values. 
 
 
 
Example 5 

Solve 0)4()1)(3( 2 >−++ xxx  
 
As with all inequalities, we start by solving the equality 0)4()1)(3( 2 =−++ xxx , 
which has solutions at x = -3, -1, and 4.  We know the function can only change from 
positive to negative at these values, so these divide the inputs into 4 intervals.   
 
We could choose a test value in each interval and evaluate the function 

)4()1)(3()( 2 −++= xxxxf  at each test value to determine if the function is positive or 
negative in that interval 
 

 
 
On a number line this would look like: 
 

 
 
From our test values, we can determine this function is positive when x < -3 or x > 4, or 
in interval notation, ),4()3,( ∞∪−−∞  

 
 
We could have also determined on which intervals the function was positive by sketching 
a graph of the function.  We illustrate that technique in the next example 
 
 
 
 
 
 
 

Interval Test x in interval f( test value) >0 or <0? 
x < -3 -4 72 > 0 
-3 < x < -1 -2 -6 < 0 
-1 < x < 4 0 -12 < 0 
x > 4 5 288 > 0 

 
 

0 0 0 positive negative negative positive 
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Example 6 

Find the domain of the function 256)( tttv −−= . 
 
A square root is only defined when the quantity we are taking the square root of, the 
quantity inside the square root, is zero or greater.  Thus, the domain of this function will 
be when 056 2 ≥−− tt . 
 
We start by solving the equality 056 2 =−− tt .  While we could use the quadratic 
formula, this equation factors nicely to 0)1)(6( =−+ tt , giving horizontal intercepts t = 
1 and t = -6.   
 
 
 
Sketching a graph of this quadratic will allow us to 
determine when it is positive. 
 
From the graph we can see this function is positive 
for inputs between the intercepts.  So 056 2 ≥−− tt  
for 16 ≤≤− t , and this will be the domain of the v(t) 
function. 

 
 
 
Writing Equations using Intercepts 
 
Since a polynomial function written in factored form will have a horizontal intercept 
where each factor is equal to zero, we can form a function that will pass through a set of 
horizontal intercepts by introducing a corresponding set of factors. 
 
 

Factored Form of Polynomials 
If a polynomial has horizontal intercepts at nxxxx ,,, 21 = , then the polynomial can 
be written in the factored form 

np
n

pp xxxxxxaxf )()()()( 21
21 −−−= 

 

where the powers pi on each factor can be determined by the behavior of the graph at 
the corresponding intercept, and the stretch factor a can be determined given a value 
of the function other than the horizontal intercept. 
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Example 7  
Write a formula for the polynomial function 
graphed here. 
 
 
This graph has three horizontal intercepts: x = -3, 
2, and 5.  At x = -3 and 5 the graph passes through 
the axis, suggesting the corresponding factors of 
the polynomial will be linear.  At x = 2 the graph 
bounces at the intercept, suggesting the 
corresponding factor of the polynomial will be 2nd 
degree (quadratic).   
 
Together, this gives us: 

)5()2)(3()( 2 −−+= xxxaxf  
 
To determine the stretch factor, we can utilize another point on the graph.  Here, the 
vertical intercept appears to be (0,-2), so we can plug in those values to solve for a: 

30
1

602
)50()20)(30(2 2

=

−=−
−−+=−

a

a
a

 

 
The graphed polynomial appears to represent the function 

)5()2)(3(
30
1)( 2 −−+= xxxxf . 

 
 
Try it Now 
3. Given the graph, write a formula for the function shown. 
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Estimating Extrema 
 
With quadratics, we were able to algebraically find the maximum or minimum value of 
the function by finding the vertex.  For general polynomials, finding these turning points 
is not possible without more advanced techniques from calculus.  Even then, finding 
where extrema occur can still be algebraically challenging.  For now, we will estimate the 
locations of turning points using technology to generate a graph. 
 
 
Example 8 

An open-top box is to be constructed by cutting out squares from each corner of a 14cm 
by 20cm sheet of plastic then folding up the sides.  Find the size of squares that should 
be cut out to maximize the volume enclosed by the box. 
 
We will start this problem by drawing a picture, labeling the 
width of the cut-out squares with a variable, w.       
 
Notice that after a square is cut out from each end, it leaves a 

)214( w− cm by )2120( w− cm rectangle for the base of the 
box, and the box will be w cm tall.  This gives the volume: 

32 468280)220)(214()( wwwwwwwV +−=−−=  
 
Using technology to sketch a graph allows us to estimate the maximum value for the 
volume, restricted to reasonable values for w: values from 0 to 7. 
 

 
 
From this graph, we can estimate the maximum value is around 340, and occurs when 
the squares are about 2.75cm square.  To improve this estimate, we could use advanced 
features of our technology, if available, or simply change our window to zoom in on our 
graph. 

w 
w 
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From this zoomed-in view, we can refine our estimate for the max volume to about 339, 
when the squares are 2.7cm square. 

 
 
Try it Now 
4. Use technology to find the maximum and minimum values on the interval [-1, 4] of the 

function )4()1()2(2.0)( 23 −+−−= xxxxf .  

 
 

Important Topics of this Section 
Short Run Behavior 
 Intercepts (Horizontal & Vertical) 
Methods to find Horizontal intercepts 
 Factoring Methods 
 Factored Forms 
 Technology 
Graphical Behavior at intercepts 
Single, Double and Triple zeros (or multiplicity 1, 2, and 3 behaviors) 
Solving polynomial inequalities using test values & graphing techniques 
Writing equations using intercepts 
Estimating extrema 
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Try it Now Answers 
1.  Vertical intercept (0, 0).  24 40 tt −=  factors as ( ) ( )( )2240 222 +−=−= ttttt  

Horizontal intercepts (0, 0), (-2, 0), (2, 0) 
 
2. Vertical intercept (0, 0),  

Horizontal intercepts (-2, 0), (0, 0), (3, 0) 
    The function is negative on ( ∞− , -2) and (0, 3) 
    The function is positive on (-2, 0) and (3,∞ ) 
    The leading term is 3x so as −∞→x , −∞→)(xg and as

∞→x , ∞→)(xg  
 
3. Double zero at x=-1, triple zero at x=2. Single zero at x=4. 

)4()1()2()( 23 −+−= xxxaxf .  Substituting (0,-4) and solving for a,  
3 21( ) ( 2) ( 1) ( 4)

8
f x x x x= − − + −  

 
4.  The minimum occurs at approximately the point (0, -6.5), and the maximum occurs at 

approximately the point (3.5, 7). 
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Section 3.3 Exercises 
 
Find the C and t intercepts of each function. 
1. ( ) ( )( )2 4 1 ( 6)C t t t t= − + −   2. ( ) ( )( )3 2 3 ( 5)C t t t t= + − +   

3. ( ) ( )24 2 ( 1)C t t t t= − +    4. ( ) ( )( )22 3 1C t t t t= − +  

5. ( ) 4 3 22 8 6C t t t t= − +    6. ( ) 4 3 24 12 40C t t t t= + −  

 
Use your calculator or other graphing technology to solve graphically for the zeros of the 
function. 
7. ( ) 3 27 4 30f x x x x= − + +    8. ( ) 3 26 28g x x x x= − + +   
 
Find the long run behavior of each function as t →∞  and t →−∞  
9. ( ) ( ) ( )3 33 5 3 ( 2)h t t t t= − − −   10. ( ) ( ) ( )2 32 3 1 ( 2)k t t t t= − + +  

11. ( ) ( )( )22 1 3p t t t t= − − −    12. ( ) ( )( )34 2 1q t t t t= − − +  

 
Sketch a graph of each equation. 
13. ( ) ( )23 ( 2)f x x x= + −    14. ( ) ( )( )24 1g x x x= + −  

15. ( ) ( ) ( )3 21 3h x x x= − +    16. ( ) ( ) ( )3 23 2k x x x= − −  

17. ( ) ( )2 1 ( 3)m x x x x= − − +    18. ( ) ( )3 2 ( 4)n x x x x= − + −    

 
Solve each inequality. 
19. ( )( )23 2 0x x− − >   20. ( )( )25 1 0x x− + >  

21. ( )( )( )1 2 3 0x x x− + − <    22. ( )( )( )4 3 6 0x x x− + + <    

 
Find the domain of each function. 
23. ( ) 242 19 2f x x x= − + −    24. ( ) 228 17 3g x x x= − −  

25. ( ) 24 5h x x x= − +    26. ( ) 22 7 3k x x x= + +  

27. ( ) ( )( )23 2n x x x= − +    28. ( ) ( )21 ( 3)m x x x= − +  

29. ( ) 2

1
2 8

p t
t t

=
+ −

    30. ( ) 2

4
4 5

q t
x x

=
− −
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Write an equation for a polynomial the given features. 
31. Degree 3.  Zeros at x = -2, x = 1, and x = 3.  Vertical intercept at (0, -4) 

32. Degree 3.  Zeros at x = -5, x = -2, and x = 1.  Vertical intercept at (0, 6) 

33. Degree 5.  Roots of multiplicity 2 at x = 3 and x = 1, and a root of multiplicity 1 at     
x = -3.  Vertical intercept at (0, 9) 

34. Degree 4.  Root of multiplicity 2 at x = 4, and a roots of multiplicity 1 at x = 1 and     
x = -2.  Vertical intercept at (0, -3) 

35. Degree 5.  Double zero at x = 1, and triple zero at x = 3.  Passes through the point    
(2, 15) 

36. Degree 5.  Single zero at x = -2 and x = 3, and triple zero at x = 1.  Passes through the 
point (2, 4) 

 
Write a formula for each polynomial function graphed. 

37.  38.  39.  
 

40.  41.  42.   
 

43.  44.  
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Write a formula for each polynomial function graphed. 
 

45.   46.  
 

47.   48.  
 

49.   50.  
 
51. A rectangle is inscribed with its base on the x axis and its upper corners on the 

parabola 25y x= − .  What are the dimensions of such a rectangle that has the greatest 
possible area? 
 

52. A rectangle is inscribed with its base on the x axis and its upper corners on the curve 
416y x= − .  What are the dimensions of such a rectangle that has the greatest 

possible area?
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Section 3.4 Factor Theorem and Remainder Theorem 
 
In the last section, we limited ourselves to finding the intercepts, or zeros, of polynomials 
that factored simply, or we turned to technology.  In this section, we will look at 
algebraic techniques for finding the zeros of polynomials like 64)( 23 −++= tttth . 
 
Long Division 
 
In the last section we saw that we could write a polynomial as a product of factors, each 
corresponding to a horizontal intercept.  If we knew that x = 2 was an intercept of the 
polynomial 1454 23 −−+ xxx , we might guess that the polynomial could be factored as 

)something)(2(1454 23 −=−−+ xxxx .   To find that "something," we can use 
polynomial division. 
 
 
Example 1 

Divide 1454 23 −−+ xxx  by 2−x  
 
Start by writing the problem out in long division form 

14542 23 −−+− xxxx    

 
Now we divide the leading terms: 23 xxx =÷ .  It is best to align it above the same-
powered term in the dividend.  Now, multiply that 2x  by 2−x  and write the result 
below the dividend. 
 

