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Section 4.1 Exponential Functions
 XE "Exponential Functions" 

 XE "Function:Exponential Functions" 
India is the second most populous country in the world, with a population in 2008 of about 1.14 billion people.  The population is growing by about 1.34% each year
.  We might ask if we can find a formula to model the population, P, as a function of time, t, in years after 2008, if the population continues to grow at this rate.
In linear growth, we had a constant rate of change – a constant number that the output increased for each increase in input.  For example, in the equation 
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, the slope tells us the output increases by three each time the input increases by one.  This population scenario is different – we have a percent rate of change rather than a constant number of people as our rate of change.  To see the significance of this difference consider these two companies:

Company A has 100 stores, and expands by opening 50 new stores a year

Company B has 100 stores, and expands by increasing the number of stores by  50% of their total each year. 
Looking at a few years of growth for these companies:

	Year
	Stores, company A
	
	Stores, company B

	0
	100
	Starting with  100 each

	100

	1
	100 + 50 = 150
	They both grow by 50 stores in the first year.


	100 + 50% of 100

100 + 0.50(100) = 150

	2
	150 + 50 = 200
	Store A grows by 50, Store B grows by 75


	150 + 50% of 150

150 + 0.50(150) = 225

	3
	200 + 50 = 250
	Store A grows by 50, Store B grows by 112.5


	225 + 50% of 225

225 + 0.50(225) = 337.5


Notice that with the percent growth, each year, the company is growing by 50% of the current year total, so as the company grows larger, the number of stores added in a year grows as well.

To try to simplify the calculations, notice that after 1 year the number of stores for company B was:
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or equivalently by factoring
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We can think of this as “the new number of stores is the original 100% plus another 50%”

After 2 years, the number of stores was:
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or equivalently by factoring
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now recall the 150 came from 100(1+0.50).  Substituting that,
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After 3 years, the number of stores was:


[image: image7.wmf])

225

(

50

.

0

225

+


or equivalently by factoring
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now recall the 225 came from 
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. Substituting that,
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From this, we can generalize, noticing that to show a 50% increase, each year we multiply by a factor of (1+0.50), so after n years, our equation would be
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In this equation, the 100 represented the initial quantity, and the 0.50 was the percent growth rate.  Generalizing further, we arrive at the general form of exponential functions.

Exponential Function
An exponential growth or decay function XE "Exponential Growth or Decay Function"  is a function that grows or shrinks at a constant percent growth rate.  The equation can be written in the form
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    or     
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    where b = 1+r
Where

a is the initial or starting value of the function

r is the percent growth or decay rate, written as a decimal

b is the growth factor or growth multiplier.  Since powers of negative numbers behave strangely, we limit b to positive values.
To see more clearly the difference between exponential and linear growth, compare the two tables and graphs below, which illustrate the growth of company A and B described above over a longer time frame if the growth patterns were to continue
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 B
	years
	Company A
	Company B

	2
	200
	225

	4
	300
	506

	6
	400
	1139

	8
	500
	2563

	10
	600
	5767









       A
Example 1
Write an exponential function for India’s population, and use it to predict the population in 2020.

At the beginning of the chapter we were given India’s population of 1.14 billion in the year 2008 and a percent growth rate of 1.34%.  Using 2008 as our starting time (t = 0), our initial population will be 1.14 billion.  Since the percent growth rate was 1.34%, our value for r = 0.0134.  
Using the basic formula for exponential growth
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 we can write the formula,  
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To estimate the population in 2020, we evaluate the function at t = 12, since 2020 is 12 years after 2008.
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billion people in 2020

Try it Now
1. Given the three statements below, identify which one(s) is(are) exponential functions.

A. The cost of living allowance for state employees increases salaries by 3.1% each year.
B. State employees can expect a $300 raise each year they work for the state.