2

23

23

2
14542

x

xx
xxxx

−

−−+−   Now subtract that expression from the dividend. 

 

( )

2

2

23

23

1456

2
14542

x

xx

xx
xxxx

−−

−−

−−+−    

 
Again, divide the leading term of the remainder by the leading term of the divisor.  

xxx 66 2 =÷ .  We add this to the result, multiply 6x by 2−x , and subtract. 
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( )

( )

xx

x

xx
xx

xx
xxxx

6

147

126
1456

2
14542

2

2

2

23

23

+

−

−−

−−

−−

−−+−   Repeat the process one last time. 

 

( )

( )

( )

76

0

147
147

126
1456

2
14542

2

2

2

23

23

++

−−
−

−−

−−

−−

−−+−
xx

x
x

xx
xx

xx
xxxx  

 
This tells us 1454 23 −−+ xxx  divided by 2−x  is 762 ++ xx , with a remainder of 
zero.  This also means that we can factor 1454 23 −−+ xxx  as ( )( )762 2 ++− xxx . 

 
 
This gives us a way to find the intercepts of this polynomial. 
 
 
Example 2 

Find the horizontal intercepts of  1454)( 23 −−+= xxxxh . 
 
To find the horizontal intercepts, we need to solve h(x) = 0.  From the previous 
example, we know the function can be factored as ( )( )762)( 2 ++−= xxxxh .   
 

( )( ) 0762)( 2 =++−= xxxxh  when x = 2 or when 0762 =++ xx .  This doesn't factor 
nicely, but we could use the quadratic formula to find the remaining two zeros. 

23
)1(2

)7)(1(466 2

±−=
−±−

=x . 

 
The horizontal intercepts will be at )0,2( , ( )0,23−− , and ( )0,23+− . 
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Try it Now 
1. Divide 372 3 +− xx  by 3+x  using long division. 
 
 
The Factor and Remainder Theorems 
 
When we divide a polynomial, p(x) by some divisor polynomial d(x), we will get a 
quotient polynomial q(x) and possibly a remainder r(x).  In other words,  

)()()()( xrxqxdxp += . 
 
Because of the division, the remainder will either be zero, or a polynomial of lower 
degree than d(x).  Because of this, if we divide a polynomial by a term of the form cx − , 
then the remainder will be zero or a constant.   
 
If rxqcxxp +−= )()()( , then rrrcqcccp =+=+−= 0)()()( , which establishes the 
Remainder Theorem. 
 
 

The Remainder Theorem 
If )(xp  is a polynomial of degree 1 or greater and c is a real number, then when p(x) 
is divided by cx − , the remainder is )(cp . 

 
 
If cx −  is a factor of the polynomial p, then )()()( xqcxxp −=  for some polynomial q.  
Then 0)()()( =−= cqcccp , showing c is a zero of the polynomial.  This shouldn't 
surprise us - we already knew that if the polynomial factors it reveals the roots. 
 
If 0)( =cp , then the remainder theorem tells us that if p is divided by cx − , then the 
remainder will be zero, which means cx −  is a factor of p.  
 
 

The Factor Theorem 
If )(xp  is a nonzero polynomial, then the real number c is a zero of )(xp  if and only 
if cx −  is a factor of )(xp . 

 
 
Synthetic Division 
 
Since dividing by cx −  is a way to check if a number is a zero of the polynomial, it 
would be nice to have a faster way to divide by cx −  than having to use long division 
every time.  Happily, quicker ways have been discovered. 
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Let's look back at the long division we did in Example 1 and try to streamline it. First, 
let's change all the subtractions into additions by distributing through the negatives. 
 

76

0
147
147

126
1456

2
14542

2

2

2

23

23

++

+−
−

+−

−−

+−

−−+−
xx

x
x

xx
xx

xx
xxxx  

Next, observe that the terms 3x− , 26x− , and x7−  are the exact opposite of the terms 
above them.  The algorithm we use ensures this is always the case, so we can omit them 
without losing any information. Also note that the terms we ‘bring down’ (namely the 
−5x and −14) aren’t really necessary to recopy, so we omit them, too. 
 

76

0

14
7

12
6

2
14542

2

2

2

23

++
−−+−

xx

x

x
x

x
xxxx  

 
Now, let’s move things up a bit and, for reasons which will become clear in a moment, 
copy the 3x  into the last row. 
 

76

076

14122
14542

2

23

2

23

++
−−+−
xx

xxx

xx
xxxx  

 
Note that by arranging things in this manner, each term in the last row is obtained by 
adding the two terms above it. Notice also that the quotient polynomial can be obtained 
by dividing each of the first three terms in the last row by x and adding the results. If you 
take the time to work back through the original division problem, you will find that this is 
exactly the way we determined the quotient polynomial.  
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This means that we no longer need to write the quotient polynomial down, nor the x in 
the divisor, to determine our answer. 
 

076

14122
14542

23

2

23

xxx

xx
xxxx −−+−  

 
We’ve streamlined things quite a bit so far, but we can still do more.  Let’s take a 
moment to remind ourselves where the 22x , 12x and 14 came from in the second row.  
Each of these terms was obtained by multiplying the terms in the quotient, 2x , 6x and 7, 
respectively, by the −2 in x − 2, then by −1 when we changed the subtraction to addition.  
Multiplying by −2 then by −1 is the same as multiplying by 2, so we replace the −2 in the 
divisor by 2.  Furthermore, the coefficients of the quotient polynomial match the 
coefficients of the first three terms in the last row, so we now take the plunge and write 
only the coefficients of the terms to get 
 

2 1 4 -5 -14 
  2 12 14 
 1 6 7 0 

 
We have constructed a synthetic division tableau for this polynomial division problem.  
Let’s re-work our division problem using this tableau to see how it greatly streamlines the 
division process.  To divide 1454 23 −−+ xxx  by 2−x , we write 2 in the place of the 
divisor and the coefficients of 1454 23 −−+ xxx in for the dividend.  Then "bring down" 
the first coefficient of the dividend. 
 

 
Next, take the 2 from the divisor and multiply by the 1 that was "brought down" to get 2.  
Write this underneath the 4, then add to get 6. 
 

 
 
Now take the 2 from the divisor times the 6 to get 12, and add it to the −5 to get 7. 
 

 
 

2 1 4 -5 -14 
 ↓ 2 12  
 1 6 7  

 

2 1 4 -5 -14 
 ↓ 2 12  
 1 6   

 

2 1 4 -5 -14 
 ↓ 2   
 1 6   

 

2 1 4 -5 -14 
 ↓ 2   
 1    

 

2 1 4 -5 -14 
 ↓    
 1    

 

2 1 4 -5 -14 
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Finally, take the 2 in the divisor times the 7 to get 14, and add it to the −14 to get 0. 
 

 
 
The first three numbers in the last row of our tableau are the coefficients of the quotient 
polynomial.  Remember, we started with a third degree polynomial and divided by a first 
degree polynomial, so the quotient is a second degree polynomial. Hence the quotient is 

762 ++ xx .  The number in the box is the remainder.  Synthetic division is our tool of 
choice for dividing polynomials by divisors of the form x − c.  It is important to note that 
it works only for these kinds of divisors.  Also take note that when a polynomial (of 
degree at least 1) is divided by x − c, the result will be a polynomial of exactly one less 
degree.  Finally, it is worth the time to trace each step in synthetic division back to its 
corresponding step in long division.   
 
 
Example 3 

Use synthetic division to divide 125 23 +− xx  by 3−x . 
 
When setting up the synthetic division tableau, we need to enter 0 for the coefficient of 
x in the dividend.  Doing so gives 
 

 
 
Since the dividend was a third degree polynomial, the quotient is a quadratic 
polynomial with coefficients 5, 13 and 39.  Our quotient is 39135)( 2 ++= xxxq  and 
the remainder is r(x) = 118.  This means 

118)39135)(3(125 223 +++−=+− xxxxx .   
 
It also means that 3−x  is not a factor of 125 23 +− xx . 

 
 
Example 4 

Divide 83 +x  by 2+x  
 
For this division, we rewrite 2+x  as ( )2−−x  and proceed as before. 

 

-2 1 0 0 8 
 ↓ -2 4 -8 
 1 -2 4 0 

 

3 5 -2 0 1 
 ↓ 15 39 117 
 5 13 39 118 

 

2 1 4 -5 -14 
 ↓ 2 12 14 
 1 6 7 0 

 

2 1 4 -5 -14 
 ↓ 2 12 14 
 1 6 7  
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The quotient is 422 +− xx  and the remainder is zero.  Since the remainder is zero, 
2+x  is a factor of 83 +x . 

 
( )42)2(8 23 +−+=+ xxxx  

 
 
Try it Now 
2. Divide xxx 584 24 −−  by 3−x  using synthetic division. 
 
 
Using this process allows us to find the real zeros of polynomials, presuming we can 
figure out at least one root.  We'll explore how to do that in the next section. 
 
 
Example 5 

The polynomial 3121144)( 234 −+−−= xxxxxp  has a horizontal intercept at 
2
1

=x  

with multiplicity 2.  Find the other intercepts of p(x). 
 

Since 
2
1

=x  is an intercept with multiplicity 2, then 
2
1

−x  is a factor twice.  Use 

synthetic division to divide by 
2
1

−x  twice. 

 

 

 
 

From the first division, we get ( )624
2
13121144 23234 −−−





 −=−+−− xxxxxxxx  

The second division tells us 

( )124
2
1

2
13121144 2234 −






 −





 −=−+−− xxxxxxx . 

 
To find the remaining intercepts, we set 0124 2 =−x  and get 3±=x . 
 

Note this also means ( )( )33
2
1

2
143121144 234 +−






 −





 −=−+−− xxxxxxxx . 

1/2 4 -2 -1 -6 
 ↓ 2 0 -6 
 4 0 -12 0 

 

1/2 4 -4 -11 12 -3 
 ↓ 2 -1 -6 3 
 4 -2 -1 -6 0 
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Important Topics of this Section 
Long division of polynomials 
Remainder Theorem 
Factor Theorem 
Synthetic division of polynomials 

 
 
Try it Now Answers 
1. 

( )

( )

( )

1162

30

3311
311

186

376

62

37023

2

2

2

23

23

+−

−

+−
+

−−−

+−−

+−

+−++

xx

x
x

xx

xx

xx

xxxx            The quotient is 1162 2 +− xx  with remainder -30. 

2.  

 
 

xxx 584 24 −−  divided by 3−x  is 7928124 23 +++ xxx  with remainder 237 

3 4 0 -8 -5 0 
 ↓ 12 36 84 237 
 4 12 28 79 237 
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Section 3.4 Exercises 
 
Use polynomial long division to perform the indicated division. 
 