C. Tuition costs have increased by 2.8% each year for the last 3 years.

Example 2
A certificate of deposit (CD) is a type of savings account offered by banks, typically offering a higher interest rate in return for a fixed length of time you will leave your money invested.  If a bank offers a 24 month CD with an annual interest rate of 1.2% compounded monthly, how much will a $1000 investment grow to over those 24 months?
First, we must notice that the interest rate is an annual rate, but is compounded monthly, meaning interest is calculated and added to the account monthly.  To find the monthly interest rate, we divide the annual rate of 1.2% by 12 since there are 12 months in a year:  1.2%/12 = 0.1%.  Each month we will earn 0.1% interest.  From this, we can set up an exponential function, with our initial amount of $1000 and a growth rate of r = 0.001, and our input m measured in months.
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After 24 months, the account will have grown to 
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Try it Now
2. Looking at these two equations that represent the balance in two different savings accounts, which account is growing faster, and which account will have a higher balance after 3 years?
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In all the preceding examples, we saw exponential growth.  Exponential functions can also be used to model quantities that are decreasing at a percent rate.  An example of this is radioactive decay, a process in which radioactive isotopes of certain atoms transform to an atom of a different type, causing a percentage decrease of the original material over time.
Example 3
Bismuth-210 is an isotope that radioactively decays by about 13% each day, meaning 13% of the remaining Bismuth-210 transforms into another atom (polonium-210 in this case) each day.  If you begin with 100 mg of Bismuth-210, how much remains after one week?
With radioactive decay, instead of the quantity increasing at a percent rate, the quantity is decreasing at a percent rate.  Our initial quantity is a = 100 mg, and our growth rate will be negative 13%, since we are decreasing:  r = -0.13.  This gives the equation:
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This can also be explained by recognizing that if 13% decays, then 87 % remains.

After one week, 7 days, the quantity remaining would be
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mg of Bismuth-210 remains.
Try it Now 

3.  A population of 1000 is decaying 3% each year.  Find the population in 30 years.
Example 4
T(q) represents the total number of Android smart phone contracts, in the thousands held by a certain Verizon store region measured quarterly since Jan 1st, 2010, 

Interpret all of the parts of the equation 
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Interpreting this from the basic exponential form, we know that 86 is our initial value. This means that on Jan 1st, 2010 this region had 86,000 android smart phone contracts.  Since b = 1 + r = 1.64, we know that every quarter the number of smart phone contracts are growing by 64%.  T(2) = 231.3056 means that in the 2nd quarter (or at the end of the second quarter) there were approximately 231,305 Android smart phone contracts.
Finding Equations of Exponential Functions XE "Exponential Functions:Finding Equations" 
In the previous examples, we were able to write equations for exponential functions since we knew the initial quantity and the growth rate.  If we do not know the growth rate, but instead know only some input and output pairs of values, we can still construct an exponential function equation.

Example 5
In 2002, 80 deer were reintroduced into a wildlife refuge area from which the population had previously been hunted to elimination.  By 2008, the population had grown to 180 deer.  If this population grows exponentially, find a formula for the function.

By defining our input variable to be t, years after 2002, the information listed can be written as two input-output pairs:  (0,80) and (6,180).  Notice that by choosing our input variable to be measured as years after the first year value provided, we have effectively “given” ourselves the initial value for the function:  a = 80.  This gives us an equation of the form 
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Substituting in our second input-output pair allows us to solve for b:
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This gives us our equation for the population:
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Recall that since b = 1+r, we can interpret this to mean that the population growth rate, r = 0.1447 and so the population is growing by about 14.47% each year.  

In the previous example, we chose to use the 
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 form of the exponential function rather than the 
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 form.  This choice was entirely arbitrary – either form would be fine to use.

When finding equations, the value for b or r will usually have to be rounded to be written easily.  To preserve accuracy, it is important to not over-round these values.  Typically, you want to be sure to preserve at least 3 significant digits in the growth rate.  For example, if your value for b was 1.00317643, you would want to round this no further than to 1.00318.  
In the previous example, we were able to “give” ourselves the initial value by clever definition of our input variable.  Next we consider the case where we can’t do this.