1. ( ) 3)(134 2 −÷−+ xxx    2. ( ) ( )112 23 ++÷+− xxxx  

3. ( ) ( )41235 2234 +÷−+− xxxx   4. ( ) ( )17 2335 +−÷−+− xxxxx  

5. ( ) ( )3259 3 −÷+ xx     6. ( ) ( )1234 22 −÷−− xxx  
 
Use synthetic division to perform the indicated division. 
 
7. ( ) ( )1123 2 −÷+− xxx    8. ( ) ( )552 −÷− xx  

9. ( ) ( )1243 2 +÷−− xxx    10. ( ) ( )3354 2 +÷+− xxx  

11. ( ) ( )283 +÷+ xx     12. ( ) ( )3324 3 −÷−+ xxx  

13. ( ) 





 −÷−−

3
5251518 2 xxx    14. ( ) 






 −÷−

2
114 2 xx  

15. ( ) 





 +÷+++

2
1122 23 xxxx   16. ( ) 






 −÷+−

3
243 3 xxx  

17. ( ) 





 −÷+−

2
1132 3 xxx    18. ( ) 






 −÷+−+−

2
391213124 234 xxxxx  

19. ( ) ( )396 24 −÷+− xxx    20. ( ) ( )28126 246 +÷−+− xxxx  
 
Below you are given a polynomial and one of its zeros. Use the techniques in this section 
to find the rest of the real zeros and factor the polynomial. 
21. 1=6,116 23 cxxx −+−    22. 8=512,19224 23 cxxx −+−  

23. 
3
2=2,43 23 cxxx −−+    24. 

2
1=6,1132 23 cxxx +−−  

25. 2=6,32 23 −−−+ cxxx    26. 
2
1=5,102 23 cxxx +−−  

27. 94261284 234 +−+− xxxx , 
2
1=c  is a zero of multiplicity 2 

28. 123738122 2345 −−−−+ xxxxx , 1= −c  is a zero of multiplicity 3 
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Section 3.5 Real Zeros of Polynomials 
 
In the last section, we saw how to determine if a real number 
was a zero of a polynomial.  In this section, we will learn how 
to find good candidates to test using synthetic division.  In the 
days before graphing technology was commonplace, 
mathematicians discovered a lot of clever tricks for determining 
the likely locations of zeros.  Technology has provided a much 
simpler approach to narrow down potential candidates, but it is 
not always sufficient by itself.  For example, the function 
shown to the right does not have any clear intercepts. 
 
There are two results that can help us identify where the zeros of a polynomial are.  The 
first gives us an interval on which all the real zeros of a polynomial can be found. 
 
 

Cauchy's Bound 
Given a polynomial 01

1
1)( axaxaxaxf n

n
n

n ++++= −
− 

, let M be the largest of the 
coefficients in absolute value.  Then all the real zeros of f(x) lie in the interval 












+−− 1,1

nn a
M

a
M  

 
 
Example 1 

Let 3642)( 234 −−−+= xxxxxf .  Determine an interval which contains all the real 
zeros of f. 
 
To find the M from Cauchy's Bound, we take the absolute value of the coefficients and 
pick the largest, in this case 66 =− .  Divide this by the absolute value of the leading 
coefficient, 2, to get 3.  All the real zeros of f lie in the interval  

[ ] ]4,4[13,131
2
6,1

2
6

−=+−−=











+−− .  

 
 
Knowing this bound can be very helpful when using a graphing calculator, since we can 
use it to set the display bounds.  This helps avoid missing a zero because it is graphed 
outside of the viewing window. 
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Try it Now 
1. Determine an interval which contains all the real zeros of 86123)( 23 −+−= xxxxf  

 
 
Now that we know where we can find the real zeros, we still need a list of possible real 
zeros.  The Rational Roots Theorem provides us a list of potential integer and rational 
zeros.   
 
 

Rational Roots Theorem 
Given a polynomial 01

1
1)( axaxaxaxf n

n
n

n ++++= −
− 

 with integer coefficients, if 

r is a rational zero of f, then r is of the form 
q
pr ±= , where p is a factor of the 

constant term 0a , and q is a factor of the leading coefficient, na . 
 
 
This gives us a list of numbers to try in our synthetic division, which is a nicer place to 
start than simply guessing.  If none of the numbers in the list are zeros, then either the 
polynomial has no real zeros at all, or all the real zeros are irrational numbers. 
 
 
Example 2 

Let 3642)( 234 −−−+= xxxxxf .  Use the Rational Roots Theorem to list all the 
possible rational zeros of f(x). 
 
To generate a complete list of rational zeros, we need to take each of the factors of the 
constant term, 30 −=a , and divide them by each of the factors of the leading coefficient 

24 =a .  The factors of −3 are ±1 and ±3. Since the Rational Roots Theorem tacks on a 
± anyway, for the moment, we consider only the positive factors 1 and 3. The factors of 
2 are 1 and 2, so the Rational Roots Theorem gives the list  







 ±±±±

2
3,

1
3,

2
1,

1
1 , or 







 ±±±±

2
3,3,

2
1,1  

 
 
Now we can use synthetic division to test these possible zeros.  To narrow the list first, 
we could use graphing technology to help us identify some good possibilities. 
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Example 3 
Find the horizontal intercepts of 3642)( 234 −−−+= xxxxxf . 
 
From Example 1, we know that the real zeros lie in the interval [-4, 4].  Using a 
graphing calculator, we could set the window accordingly and get the graph below. 

      
In Example 2, we learned that any rational zero must be on the list 







 ±±±±

2
3,3,

2
1,1 . 

From the graph, it looks like −1 is a good possibility, so we try that using synthetic 
division. 
 

 
 
Success!  Remembering that f was a fourth degree polynomial, we know that our 
quotient is a third degree polynomial.  If we can do one more successful division, we 
will have knocked the quotient down to a quadratic, and, if all else fails, we can use the 
quadratic formula to find the last two zeros.  Since there seems to be no other rational 
zeros to try, we continue with −1.  Also, the shape of the crossing at x = −1 leads us to 
wonder if the zero x = −1 has multiplicity 3. 
 

 
 
Success again!  Our quotient polynomial is now 32 2 −x .  Setting this to zero gives 

032 2 =−x , giving 
2
6

2
3

±=±=x .  Since a fourth degree polynomial can have at 

most four zeros, including multiplicities, then the intercept x = -1 must only have 
multiplicity 2, which we had found through division, and not 3 as we had guessed. 

 
 
 
 
 

-1 2 2 -3 -3 
 ↓ -2 0 3 
 2 0 -3 0 

 

-1 2 4 -1 -6 -3 
 ↓ -2 -2 3 3 
 2 2 -3 -3 0 
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It is interesting to note that we could greatly improve on the graph of )(xfy = in the 
previous example given to us by the calculator.  For instance, from our determination of 

the zeros of f and their multiplicities, we know the graph crosses at 
2
6

−=x ≈ −1.22 

then turns back upwards to touch the x−axis at x = −1.  This tells us that, despite what the 
calculator showed us the first time, there is a relative maximum occurring at x = −1 and 
not a "flattened crossing" as we originally believed.   
 
After resizing the window, we see not only the relative maximum but also a relative 
minimum just to the left of x = −1.   
 

    
 
In this case, mathematics helped reveal something that was hidden in the initial graph. 
 
 
Example 4 

Find the real zeros of 22104)( 23 +−−= xxxxf . 
 
Cauchy's Bound tells us that the real zeros lie in 

the interval ]5.3,5.3[1
4

10,1
4

10
−=












+−− .   

 
Graphing on this interval reveals no clear integer 
zeros.  Turning to the rational roots theorem, we 
need to take each of the factors of the constant 
term, 20 =a , and divide them by each of the 
factors of the leading coefficient 43 =a .  The 
factors of 2 are 1 and 2. The factors of 4 are 1, 2, and 4, so the Rational Roots Theorem 
gives the list  







 ±±±±±±

4
2,

2
2,

1
2,

4
1,

2
1,

1
1 , or 







 ±±±± 2,

4
1,

2
1,1  

 

The two most likely candidates are 
2
1

± .   
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Trying 
2
1 , 

 
 

The remainder is not zero, so this is not a zero.  Trying 
2
1

− , 

 
Success!  This tells us ( )4124

2
122104 223 +−





 +=+−− xxxxxx , and that the graph 

has a horizontal intercept at 
2
1

−=x . 

 
To find the remaining two intercepts, we can use the quadratic equation, setting 

04124 2 =+− xx .  First, we might pull out the common factor, ( ) 0134 2 =+− xx . 

382.0,618.2
2

53
)1(2

)1)(1(4)3(3 2

≈
±

=
−−±

=x  

 
 
Try it Now 
2. Find the real zeros of 263)( 23 +−−= xxxxf  

 
 

Important Topics of this Section 
Cauchy’s Bound for all real zeros of a polynomial 
Rational Roots Theorem 
Finding real zeros of a polynomial 

 
  

-1/2 4 -10 -2 2 
 ↓ -2 6 -2 
 4 -12 4 0 

 

1/2 4 -10 -2 2 
 ↓ 2 -4 -3 
 4 -8 -6 -1 
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Try it Now Answers 
1. The maximum coefficient in absolute value is 12.  Cauchy’s Bound for all real zeros is 

]5,5[1
3

12,1
3

12
−=












+−−  

 

2. Cauchy’s Bound tells us the zeros lie in the interval ]3,3[1
3
6,1

3
6

−=











+−− .  

 
The rational roots theorem tells us the possible rational 
zeros of the polynomial are on the list 







 ±±±±=







 ±±±±

3
2,2,

3
1,1

3
2,

1
2,

3
1,

1
1 . 

 

Looking at a graph, the only likely candidate is 
3
1  

 
Using synthetic division, 

 
 

( ) ( )2
3
1363

3
1263 2223 −






 −=−






 −=+−− xxxxxxx .   

 
Solving 022 =−x  gives zeros 2±=x . 

The real zeros of the polynomial are 
3
1,2,2 −=x . 

 

1/3 3 -1 -6 2 
 ↓ 1 0 -2 
 3 0 -6 0 
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Section 3.5 Exercises 
 
For each of the following polynomials, use Cauchy’s Bound to find an interval containing 
all the real zeros, then use Rational Roots Theorem to make a list of possible rational 
zeros. 
 