Example 6
Find an equation for an exponential function passing through the points (-2,6) and (2,1)

Since we don’t have the initial value, we will take a general approach that will work for any function form with unknown parameters:  we will substitute in both given input-output pairs in the function form 
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 and solve for the unknown values, a & b.
Substituting in (-2, 6) gives 
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Substituting in (2, 1) gives 
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We now solve these as a system of equations.  To do so, we could try a substitution approach, solving one equation for a variable, then substituting that expression into the second equation.

Solving 
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In the second equation, 
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, we substitute the expression above for a:
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Going back to the equation 
[image: image37.wmf]2

6

b

a

=

 lets us find a
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Putting this together gives the equation  
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Try it Now
4. Given the two points (1, 3) and (2, 4.5) find the equation of an exponential function that passes through these two points.
Example 7
Find an equation for the exponential function graphed below
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The initial value for the function is not clear in this graph, so we will instead work using two clearer points.  There are three fairly clear points: (-1, 1), (1, 2), and (3, 4).  As we saw in the last example, two points are sufficient to find the equation for a standard exponential, so we will use the latter two points.  
Substituting in (1,2) gives 
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Substituting in (3,4) gives 
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Solving the first equation for a gives 
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Substituting this expression for a into the second equation:
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Simplify the right hand side
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Since we restrict ourselves to positive values of b, we will use 
[image: image47.wmf]2

=

b

.  We can then go back and find a:


[image: image48.wmf]2

2

2

2

=

=

=

b

a


This gives us a final equation of 
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Compound Interest
In the bank certificate of deposit (CD) example earlier in the section, we encountered compound interest.  Typically bank accounts and other savings instruments in which earnings are reinvested, such as mutual funds and retirement accounts, follow the pattern of compound interest.  The term compounding comes from the behavior that interest is earned not only on the original value, but on the accumulated value of the account.

In the example from earlier, the interest was compounded monthly, so we took the annual interest rate, usually called the nominal rate XE "Nominal Rate"  or annual percentage rate (APR) XE "Annual Percentage Rate (APR)"  and divided by 12, the number of compounds in a year, to find the monthly interest.  The exponent was then measured in months.  

Generalizing this, we can form a general equation for compound interest.  If the APR is written in decimal form as r, and there are k compounds per year, then the interest per compounding period will be r/k.  Likewise, if we are interested in the value after t years, then there will be kt compounding periods in that time.  

Compound Interest Formula
Compound Interest XE "Compound Interest"  can be calculated using the formula
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Where

A(t) is the account value

t is measured in years

a is the starting amount of the account, often called the principal

r is the annual percentage rate (APR), also called the nominal rate

k is the number of compounds in one year

Example 8
If you invest $3,000 in an investment account paying 3% interest compounded quarterly, how much will the account be worth in 10 years?
Since we are starting with $3000, a = 3000

Our interest rate is 3%, so r = 0.03

Since we are compounding quarterly, we are compounding 4 times per year, so k = 4

We want to know the value of the account in 10 years, we are looking for A(10), the value when t = 10.
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The account will be worth $4045.05 in 10 years.

Example 9
A 529 plan is a college savings plan in which a relative can invest money to pay for a child’s later college tuition, and the account grows tax free.  If Lily wants to set up a 529 account for her new granddaughter, wants the account to grow to $40,000 over 18 years, and she believes the account will earn 6% compounded semi-annually (twice a year), how much will Lily need to invest in the account now?

Since the account is earning 6%, r = 0.06

Since interest is compounded twice a year, k = 2

In this problem, we don’t know how much we are starting with, so we will be solving for a, the initial amount needed.  We do know we want the end amount to be $40,000, so we will be looking for the value of a so that A(18) = 40,000.  
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Lily will need to invest $13,801 to have $40,000 in 18 years.