1. 652=)( 23 +−− xxxxf    2. 3240122=)( 234 −−−+ xxxxxf  

3. 1249=)( 24 +−− xxxxf    4. 6114=)( 23 +−+ xxxxf  

5. 77=)( 23 −+− xxxxf    6. 2049192=)( 23 +−+− xxxxf  

7. 1034517=)( 23 −++− xxxxf   8. 12111236=)( 234 ++−− xxxxxf  

9. 101133=)( 23 −−+ xxxxf    10. 3372=)( 234 +−−+ xxxxxf  

 
Find the real zeros of each polynomial. 
11. 652=)( 23 +−− xxxxf    12. 3240122=)( 234 −−−+ xxxxxf  

13. 1249=)( 24 +−− xxxxf    14. 6114=)( 23 +−+ xxxxf  

15. 77=)( 23 −+− xxxxf    16. 2049192=)( 23 +−+− xxxxf  

17. 1034517=)( 23 −++− xxxxf   18. 12111236=)( 234 ++−− xxxxxf  

19. 101133=)( 23 −−+ xxxxf    20. 3372=)( 234 +−−+ xxxxxf  

21. xxxxf −− 23 59=)(    22. 234 956=)( xxxxf −−  

23. 152=)( 24 −+ xxxf    24. 149=)( 24 +− xxxf  

25. 5143=)( 24 −− xxxf    26. 672=)( 24 +− xxxf  

27. 103=)( 36 −− xxxf    28. 1092=)( 36 +− xxxf  

29. 842=)( 45 +−− xxxxf    30. 271832=)( 45 −−+ xxxxf  

31. 23049608060=)( 235 ++−− xxxxxf   

32. 95714217410525=)( 2345 −+−+− xxxxxxf  
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Section 3.6 Complex Zeros 
 
When finding the zeros of polynomials, at some point you're faced with the problem 

12 −=x .  While there are clearly no real numbers that are solutions to this equation, 
leaving things there has a certain feel of incompleteness.  To address that, we will need 
utilize the imaginary unit, i. 
 
 

Imaginary Number i 

The most basic complex number is i, defined to be 1−=i , commonly called an 
imaginary number.  Any real multiple of i is also an imaginary number. 

 
 
Example 1 

Simplify 9− . 
 
We can separate 9−  as 19 − .  We can take the square root of 9, and write the 
square root of -1 as i.   

9− = i319 =−  
 
 
A complex number is the sum of a real number and an imaginary number. 
 
 

Complex Number 
A complex number is a number biaz += , where a and b are real numbers 
a  is the real part of the complex number 
b  is the imaginary part of the complex number 

1−=i  
 
 
Arithmetic on Complex Numbers 
 
Before we dive into the more complicated uses of complex numbers, let’s make sure we 
remember the basic arithmetic involved.  To add or subtract complex numbers, we simply 
add the like terms, combining the real parts and combining the imaginary parts. 
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Example 3 
Add i43−  and i52 + . 
 
Adding )52()43( ii ++− , we add the real parts and the imaginary parts 

ii 5423 +−+  
i+5  

 
 
Try it Now 
1. Subtract i52 +  from i43− . 
 
 
We can also multiply and divide complex numbers. 
 
 
Example 4 

Multiply:  )52(4 i+ . 
 
To multiply the complex number by a real number, we simply distribute as we would 
when multiplying polynomials. 
 

)52(4 i+  
= i5424 ⋅+⋅  

i208 +=  
 
 
Example 5 

Divide (2 5 )
(4 )

i
i

+
−

. 

 
To divide two complex numbers, we have to devise a way to write this as a complex 
number with a real part and an imaginary part.   
 
We start this process by eliminating the complex number in the denominator.  To do 
this, we multiply the numerator and denominator by a special complex number so that 
the result in the denominator is a real number.  The number we need to multiply by is 
called the complex conjugate, in which the sign of the imaginary part is changed.   
 
Here, 4+i  is the complex conjugate of 4–i.  Of course, obeying our algebraic rules, we 
must multiply by 4+i  on both the top and bottom. 
(2 5 ) (4 )
(4 ) (4 )

i i
i i

+ +
⋅

− +
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To multiply two complex numbers, we expand the product as we would with 
polynomials (the process commonly called FOIL – “first outer inner last”).  In the 
numerator: 
(2 5 )(4 )i i+ +    Expand 

28 20 2 5i i i= + + +    Since 1−=i , 12 −=i  
8 20 2 5( 1)i i= + + + −    Simplify 
3 22i= +  

 
Following the same process to multiply the denominator  
(4 )(4 )i i− +     Expand 

2(16 4 4 )i i i= − + −    Since 1−=i , 12 −=i  
(16 ( 1))= − −   

=17 
 

Combining this we get 3 22 3 22
17 17 17

i i+
= +   

 
 
Try it Now 
2.  Multiply i43−  and 2 3i+ . 
 
 
In the last example, we used the conjugate of a complex number 
 
 

Complex Conjugate 
The conjugate of a complex number bia +  is the number bia − . 
 

The notation commonly used for conjugation is a bar:  biabia −=+  
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Complex Zeros of Polynomials 
 
Complex numbers allow us a way to write solutions to quadratic equations that do not 
have real solutions. 
 
 
Example 6 

Find the zeros of 52)( 2 +−= xxxf . 
 
Using the quadratic formula,  

iix 21
2

42
2

162
)1(2

)5)(1(4)2(2 2

±=
±

=
−±

=
−−±

= . 

 
 
Try it Now 
3.  Find the zeros of 432)( 2 ++= xxxf . 

 
 
Two things are important to note.  First, the zeros i21+  and i21−  are complex 
conjugates.  This will always be the case when we find non-real zeros to a quadratic 
function with real coefficients.   
 
Second, we could write ( )( ) ( )( )ixixxxxf 212152)( 2 −−+−=+−=  if we really wanted 
to, so the Factor and Remainder Theorems hold. 
 
How do we know if a general polynomial has any complex zeros?  We have seen 
examples of polynomials with no real zeros; can there be polynomials with no zeros at 
all?  The answer to that last question, which comes from the Fundamental Theorem of 
Algebra, is "No."  
 
 

Fundamental Theorem of Algebra 
A non-constant polynomial f with real or complex coefficients will have at least one 
real or complex zero. 

 
 
This theorem is an example of an "existence" theorem in mathematics.  It guarantees the 
existence of at least one zero, but provides no algorithm to use for finding it. 
 
Now suppose we have a polynomial f(x) of degree n.  The Fundamental Theorem of 
Algebra guarantees at least one zero 1z , then the Factor Theorem guarantees that f can be 
factored as ( ) )()( 11 xqzxxf −= , where the quotient )(1 xq  will be of degree n-1.   
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If this function is non-constant, than the Fundamental Theorem of Algebra applies to it, 
and we can find another zero.  This can be repeated n times. 
 
 

Complex Factorization Theorem 
If f is a polynomial f with real or complex coefficients with degree n ≥ 1, then f has 
exactly n real or complex zeros, counting multiplicities. 
 
If kzzz ,,, 21   are the distinct zero of f with multiplicities kmmm ,,, 21   respectively, 

then ( ) ( ) ( ) km
k

mm zxzxzxaxf −−−= 

21
21)(  

 
 
Example 7 

Find all the real and complex zeros of 126192012)( 2345 +−−+−= xxxxxxf . 
 
Using the Rational Roots Theorem, the possible real rational 
roots are  







 ±±±±±±

12
1,

6
1,

4
1,

3
1,

2
1,

1
1  

 

Testing 
2
1 , 

 
 
Success!  Because the graph bounces at this intercept, it is likely that this zero has 
multiplicity 2.  We can try synthetic division again to test that. 
 

 
 

The other real root appears to be 
3
1

−  or 
4
1

− .  Testing 
3
1

− , 

 
 

-1/3 12 -8 8 -4 
 ↓ -4 4 -4 
 12 -12 12 0 

 

1/2 12 -14 12 0 -2 
 ↓ 6 -4 4 2 
 12 -8 8 -4 0 

 

1/2 12 -20 19 -6 -2 1 
 ↓ 6 -7 6 0 -1 
 12 -14 12 0 -2 0 
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Excellent!  So far, we have factored the polynomial to 

( ) ( )1
3
1

2
112121212

3
1

2
1)( 2

2
2

2

+−





 +






 −=+−






 +






 −= xxxxxxxxxf  

 
We can use the quadratic formula to find the two remaining zeros by setting 

012 =+− xx , which are likely complex zeros. 

2
31

2
31

)1(2
)1)(1(4)1(1 2 ix ±

=
−±

=
−−±

= .   

 

The zeros of the function are 
2

31,
2

31,
3
1,

2
1 iix −+
−= .  We could write the function 

fully factored as 






 −
−







 +
−






 +






 −=

2
31

2
31

3
1

2
112)(

2 ixixxxxf . 

 
 
When factoring a polynomial like we did at the end of the last example, we say that it is 
factored completely over the complex numbers, meaning it is impossible to factor the 
polynomial any further using complex numbers.  If we wanted to factor the function over 

the real numbers, we would have stopped at ( )1
3
1

2
112)( 2

2

+−





 +






 −= xxxxxf .  Since 

the zeros of 12 +− xx  are nonreal, we call 12 +− xx  an irreducible quadratic meaning 
it is impossible to break it down any further using real numbers. 
 
It turns out that a polynomial with real number coefficients can be factored into a product 
of linear factors corresponding to the real zeros of the function and irreducible quadratic 
factors which give the nonreal zeros of the function.  Consequently, any nonreal zeros 
will come in conjugate pairs, so if z is a zero of the polynomial, so is z . 
 
 
Try it Now 
4.  Find the real and complex zeros of 1094)( 23 −+−= xxxxf . 

 
 

Important Topics of This Section 
Complex and Imaginary numbers 
Finding Complex zeros of polynomials 
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Try it Now Answers 
1. (3 4 ) (2 5 ) 1 9i i i− − + = −   
 
2. (3 4 )(2 3 ) 18i i i− + = +   
 

3. iix
4
23

4
3

4
233

4
233

)2(2
)4)(2(4)3(3 2

±
−

=
±−

=
−±−

=
−±−

=  

4. Cauchy’s Bound limits us to the interval [-11, 11].  The rational roots theorem gives a 
list of potential zeros:  { }10,5,2,1 ±±±± .  A quick graph shows that the likely rational 
root is x = 2. 

 
 
   Verifying this, 

 
 
So )52)(2()( 2 +−−= xxxxf  
 
Using quadratic formula, we can find the complex roots from the irreducible quadratic. 

iix 21
2

42
2

162
)1(2

)5)(1(4)2()2( 2

±−=
±−

=
−±

=
−−±−−

= . 

 
The zeros of this polynomial are iix 21,21,2 −−+−=  

2 1 -4 9 -10 
 ↓ 2 -4 10 
 1 -2 5 0 
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Section 3.6 Exercises 
 
Simplify each expression to a single complex number. 
1. 9−    2. 16−    3. 6 24− −    

4. 3 75− −    5. 2 12
2

+ −    6. 4 20
2

+ −  

 
Simplify each expression to a single complex number. 
7. ( )3 2 (5 3 )i i+ + −     8. ( ) ( )2 4 1 6i i− − + +  

9. ( )5 3 (6 )i i− + − −     10. ( )2 3 (3 2 )i i− − +  

11. ( )2 3 (4 )i i+     12. ( )5 2 (3 )i i−  

13. ( )6 2 (5)i−      14. ( )( )2 4 8i− +  

15. ( )2 3 (4 )i i+ −     16. ( )1 2 ( 2 3 )i i− + − +  

17. ( )4 2 (4 2 )i i− +     18. ( )( )3 4 3 4i i+ −  

19. 3 4
2

i+      20. 6 2
3

i−  

21. 5 3
2

i
i

− +      22. 6 4i
i
+  

23. 2 3
4 3

i
i

−
+

     24. 3 4
2

i
i

+
−

 

 
Find all of the zeros of the polynomial then completely factor it over the real numbers 
and completely factor it over the complex numbers. 
 
25. 134=)( 2 +− xxxf     26. 52=)( 2 +− xxxf  

27. 1023=)( 2 ++ xxxf    28. 1892=)( 23 −+− xxxxf  

29. 566=)( 23 +++ xxxxf    30. 1343133=)( 23 −+− xxxxf  

31. 1243=)( 23 +++ xxxxf    32. 15864=)( 23 +−− xxxxf  

33. 297=)( 23 −++ xxxxf    34. 129=)( 3 ++ xxxf  

35. 3121344=)( 234 +−+− xxxxxf   36. 6151472=)( 234 +−+− xxxxxf  

37. 1897=)( 234 −+++ xxxxxf   38. 121655176=)( 234 ++−+ xxxxxf  

39. 5121283=)( 234 −−−−− xxxxxf   40. 4243508=)( 234 −+++ xxxxxf  

41. 209=)( 24 ++ xxxf    42. 245=)( 24 −+ xxxf  
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Section 3.7 Rational Functions 
 
In the previous sections, we have built polynomials based on the positive whole number 
power functions.  In this section, we explore functions based on power functions with 
negative integer powers, called rational functions. 
 
 
Example 1 

You plan to drive 100 miles.  Find a formula for the time the trip will take as a function 
of the speed you drive. 
 
You may recall that multiplying speed by time will give you distance.  If we let t 
represent the drive time in hours, and v represent the velocity (speed or rate) at which 
we drive, then distance=vt .  Since our distance is fixed at 100 miles, 100=vt .  
Solving this relationship for the time gives us the function we desired: 

1100100)( −== v
v

vt  

 
 
While this type of relationship can be written using the negative exponent, it is more 
common to see it written as a fraction.   
 
This particular example is one of an inversely proportional relationship – where one 

quantity is a constant divided by the other quantity, like 5y
x

= .  

Notice that this is a transformation of the reciprocal toolkit function, 1( )f x
x

=  

 
Several natural phenomena, such as gravitational force and volume of sound, behave in a 
manner inversely proportional to the square of another quantity.  For example, the 

volume, V, of a sound heard at a distance d from the source would be related by 2d
kV =  

for some constant value k. 
 

These functions are transformations of the reciprocal squared toolkit function 2

1( )f x
x

= . 

 
We have seen the graphs of the basic reciprocal function and the squared reciprocal 
function from our study of toolkit functions.  These graphs have several important 
features. 
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1( )f x
x

=  

 

2

1( )f x
x

=  

Let’s begin by looking at the reciprocal function, 1( )f x
x

= .  As you well know, dividing 

by zero is not allowed and therefore zero is not in the domain, and so the function is 
undefined at an input of zero. 
 
Short run behavior:  
As the input values approach zero from the left side (taking on very small, negative 
values), the function values become very large in the negative direction (in other words, 
they approach negative infinity). 
We write: as −→ 0x , −∞→)(xf . 
 
As we approach zero from the right side (small, positive input values), the function 
values become very large in the positive direction (approaching infinity). 
We write: as +→ 0x , ∞→)(xf . 
 
This behavior creates a vertical asymptote.  An asymptote is a line that the graph 
approaches. In this case the graph is approaching the vertical line x = 0 as the input 
becomes close to zero.   
 
Long run behavior:  
As the values of x approach infinity, the function values approach 0. 
As the values of x approach negative infinity, the function values approach 0. 
Symbolically: as ±∞→x , 0)( →xf  
 
Based on this long run behavior and the graph we can see that the function approaches 0 
but never actually reaches 0, it just “levels off” as the inputs become large.  This behavior 
creates a horizontal asymptote.  In this case the graph is approaching the horizontal line 

( ) 0f x = as the input becomes very large in the negative and positive directions. 
 
 

Vertical and Horizontal Asymptotes 
A vertical asymptote of a graph is a vertical line x = a where the graph tends towards 
positive or negative infinity as the inputs approach a.  As ax → , ±∞→)(xf . 
 
A horizontal asymptote of a graph is a horizontal line y b=  where the graph 
approaches the line as the inputs get large. As ±∞→x , bxf →)( . 
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Try it Now: 
1. Use symbolic notation to describe the long run behavior and 

short run behavior for the reciprocal squared function. 
 
 
 
 
Example 2 

Sketch a graph of the reciprocal function shifted two units to the left and up three units.  
Identify the horizontal and vertical asymptotes of the graph, if any. 
 
Transforming the graph left 2 and up 3 would result in the function 

3
2

1)( +
+

=
x

xf , or equivalently, by giving the terms a common denominator, 

2
73)(

+
+

=
x
xxf . 

 
Shifting the toolkit function would give us 
this graph.  Notice that this equation is 
undefined at x = -2, and the graph also is 
showing a vertical asymptote at x = -2. 
As 2x −→ − , ( )f x →−∞ , and  
as 2x +→ − , ( )f x →∞  
 
As the inputs grow large, the graph appears 
to be leveling off at output values of 3, 
indicating a horizontal asymptote at 3y = .  
As ±∞→x , 3)( →xf . 
  
Notice that horizontal and vertical asymptotes get shifted left 2 and up 3 along with the 
function. 

 
 
Try it Now 
2. Sketch the graph and find the horizontal and vertical asymptotes of the reciprocal 

squared function that has been shifted right 3 units and down 4 units.  
 
 
In the previous example, we shifted a toolkit function in a way that resulted in a function 

of the form 
2
73)(

+
+

=
x
xxf .  This is an example of a more general rational function. 
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Rational Function 
A rational function is a function that can be written as the ratio of two polynomials, 
P(x) and Q(x). 

2
0 1 2

2
0 1 2

( )( )
( )

p
p

q
q

a a x a x a xP xf x
Q x b b x b x b x

+ + + +
= =

+ + + +





   

 
 
Example 3 

A large mixing tank currently contains 100 gallons of water, into which 5 pounds of 
sugar have been mixed.  A tap will open pouring 10 gallons per minute of water into the 
tank at the same time sugar is poured into the tank at a rate of 1 pound per minute.  Find 
the concentration (pounds per gallon) of sugar in the tank after t minutes.   
 
Notice that the amount of water in the tank is changing linearly, as is the amount of 
sugar in the tank.  We can write an equation independently for each: 

twater 10100 +=  
tsugar 15 +=  

 
The concentration, C, will be the ratio of pounds of sugar to gallons of water 

t
ttC
10100

5)(
+
+

=  

 
 
Finding Asymptotes and Intercepts 
 
Given a rational function, as part of investigating the short run behavior we are interested 
in finding any vertical and horizontal asymptotes, as well as finding any vertical or 
horizontal intercepts, as we have done in the past. 
 
To find vertical asymptotes, we notice that the vertical asymptotes in our examples occur 
when the denominator of the function is undefined.  With one exception, a vertical 
asymptote will occur whenever the denominator is undefined. 
 
 
Example 4 

Find the vertical asymptotes of the function 
2

2

2
25)(

xx
xxk
−−

+
=  

 
To find the vertical asymptotes, we determine where this function will be undefined by 
setting the denominator equal to zero: 

1,2
0)1)(2(

02 2

−=
=−+

=−−

x
xx

xx
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This indicates two vertical asymptotes, which a look 
at a graph confirms. 
 
 
 
 
 

 
 
The exception to this rule can occur when both the numerator and denominator of a 
rational function are zero at the same input. 
 
 
Example 5 

Find the vertical asymptotes of the function 2

2( )
4

xk x
x
−

=
−

. 

 
To find the vertical asymptotes, we determine where this function will be undefined by 
setting the denominator equal to zero: 

2

2

4 0
4
2, 2

x
x
x

− =

=
= −

 

 
However, the numerator of this function is also 
equal to zero when x = 2.  Because of this, the 

function will still be undefined at 2, since 0
0

 is 

undefined, but the graph will not have a vertical 
asymptote at x = 2.   
 
The graph of this function will have the vertical 
asymptote at x = -2, but at x = 2 the graph will 
have a hole: a single point where the graph is 
not defined, indicated by an open circle. 

 
 

Vertical Asymptotes and Holes of Rational Functions 
The vertical asymptotes of a rational function will occur where the denominator of 
the function is equal to zero and the numerator is not zero. 
 
A hole occurs in the graph of a rational function if an input causes both numerator and 
denominator to be zero. In this case, factor the numerator and denominator and 
simplify; if the simplified expression still has a zero in the denominator at the original 
input the original function has a vertical asymptote at the input, otherwise it has a hole. 
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To find horizontal asymptotes, we are interested in the behavior of the function as the 
input grows large, so we consider long run behavior of the numerator and denominator 
separately.  Recall that a polynomial’s long run behavior will mirror that of the leading 
term.  Likewise, a rational function’s long run behavior will mirror that of the ratio of the 
leading terms of the numerator and denominator functions. 
 
There are three distinct outcomes when this analysis is done: 
 
 
Case 1:  The degree of the denominator > degree of the numerator 

Example: 
54

23)( 2 −+
+

=
xx

xxf  

In this case, the long run behavior is 2

3 3( ) xf x
x x

≈ = .  This tells us that as the inputs grow 

large, this function will behave similarly to the function 3( )g x
x

= .  As the inputs grow 

large, the outputs will approach zero, resulting in a horizontal asymptote at 0y = . 
As ±∞→x , 0)( →xf  
 
 
Case 2:  The degree of the denominator < degree of the numerator 

Example: 
5
23)(

2

−
+

=
x
xxf  

In this case, the long run behavior is
23( ) 3xf x x

x
≈ = .  This tells us that as the inputs 

grow large, this function will behave similarly to the function ( ) 3g x x= .  As the inputs 
grow large, the outputs will grow and not level off, so this graph has no horizontal 
asymptote.  
As ±∞→x , ±∞→)(xf , respectively. 
 
 
Case 3:  The degree of the denominator = degree of the numerator 

Example: 
54

23)( 2

2

−+
+

=
xx

xxf  

In this case, the long run behavior is 
2

2

3( ) 3xf x
x

≈ = .  This tells us that as the inputs grow 

large, this function will behave like the function ( ) 3g x = , which is a horizontal line. As 
±∞→x , 3)( →xf , resulting in a horizontal asymptote at 3y = . 
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Horizontal Asymptote of Rational Functions 
The horizontal asymptote of a rational function can be determined by looking at the 
degrees of the numerator and denominator. 
Degree of denominator > degree of numerator: Horizontal asymptote at 0y =  
Degree of denominator < degree of numerator: No horizontal asymptote 

Degree of denominator = degree of numerator: Horizontal asymptote at ratio of 
leading coefficients. 

 
 
Example 6 

In the sugar concentration problem from earlier, we created the equation 

t
ttC
10100

5)(
+
+

= .   

Find the horizontal asymptote and interpret it in context of the scenario. 
 