Try it now
5. Recalculate example 2 from above with quarterly compounding 
Because of compounding throughout the year, with compound interest the actual increase in a year is more than the annual percentage rate.  If $1,000 were invested at 10%, the table below shows the value after 1 year at different compounding frequencies:

	Frequency
	Value after 1 year

	Annually
	$1100

	Semiannually
	$1102.50

	Quarterly
	$1103.81

	Monthly
	$1104.71

	Daily
	$1105.16


If we were to compute the actual percentage increase for the daily compounding, there was an increase of $105.16 from an original amount of $1,000, for a percentage increase of 
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= 10.516% increase.  This quantity is called the annual percentage yield (APY).

Notice that given any starting amount, the amount after 1 year would be
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.  To find the total change, we would subtract the original amount, then to find the percentage change we would divide that by the original amount:
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Annual Percentage Yield
The annual percentage yield XE "Annual Percentage Yield (APY)"  is the actual percent a quantity increases in one year.  It can be calculated as 
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Notice this is equivalent to finding the value of $1 after 1 year, and subtracting the original dollar.

Example 10
Bank A offers an account paying 1.2% compounded quarterly.  Bank B offers an account paying 1.1% compounded monthly.  Which is offering a better rate?

We can compare these rates using the annual percentage yield – the actual percent increase in a year.

Bank A:  
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 = 1.2054%

Bank B: 
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The monthly compounding is not enough to catch up with Bank A’s better APR.  Bank A offers a better rate.

A Limit to Compounding

As we saw earlier, the amount we earn increases as we increase the compounding frequency.  The table, though, shows that the increase from annual to semi-annual compounding is larger than the increase from monthly to daily compounding.  This might lead us to believe that although increasing the frequency of compounding will increase our result, there is an upper limit to this.

To see this, let us examine the value of $1 invested at 100% interest for 1 year.  

	Frequency
	Value

	Annual
	$2

	Semiannually
	$2.25

	Quarterly
	$2.441406

	Monthly
	$2.613035

	Daily
	$2.714567

	Hourly
	$2.718127

	Minutely
	$2.718279

	Secondly
	$2.718282


These values do indeed appear to be approaching an upper limit.  This value ends up being so important that it gets represented by its own letter, much like how 
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Euler’s Number: e
e is the letter used to represent the value that 
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 approaches as k gets big.
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Since usually e is used as the base of an exponential, most scientific and graphing calculators have a button that can calculate powers of e, usually labeled ex.  Some computer software instead defines a function exp(x), where exp(x) = ex.
Because e arises when compounding frequency gets big, e allows us to define continuous growth and is also one of our basic toolkit functions 
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Continuous Growth Equation
Continuous Growth XE "Continuous Growth"  can be calculated using the formula 
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Where

a is the starting amount 

r is the continuous growth rate

This type of equation is commonly used when describing quantities that change continuously, like chemical reactions, growth of large populations, and radioactive decay.  
Example 11
Radon-222 decays at a continuous rate of 17.3% per day.  How much will 100mg of Radon-222 decay to in 3 days?

Since we are given a continuous decay rate, we use the continuous growth formula.  Since we are decaying, we know the growth rate will be negative: r = -0.173
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Try it Now
6.  Interpret the following, 
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if S(t) represents the growth of a substance in grams, and time is measured in days.

Continuous growth is also often applied to compounded interest, allowing us to talk about continuous compounding.

The continuous growth rate is like the nominal growth rate – it reflects the growth rate before considering compounding.  This is different than the annual growth rate used in the
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, which is like the annual percentage yield – it reflects the actual amount the output grows in a year.

Example 12
If $1000 is invested in an account earning 10% compounded continuously, find the value after 1 year.

Here, the continuous growth rate is 10%, so r = 0.10. 

We start with $1000, so a = 1000.

To find the value after 1 year,
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Notice that this value is slightly larger than the amount generated by daily compounding in the table computed earlier.

Important Topics of this Section
Percent growth 
Exponential functions


Finding equations


Interpreting equations


Graphs
Exponential Growth & Decay

Compounded interest

Annual Percent Yield

Continuous Growth

Try it Now Answers
1. A & C are exponential functions, they grow by a % not a constant number.
2. B(t) is growing faster, but after 3 years A(t) still has a higher account balance
3. 
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4. 
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5. $1024.25
6. An initial substance weighing 20g is growing at a continuous rate of 12% per day.
Section 4.2 Graphs of Exponential Functions

 XE "Exponential Functions:Graphs of Exponential Functions" 
Like with linear functions, the graph of an exponential function is determined by the values for the parameters in the equation in a logical way.  