Both the numerator and denominator are linear (degree 1), so since the degrees are 
equal, there will be a horizontal asymptote at the ratio of the leading coefficients.  In the 
numerator, the leading term is t, with coefficient 1.  In the denominator, the leading 
term is 10t, with coefficient 10.  The horizontal asymptote will be at the ratio of these 

values: As t →∞ , 1( )
10

C t → .  This function will have a horizontal asymptote at 

1
10

y = . 

 
This tells us that as the input gets large, the output values will approach 1/10.  In 
context, this means that as more time goes by, the concentration of sugar in the tank will 
approach one tenth of a pound of sugar per gallon of water or 1/10 pounds per gallon. 

 
 
Example 7 

Find the horizontal and vertical asymptotes of the function 

)5)(2)(1(
)3)(2()(
−+−

+−
=

xxx
xxxf  

 
First, note this function has no inputs that make both the numerator and denominator 
zero, so there are no potential holes.  The function will have vertical asymptotes when 
the denominator is zero, causing the function to be undefined.  The denominator will be 
zero at x = 1, -2, and 5, indicating vertical asymptotes at these values. 
 
The numerator has degree 2, while the denominator has degree 3.  Since the degree of 
the denominator is greater than that of the numerator, the denominator will grow faster 
than the numerator, causing the outputs to tend towards zero as the inputs get large, and 
so as ±∞→x , 0)( →xf .  This function will have a horizontal asymptote at 0y = . 
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Try it Now 

3. Find the vertical and horizontal asymptotes of the function 
)3)(2(
)12)(12()(

+−
+−

=
xx
xxxf  

 
 
Intercepts 
 
As with all functions, a rational function will have a vertical intercept when the input is 
zero, if the function is defined at zero.  It is possible for a rational function to not have a 
vertical intercept if the function is undefined at zero. 
 
Likewise, a rational function will have horizontal intercepts at the inputs that cause the 
output to be zero (unless that input corresponds to a hole).  It is possible there are no 
horizontal intercepts.  Since a fraction is only equal to zero when the numerator is zero, 
horizontal intercepts will occur when the numerator of the rational function is equal to 
zero. 
 
 
Example 8 

Find the intercepts of 
)5)(2)(1(

)3)(2()(
−+−

+−
=

xxx
xxxf  

 
We can find the vertical intercept by evaluating the function at zero 

5
3

10
6

)50)(20)(10(
)30)(20()0( −=

−
=

−+−
+−

=f  

 
 
The horizontal intercepts will occur when the function is equal to zero: 

)5)(2)(1(
)3)(2(0
−+−

+−
=

xxx
xx   This is zero when the numerator is zero 

3,2
)3)(2(0

−=
+−=

x
xx

 

 
 
Try it Now 
4. Given the reciprocal squared function that is shifted right 3 units and down 4 units, 

write this as a rational function and find the horizontal and vertical intercepts and the 
horizontal and vertical asymptotes. 
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From the previous example, you probably noticed that the numerator of a rational 
function reveals the horizontal intercepts of the graph, while the denominator reveals the 
vertical asymptotes of the graph.  As with polynomials, factors of the numerator may 
have integer powers greater than one.  Happily, the effect on the shape of the graph at 
those intercepts is the same as we saw with polynomials.  
 
When factors of the denominator have integer powers greater than one, the behavior at 
the corresponding vertical asymptote will mirror one of the two toolkit reciprocal 
functions. 

 
We get this behavior when the degree of the factor in the 
denominator is odd.   The distinguishing characteristic is that on 
one side of the vertical asymptote the graph heads towards positive 
infinity, and on the other side the graph heads towards negative 
infinity. 
 
 
 
We get this behavior when the degree of the factor in the 
denominator is even.   The distinguishing characteristic is that the 
graph either heads toward positive infinity on both sides of the 
vertical asymptote, or heads toward negative infinity on both sides. 
 
 
 

 
For example, the graph of  

)2()3(
)3()1()( 2

2

−+
−+

=
xx
xxxf  is shown here. 

 
At the horizontal intercept x = -1 
corresponding to the 2)1( +x factor of 
the numerator, the graph bounces at the 
intercept, consistent with the quadratic 
nature of the factor.   
 
At the horizontal intercept x = 3 
corresponding to the )3( −x factor of the numerator, the graph passes through the axis as 
we’d expect from a linear factor.   
 
At the vertical asymptote x = -3 corresponding to the 2)3( +x  factor of the denominator, 
the graph heads towards positive infinity on both sides of the asymptote, consistent with 

the behavior of the  2

1
x

 toolkit. 
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At the vertical asymptote x = 2 corresponding to the )2( −x  factor of the denominator, 
the graph heads towards positive infinity on the left side of the asymptote and towards 

negative infinity on the right side, consistent with the behavior of the  
x
1  toolkit. 

 
 
Example 9 

Sketch a graph of 
2

( 2)( 3)( )
( 1) ( 2)

x xf x
x x
+ −

=
+ −

. 

 
We can start our sketch by finding intercepts and asymptotes.  Evaluating the function 
at zero gives the vertical intercept: 

2

(0 2)(0 3)(0) 3
(0 1) (0 2)

f + −
= =

+ −
 

 
Looking at when the numerator of the function is zero, we can determine the graph will 
have horizontal intercepts at x = -2 and x = 3.  At each, the behavior will be linear, with 
the graph passing through the intercept. 
 
Looking at when the denominator of the function is zero, we can determine the graph 
will have vertical asymptotes at x = -1 and x = 2.   
 
Finally, the degree of denominator is larger than the 
degree of the numerator, telling us this graph has a 
horizontal asymptote at y = 0. 
To sketch the graph, we might start by plotting the three 
intercepts.  Since the graph has no horizontal intercepts 
between the vertical asymptotes, and the vertical 
intercept is positive, we know the function must remain 
positive between the asymptotes, letting us fill in the 
middle portion of the graph. 
 
Since the factor associated with the vertical asymptote at x = -1 was squared, we know 
the graph will have the same behavior on both sides of the asymptote.  Since the graph 
heads towards positive infinity as the inputs approach the asymptote on the right, the 
graph will head towards positive infinity on the left as 
well.  For the vertical asymptote at x = 2, the factor was 
not squared, so the graph will have opposite behavior on 
either side of the asymptote. 
 
After passing through the horizontal intercepts, the graph 
will then level off towards an output of zero, as indicated 
by the horizontal asymptote. 
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Try it Now 

5. Given the function 
)3()1(2
)2()2()( 2

2

−−
−+

=
xx
xxxf , use the characteristics of polynomials and 

rational functions to describe its behavior and sketch the function. 
 
 
Since a rational function written in factored form will have a horizontal intercept where 
each factor of the numerator is equal to zero, we can form a numerator that will pass 
through a set of horizontal intercepts by introducing a corresponding set of factors.  
Likewise, since the function will have a vertical asymptote where each factor of the 
denominator is equal to zero, we can form a denominator that will produce the vertical 
asymptotes by introducing a corresponding set of factors. 
 
 

Writing Rational Functions from Intercepts and Asymptotes 
If a rational function has horizontal intercepts at nxxxx ,,, 21 = , and vertical 
asymptotes at mvvvx ,,, 21 =  then the function can be written in the form 

n

n

q
m

qq

p
n

pp

vxvxvx
xxxxxx

axf
)()()(
)()()(

)(
21

21

21

21

−−−
−−−

=




 

where the powers pi or qi on each factor can be determined by the behavior of the 
graph at the corresponding intercept or asymptote, and the stretch factor a can be 
determined given a value of the function other than the horizontal intercept, or by the 
horizontal asymptote if it is nonzero. 

 
 
Example 10 

Write an equation for the rational function 
graphed here. 
 
The graph appears to have horizontal 
intercepts at x = -2 and x = 3.  At both, the 
graph passes through the intercept, 
suggesting linear factors. 
 
The graph has two vertical asymptotes.  
The one at x = -1 seems to exhibit the basic 

behavior similar to 
x
1 , with the graph 

heading toward positive infinity on one 
side and heading toward negative infinity on the other.   
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The asymptote at x = 2 is exhibiting a behavior similar to 2

1
x

, with the graph heading 

toward negative infinity on both sides of the asymptote.   
 
Utilizing this information indicates an function of the form 

2)2)(1(
)3)(2()(

−+
−+

=
xx
xxaxf  

 
To find the stretch factor, we can use another clear point on the graph, such as the 
vertical intercept (0,-2): 

3
4

6
8

4
62

)20)(10(
)30)(20(2 2

=
−
−

=

−
=−

−+
−+

=−

a

a

a

 

 

This gives us a final function of 2)2)(1(3
)3)(2(4)(

−+
−+

=
xx
xxxf  

 
 
Oblique Asymptotes 
 
Earlier we saw graphs of rational functions that had no horizontal asymptote, which 
occurs when the degree of the numerator is larger than the degree of the denominator.  
We can, however, describe in more detail the long-run behavior of a rational function.   
 
 
Example 11 

Describe the long-run behavior of 
5
23)(

2

−
+

=
x
xxf  

 
Earlier we explored this function when discussing horizontal asymptotes.  We found the 

long-run behavior is
23( ) 3xf x x

x
≈ = , meaning that ±∞→x , ±∞→)(xf , respectively, 

and there is no horizontal asymptote. 
 
If we were to do polynomial long division, we could get a better understanding of the 
behavior as ±∞→x . 
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( )

( )

2

2

3 15
5 3 0 2

3 15

15 2
15 75

77

x
x x x

x x

x
x

+
− + +

− −

+

− −

 

This means 
5
23)(

2

−
+

=
x
xxf  can be rewritten as 

77( ) 3 15
5

f x x
x

= + +
−

. 

As ±∞→x , the term 77
5x −

 will become very 

small and approach zero, becoming insignificant.  
The remaining 3 15x + then describes the long-run 
behavior of the function:  as ±∞→x , 

( ) 3 15f x x→ + .   
 
We call this equation 3 15y x= +  the oblique 
asymptote of the function.   
 
In the graph, you can see how the function is 
approaching the line on the far left and far right.  

 
 

Oblique Asymptotes 
To explore the long-run behavior of a rational function, 
1) Perform polynomial long division (or synthetic division) 
2) The quotient will describe the asymptotic behavior of the function 
 
When this result is a line, we call it an oblique asymptote, or slant asymptote.  

 
 
Example 12 

Find the oblique asymptote of 
2 2 1( )

1
x xf x

x
− + +

=
+

 

 
Performing polynomial long division: 
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( )

( )

2

2

3
1 2 1

3 1
3 3

2

x
x x x

x x

x
x

− +
+ − + +

− − −

+

− +

−

 

This allows us to rewrite the function as 
2( ) 3

1
f x x

x
= − + −

+
. 

 
The quotient, 3y x= − + , is the oblique asymptote 
of f(x).  Just like functions we saw earlier 
approached their horizontal asymptote in the long 
run, this function will approach this oblique 
asymptote in the long run. 

 
 
Try it Now 

6. Find the oblique asymptote of 
21 7 2( )

2
x xf x

x
+ −

=
−

 

 
 
While we primarily concern ourselves with oblique asymptotes, this same approach can 
describe other asymptotic behavior. 
 
 
Example 13 

Describe the long-run shape of 
3 2 4 2( )

1
x x xf x

x
− − + +

=
+

 

 
We could rewrite this using long division as 

2 2( ) 4
1

f x x
x

= − + +
+

. 

 
Just looking at the quotient gives us the 
asymptote, 2 4y x= − + .   
 
This suggests that in the long run, the function 
will behave like a downwards opening parabola.  
The function will also have a vertical asymptote 
at 1x = − .   
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Important Topics of this Section 
Inversely proportional; Reciprocal toolkit function 
Inversely proportional to the square; Reciprocal squared toolkit function 
Horizontal Asymptotes 
Vertical Asymptotes 
Rational Functions 
 Finding intercepts, asymptotes, and holes. 
 Given equation sketch the graph  
 Identifying a function from its graph 
Oblique Asymptotes 

 
 
Try it Now Answers 
1. Long run behavior, as ±∞→x , 0)( →xf   
    Short run behavior, as 0→x , ∞→)(xf  (there are no horizontal or vertical intercepts) 
 
2. The function and the asymptotes are shifted 3 units 

right and 4 units down.   
As 3→x , ∞→)(xf  and as ±∞→x , 4)( −→xf  

 
 
3. Vertical asymptotes at x = 2 and x = -3; horizontal 

asymptote at y = 4 
 
4. For the transformed reciprocal squared function, we 

find the rational form. 

96
35244

)3)(3(
)96(41

)3(
)3(414

)3(
1)( 2

22

2

2

2 +−
−+−

=
−−
+−−

=
−
−−

=−
−

=
xx

xx
xx

xx
x

x
x

xf  

 
Since the numerator is the same degree as the denominator we know that as ±∞→x ,

4)( −→xf .  4y = −  is the horizontal asymptote.  Next, we set the denominator equal 
to zero to find the vertical asymptote at x = 3, because as 3→x , ∞→)(xf .  We set 
the numerator equal to 0 and find the horizontal intercepts are at (2.5,0) and (3.5,0), 

then we evaluate at 0 and the vertical intercept is at 





 −

9
35,0   
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Try it Now Answers, Continued 
5.  Horizontal asymptote at y = 1/2.   

Vertical asymptotes are at x = 1, and x = 3. 
Vertical intercept at (0, 4/3),  
Horizontal intercepts (2, 0) and (-2, 0)  
(-2, 0) is a double zero and the graph bounces off the 
axis at this point.   
(2, 0) is a single zero and crosses the axis at this point.  

 
6. Using long division:  

( )

( )

2

2

2 3
2 2 7 1

2 4

3 1
3 6

7

x
x x x

x x

x
x

− +
− − + +

− − +

+

− −

 

21 7 2 7( ) 2 3
2 2

x xf x x
x x

+ −
= = − + +

− −
 

 
The oblique asymptote is 2 3y x= − +  
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Section 3.7 Exercises 
 
Match each equation form with one of the graphs. 

1. ( ) x Af x
x B
−

=
−

 2. ( ) ( )2x A
g x

x B
−

=
−

 3. ( )
( )2

x Ah x
x B
−

=
−

 4. ( ) ( )
( )

2

2

x A
k x

x B

−
=

−
 

 

A  B   C   D  
 
For each function, find the horizontal intercepts, the vertical intercept, the vertical 
asymptotes, and the horizontal asymptote.  Use that information to sketch a graph. 
 

5. ( ) 2 3
4

xp x
x
−

=
+

    6. ( ) 5
3 1
xq x
x
−

=
−

 

 

7. ( )
( )2

4
2

s x
x

=
−

    8. ( )
( )2

5
1

r x
x

=
+

 

 

9. ( )
2

2

3 14 5
3 8 16

x xf x
x x
− −

=
+ −

    10. ( )
2

2

2 7 15
3 14 15

x xg x
x x

+ −
=

− +
 

 
 

11. ( )
2

2

2 3
1

x xa x
x
+ −

=
−

    12. ( )
2

2

6
4

x xb x
x
− −

=
−

 

 

13. ( )
22   1

4
x xh x

x
+ −

=
−

    14. ( )
22 3 20

5
x xk x

x
− −

=
−

 

 

15. ( )
2

3 2

3 4 4
4

x xn x
x x
+ −

=
−

    16. ( ) 2

5
2 7 3

xm x
x x

−
=

+ +
 

 

17. ( ) ( )( )( )
( )2

1 3 5

2 ( 4)

x x x
w x

x x

− + −
=

+ −
  18. ( ) ( ) ( )

( )( )( )

22 5
3 1 4
x x

z x
x x x

+ −
=

− + +
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Write an equation for a rational function with the given characteristics. 
 
19. Vertical asymptotes at 5x =  and 5x = −  

x intercepts at (2, 0)  and ( 1, 0)−   y intercept at ( )0, 4  

 
20. Vertical asymptotes at 4x = −  and 1x = −  

x intercepts at ( )1, 0  and ( )5, 0   y intercept at (0, 7)  

 
21. Vertical asymptotes at 4x = −  and 5x = −  

x intercepts at ( )4, 0  and ( )6, 0−   Horizontal asymptote at 7y =  

 
22. Vertical asymptotes at 3x = −  and 6x =  

x intercepts at ( )2, 0−  and ( )1, 0   Horizontal asymptote at 2y = −  

 
23. Vertical asymptote at 1x = −   

Double zero at 2x =   y intercept at (0, 2)  
 

24. Vertical asymptote at 3x =   
Double zero at 1x =   y intercept at (0, 4)  

 
Write an equation for the function graphed. 

25.     26.  
 

27.    28.  
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Write an equation for the function graphed. 
 

29.    30.  
 

31.   32.  
 

33.  34.  
 

35.  36.  
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Write an equation for the function graphed. 
 

37.  38.  
 
Find the oblique asymptote of each function. 
 

39.  
23 4( )

2
x xf x
x
+

=
+

    40.  
22 3 8( )

1
x xg x

x
+ −

=
−

 

 

41.  
2 3( )
2 6

x xh x
x
− −

=
−

    42.  
25 2( )

2 1
x xk x
x

+ −
=

+
 

 

43.  
3 2

2

2 6 7( )
3

x x xm x
x

− + − +
=

+
  44.  

3 2

2

2( )
1

x x xn x
x x
+ +

=
+ +

 

 
45. A scientist has a beaker containing 20 mL of a solution containing 20% acid.  To 

dilute this, she adds pure water.   
a. Write an equation for the concentration in the beaker after adding n mL of 

water. 
b. Find the concentration if 10 mL of water has been added. 
c. How many mL of water must be added to obtain a 4% solution? 
d. What is the behavior as n →∞ , and what is the physical significance of this? 

 
46. A scientist has a beaker containing 30 mL of a solution containing 3 grams of 

potassium hydroxide.  To this, she mixes a solution containing 8 milligrams per mL 
of potassium hydroxide.   

a. Write an equation for the concentration in the tank after adding n mL of the 
second solution. 

b. Find the concentration if 10 mL of the second solution has been added. 
c. How many mL of water must be added to obtain a 50 mg/mL solution? 
d. What is the behavior as n →∞ , and what is the physical significance of this? 
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47. Oscar is hunting magnetic fields with his gauss meter, a device for measuring the 
strength and polarity of magnetic fields. The reading on the meter will increase as 
Oscar gets closer to a magnet. Oscar is in a long hallway at the end of which is a 
room containing an extremely strong magnet. When he is far down the hallway from 
the room, the meter reads a level of 0.2. He then walks down the hallway and enters 
the room. When he has gone 6 feet into the room, the meter reads 2.3. Eight feet into 
the room, the meter reads 4.4.  [UW] 

a. Give a rational model of form ( ) ax bm x
cx d

+
=

+
 relating the meter reading ( )m x  

to how many feet x Oscar has gone into the room. 
b. How far must he go for the meter to reach 10? 100? 
c. Considering your function from part (a) and the results of part (b), how far 

into the room do you think the magnet is? 
48. The more you study for a certain exam, the better your performance on it. If you 

study for 10 hours, your score will be 65%. If you study for 20 hours, your score will 
be 95%. You can get as close as you want to a perfect score just by studying long 
enough. Assume your percentage score, ( )p n , is a function of the number of hours, n, 

that you study in the form ( ) an bp n
cn d

+
=

+
. If you want a score of 80%, how long do 

you need to study? [UW] 
 

49. A street light is 10 feet north of a 
straight bike path that runs east-
west. Olav is bicycling down the 
path at a rate of 15 miles per 
hour. At noon, Olav is 33 feet 
west of the point on the bike path 
closest to the street light. (See the 
picture). The relationship between the intensity C of light (in candlepower) and the 

distance d (in feet) from the light source is given by 2

kC
d

= , where k is a constant 

depending on the light source.  [UW] 
a. From 20 feet away, the street light has an intensity of 1 candle. What is k? 
b. Find a function which gives the intensity of the light shining on Olav as a 

function of time, in seconds. 
c. When will the light on Olav have maximum intensity? 
d. When will the intensity of the light be 2 candles? 
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Section 3.8 Inverses and Radical Functions 
 
In this section, we will explore the inverses of polynomial and rational functions, and in 
particular the radical functions that arise in the process. 
 
 
Example 1 

A water runoff collector is built in the shape of a parabolic trough as shown below.  
Find the surface area of the water in the trough as a function of the depth of the water. 
 
 
 
 
 
 
 
 
Since it will be helpful to have an equation for the parabolic cross-sectional shape, we 
will impose a coordinate system at the cross section, with x measured horizontally and y 
measured vertically, with the origin at the vertex of the parabola.   
 

        
 
From this we find an equation for the parabolic shape.  Since we placed the origin at the 
vertex of the parabola, we know the equation will have form 2)( axxy = .  Our equation 
will need to pass through the point (6,18), from which we can solve for the stretch 
factor a: 

2
1

36
18

618 2

==

=

a

a
 

Our parabolic cross section has equation 2

2
1)( xxy =  

 
Since we are interested in the surface area of the water, we are interested in determining 
the width at the top of the water as a function of the water depth.  For any depth y the 
width will be given by 2x, so we need to solve the equation above for x.  However 
notice that the original function is not one-to-one, and indeed given any output there are 
two inputs that produce the same output, one positive and one negative. 

3ft 
12 in 

18 in 

x 
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To find an inverse, we can restrict our original function to a limited domain on which it 
is one-to-one.  In this case, it makes sense to restrict ourselves to positive x values.  On 
this domain, we can find an inverse by solving for the input variable: 

2

2

2
2
1

xy

xy

=

=
 

yx 2±=   
 
This is not a function as written.  Since we are limiting ourselves to positive x values, 
we eliminate the negative solution, giving us the inverse function we’re looking for 

yyx 2)( =  
 
Since x measures from the center out, the entire width of the water at the top will be 2x.  
Since the trough is 3 feet (36 inches) long, the surface area will then be 36(2x), or in 
terms of y: 

yxArea 27272 ==  
 
 
The previous example illustrated two important things:  

1) When finding the inverse of a quadratic, we have to limit ourselves to a domain      
on which the function is one-to-one. 