To get a sense for the behavior of exponentials, let us begin by looking more closely at the basic toolkit function
[image: image70.wmf]x

x

f

2

)

(

=

.  Listing a table of values for this function:

	x
	-3
	-2
	-1
	0
	1
	2
	3

	f(x)
	1/8
	¼
	½
	1
	2
	4
	8


Notice that:

1) This function is positive for all values of x
2) As x increases, the function grows faster and faster

3) As x decreases, the function values grow smaller, approaching zero.

4) This is an example of exponential growth

Looking at the function 
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	x
	-3
	-2
	-1
	0
	1
	2
	3

	g(x)
	8
	4
	2
	1
	½
	¼
	1/8


Note this function is also positive for all values of x, but in this case grows as x decreases, and decreases towards zero as x increases.  This is an example of exponential decay.  You may notice from the table that this function appears to be the horizontal reflection of the 
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 table.  This is in fact the case:
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Looking at the graphs also confirms this relationship:
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Since the initial value of the function is the function value at an input of zero, the initial value will give us the vertical intercept of the graph.  From the graphs above, we can see that an exponential graph will have a horizontal asymptote on one side of the graph, and can either increase or decrease, depending upon the growth factor.  This horizontal asymptote will also help us determine the long run behavior and is easy to see from the graph. 

The graph will grow when the growth rate is positive, which will make the growth factor b larger than one.  When the growth rate is negative, the growth factor will be less than one.

Graphical Features of Exponential Functions
Graphically, in the function 
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a is the vertical intercept of the graph

b determines the rate at which the graph grows


the graph will increase if b > 1


the graph will decrease if 0 < b < 1

The graph will have a horizontal asymptote at y = 0

The domain of the function is all real numbers

The range of the function is 
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When sketching the graph of an exponential, it can be helpful to remember that the graph will pass through the points (0, a) and (1, ab)

The value b will determine the functions long run behavior.

If b > 1, as 
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If 0 < b < 1, as 
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Example 1

Sketch a graph of 
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This graph will have a vertical intercept at (0,4), and pass through the point 
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.  Since b < 1, the graph will be decreasing towards zero.  

We can also see from the graph the long run behavior: as 
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To get a better feeling for the effect of a and b on the graph, examine the sets of graphs below.  The first set shows various graphs, where a remains the same and we only change the value for b.
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Notice that the closer the value of b is to 1, the flatter the graph will be.   

In the next set of graphs, a is altered and our value for b remains the same.
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Notice that changing the value for a changes the vertical intercept.  Since a is multiplying the bx term, a acts as a stretch factor, not as a shift.  Notice also that the long run behavior for all of these functions is the same because the growth factor did not change.
Example 2
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Match each equation with its graph.
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The graph of k(x) is the easiest to identify, since it is the only equation with a growth factor less than one, which will produce a decreasing graph.  The graph of h(x) can be identified as the only growing exponential with a vertical intercept at (0,4).  The graphs of f(x) and g(x) both have a vertical intercept at (0,2), but since g(x) has a larger growth factor, we can identify it as the graph increasing faster.
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Try it Now

1. Graph the following functions on the same axis: 
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Transformations of Exponential Graphs
 XE "Exponential Functions:Transformations of Exponential Graphs" 
While exponential functions can be transformed following the same rules as any function, there are a few interesting features of transformations that can be identified.  The first was seen at the beginning of the section – that a horizontal reflection is equivalent to a change in the growth factor.  Likewise, since a is itself a stretch factor, a vertical stretch of an exponential is equivalent to a change in the initial value of the function.