2) The inverse of a quadratic function is a square root function.  Both are toolkit 
functions and different types of power functions.  

 
Functions involving roots are often called radical functions. 
 
 
Example  2 

Find the inverse of 143)2()( 22 +−=−−= xxxxf  
 
From the transformation form of the function, we can see this is a transformed quadratic 
with vertex at (2,-3) that opens upwards.   Since the graph will be decreasing on one 
side of the vertex, and increasing on the other side, we can restrict this function to a 
domain on which it will be one-to-one by limiting the domain to 2≥x . 
 
To find the inverse, we will use the vertex form of the quadratic.  We start by replacing 
the f(x) with a simple variable y, then solve for x. 

3)2( 2 −−= xy    Add 3 to both sides 
2)2(3 −=+ xy    Take the square root 
23 −=+± xy    Add 2 to both sides 

xy =+± 32  
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Of course, as written this is not a function.  Since we restricted our original function to a 
domain of 2≥x , the outputs of the inverse should be the same, telling us to utilize the 
positive case: 

32)(1 ++== − yyfx  
 
If the quadratic had not been given in vertex form, rewriting it into vertex form is 
probably the best approach.  Alternatively, we could have taken the standard equation 
and rewritten it equal to zero: 

yxx −+−= 140 2  
 
We would then be able to use the quadratic formula with 1a = , 4b = − , and (1 )c y= − , 
resulting in the same solutions we found above: 

2( 4) ( 4) 4(1)(1 ) 12 4
2 2 3

2 2
y y

x y
− − ± − − − +

= = ± = ± +  

 
 
Try it Now 
1. Find the inverse of the function 2( ) 1f x x= + , on the domain 0x ≥ . 

 
 
While it is not possible to find an inverse of most polynomial functions, some other basic 
polynomials are invertible. 
 
 
Example 3 

Find the inverse of the function 15)( 3 += xxf . 
 
This is a transformation of the basic cubic toolkit function, and based on our knowledge 
of that function, we know it is one-to-one.  Solving for the inverse by solving for x 

31

3

3

3

5
1)(

5
1

51
15

−
==

=
−

=−

+=

− yyfx

xy
xy

xy

 

 
 
Notice that this inverse is also a transformation of a power function with a fractional 
power, x1/3. 
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Try it Now 
2.  Which toolkit functions have inverse functions without restricting their domain?  
 
 
Besides being important as an inverse function, radical functions are common in 
important physical models. 
 
 
Example 4 

The velocity, v in feet per second, of a car that slammed on its brakes can be determined 
based on the length of skid marks that the tires left on the ground.  This relationship is 
given by 

gfddv 2)( =  
In this formula, g represents acceleration due to gravity (32 ft/sec2), d is the length of 
the skid marks in feet, and f is a constant representing the friction of the surface.  A car 
lost control on wet asphalt, with a friction coefficient of 0.5, leaving 200 foot skid 
marks.  How fast was the car travelling when it lost control? 
 
Using the given values of f = 0.5 and d = 200, we can evaluate the given formula: 

(200) 2(32)(0.5)(200) 80 ft/secv = = , which is about 54.5 miles per hour. 
 
 
When radical functions are composed with other functions, determining domain can 
become more complicated. 
 
 
Example 5 

Find the domain of the function 
)1(

)3)(2()(
−

−+
=

x
xxxf . 

 
Since a square root is only defined when the quantity under the radical is non-negative, 

we need to determine where 0
)1(

)3)(2(
≥

−
−+

x
xx .  A rational function can change signs 

(change from positive to negative or vice versa) at horizontal intercepts and at vertical 
asymptotes.  For this equation, the graph could change signs at x = -2, 1, and 3.   
 
To determine on which intervals the rational expression is positive, we could evaluate 
the expression at test values, or sketch a graph.  While both approaches work equally 
well, for this example we will use a graph. 
 
This function has two horizontal intercepts, both of which exhibit linear behavior, 
where the graph will pass through the intercept.  There is one vertical asymptote, 
corresponding to a linear factor, leading to a behavior similar to the basic reciprocal 
toolkit function.  There is a vertical intercept at (0, 6).  This graph does not have a 
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horizontal asymptote, since the degree of the numerator is larger than the degree of the 
denominator.   
 
From the vertical intercept and horizontal intercept at x = -2, we can sketch the left side 
of the graph.  From the behavior at the asymptote, 
we can sketch the right side of the graph. 
 
 
 
From the graph, we can now tell on which 
intervals this expression will be non-negative, so 
the original function f(x) will be defined. 
f(x) has domain 312 ≥<≤− xorx , or in interval 
notation, ),3[)1,2[ ∞∪− . 

 
 
Like with finding inverses of quadratic functions, it is sometimes desirable to find the 
inverse of a rational function, particularly of rational functions that are the ratio of linear 
functions, such as our concentration examples. 
 
 
Example 6 

The function 
n
nnC

+
+

=
100

4.020)(  was used in the previous section to represent the 

concentration of an acid solution after n mL of 40% solution has been added to 100 mL 
of a 20% solution.  We might want to be able to determine instead how much 40% 
solution has been added based on the current concentration of the mixture.  
 
To do this, we would want the inverse of this function: 

n
nC

+
+

=
100

4.020   multiply both sides by the denominator 

nnC 4.020)100( +=+  distribute 
nCnC 4.020100 +=+  group everything with n on one side 

CnnC −=− 4.020100  factor out n 
nCC )4.0(20100 −=−  divide to find the inverse 

C
CCn
−
−

=
4.0

20100)(  

 
If, for example, we wanted to know how many mL of 40% solution need to be added to 
obtain a concentration of 35%, we can simply evaluate the inverse rather than solving 
an equation involving the original function: 

300
05.0

15
35.04.0

20)35.0(100)35.0( ==
−

−
=n mL of 40% solution would need to be added. 
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Try it Now 

3. Find the inverse of the function 3( )
2

xf x
x
+

=
−

. 

 
 

Important Topics of this Section 
Imposing a coordinate system 
Finding an inverse function 
 Restricting the domain 
Invertible toolkit functions 
Radical Functions  
Inverses of rational functions 

 
 
Try it Now Answers 
1. 12 += xy  

21 xy =−  
1)(1 −== − yyfx  

 
2. identity, cubic, square root, cube root 
 

3. 
2
3

−
+

=
x
xy  

3)2( +=− xxy  
32 +=− xyyx  
32 +=− yxyx  

32)1( +=− yyx  
1 2 3( )

1
yf y
y

− +
=

−
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Section 3.8 Exercises 
 
For each function, find a domain on which the function is one-to-one and non-decreasing, 
then find an inverse of the function on this domain. 
1. ( ) ( )24f x x= −    2. ( ) ( )22f x x= +  

3. ( ) 212f x x= −    4. ( ) 29f x x= −  

5. ( ) 33 1f x x= +    6. ( ) 34 2f x x= −  

 
Find the inverse of each function. 
7. ( ) 9 4 4f x x= + −    8. ( ) 6 8 5f x x= − +  

9. ( ) 39 2f x x= +    10. ( ) 33f x x= −  

11. ( ) 2
8

f x
x

=
+

   12. ( ) 3
4

f x
x

=
−

 

13. ( ) 3
7

xf x
x
+

=
+

   14. ( ) 2
7

xf x
x
−

=
+

 

15. ( ) 3 4
5 4

xf x
x

+
=

−
    16. ( ) 5 1

2 5
xf x

x
+

=
−

 

 
Police use the formula 20v L=  to estimate the speed of a car, v, in miles per hour, 
based on the length, L, in feet, of its skid marks when suddenly braking on a dry, asphalt 
road.  
 
17. At the scene of an accident, a police officer measures a car's skid marks to be 215 feet 

long. Approximately how fast was the car traveling? 
 

18. At the scene of an accident, a police officer measures a car's skid marks to be 135 feet 
long. Approximately how fast was the car traveling? 

The formula 2.7v r=  models the maximum safe speed, v, in miles per hour, at which a 
car can travel on a curved road with radius of curvature r, in feet.  
 
19. A highway crew measures the radius of curvature at an exit ramp on a highway as 

430 feet. What is the maximum safe speed? 
 

20. A highway crew measures the radius of curvature at a tight corner on a highway as 
900 feet. What is the maximum safe speed? 
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21. A drainage canal has a cross-
section in the shape of a parabola. 
Suppose that the canal is 10 feet 
deep and 20 feet wide at the top. 
If the water depth in the ditch is 5 
feet, how wide is the surface of 
the water in the ditch? [UW] 
 
 

22. Brooke is located 5 miles out from the 
nearest point A along a straight shoreline in 
her sea kayak. Hunger strikes and she 
wants to make it to Kono’s for lunch; see 
picture. Brooke can paddle 2 mph and walk 
4 mph. [UW] 

a. If she paddles along a straight line 
course to the shore, find an 
expression that computes the total time to reach lunch in terms of the location 
where Brooke beaches her kayak. 

b. Determine the total time to reach Kono’s if she paddles directly to the point A. 
c. Determine the total time to reach Kono’s if she paddles directly to Kono’s. 
d. Do you think your answer to b or c is the minimum time required for Brooke 

to reach lunch? 
e. Determine the total time to reach Kono’s if she paddles directly to a point on 

the shore half way between point A and Kono’s. How does this time compare 
to the times in parts b or c?  Do you need to modify your answer to part d?  
 

23. Clovis is standing at the edge of a dropoff, which slopes 4 feet downward from him 
for every 1 horizontal foot. He launches a small model rocket from where he is 
standing. With the origin of the coordinate system located where he is standing, and 
the x-axis extending horizontally, the path of the rocket is described by the formula 

22 120y x x= − + . [UW] 
a. Give a function ( )h f x=  relating the height h of the rocket above the sloping 

ground to its x-coordinate. 
b. Find the maximum height of the rocket above the sloping ground. What is its 

x-coordinate when it is at its maximum height? 
c. Clovis measures the height h of the rocket above the sloping ground while it is 

going up. Give a function ( )x g h=  relating the x-coordinate of the rocket to 

h. 
d. Does the function from (c) still work when the rocket is going down? Explain. 
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24. A trough has a semicircular 

cross section with a radius 
of 5 feet. Water starts 
flowing into the trough in 
such a way that the depth of 
the water is increasing at a 
rate of 2 inches per hour. 
[UW] 

a. Give a function 
( )w f t=  relating 

the width w of the surface of the water to the time t, in hours. Make sure to 
specify the domain and compute the range too. 

b. After how many hours will the surface of the water have width of 6 feet? 
c. Give a function ( )1t f w−=  relating the time to the width of the surface of the 

water. Make sure to specify the domain and compute the range too. 
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