Next consider the effect of a horizontal shift of an exponential.  Shifting the function 
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 four units to the left would give
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.  Employing exponent rules, we could rewrite this:
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Interestingly, it turns out that a horizontal shift of an exponential is equivalent to a change in initial value of the function.

Lastly, consider the effect of a vertical shift of an exponential.  Shifting 
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 down 4 units would give the equation 
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, yielding the graph
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Notice that this graph is substantially different than the basic exponential graph.  Unlike a basic exponential, this graph does not have a horizontal asymptote at y = 0; due to the vertical shift, the horizontal asymptote has also shifted to y = -4.  We can see that as 
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From this, we have determined that a vertical shift is the only transformation of an exponential that changes the graph in a way unique from the effects of the basic parameters of an exponential

Transformations of Exponentials
Any transformed exponential can be written in the form
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Where 

c is the horizontal asymptote of the shifted exponential

Note that due to the shift, the vertical intercept is also shifted to (0,a+c).

Try it Now

2. Write the equation and graph the exponential function described below;
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is vertically stretched by a factor of 2, flipped across the y axis and shifted up 4 units.

Example 3

Sketch a graph of 
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Notice that in this exponential, the negative in the stretch factor -3 will cause a vertical reflection of the graph, and the vertical shift up 4 will move the horizontal asymptote to y = 4.  Sketching this as a transformation of a 
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The basic 
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       Vertically reflected and stretched by 3

[image: image113.png]
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Vertically shifted up four units
[image: image115.png]



Notice that while the domain of this function is unchanged, due to the reflection and shift, the range of this function is f(x) < 4.

As 
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Equations leading to graphs like the one above are common as models for learning models and models of growth approaching a limit.

Example 4

Find an equation for the graph sketched below
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Looking at this graph, it appears to have a horizontal asymptote at y = 5, suggesting an equation of the form 
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.  To find values for a and b, we can identify two other points on the graph.  It appears the graph passes through (0,2) and (-1,3), so we can use those points.  Substituting in (0,2) allows us to solve for a
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Substituting in (-1,3) allows us to solve for b
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The final equation for our graph is 
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Try it Now  

3. Given the graph of the transformed exponential function, write the equation and describe the long run behavior.
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Important Topics of this Section
Graphs of exponential functions
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Growth factor

Exponential Growth

Exponential Decay
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2. 
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3. 
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Section 4.3 Logarithmic Functions

 XE "Logarithmic Functions" 

 XE "Function:Logarithmic Functions" 
A population of 50 flies is expected to double every week, leading to an equation of the form 
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.  When will this population reach 500?  Trying to solve this problem leads to 
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While we have set up exponential models and used them to make predictions, you may have noticed that solving exponential equations has not yet been mentioned.  The reason is simple: none of the algebraic tools discussed so far are sufficient to solve exponential equations.  Consider the equation 
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 above.  We know that 
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, so it is clear that x must be some value between 3 and 4.  We could use technology to create a table of values or graph to better estimate the solution.  
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From the graph, we could better estimate the solution to be around 3.3.  This result is still fairly unsatisfactory, and since the exponential function is one-to-one, it would be great to have an inverse function.  None of the functions we have already discussed would serve as an inverse function and so we must introduce a new function, named log as the inverse of an exponential function.  Since exponential functions have different bases, we will define corresponding logarithms of different bases as well.

Logarithm
The logarithm XE "The Logarithm" 

 XE "Logarithmic Functions:The Logarithm"  (base b) function, written 
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Since the logarithm and exponential are inverses, it follows that:

 XE "Logarithmic Functions:Inverse Properties" 
Properties of Logs: Inverse Properties
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Recall also that from the definition of an inverse function that if 
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Logarithm Equivalent to an Exponential
The statement 
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Alternatively, we could show this by starting with the exponential function
[image: image148.wmf]a

cb

=

, then taking the log base b of both sides, giving 
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Since log is a function, it is most correctly written as 
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, using parentheses to denote function evaluate, just as we would with f(c).  However, when the input is a single variable or number, it is common to see the parentheses dropped and the expression written as 
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Example 1

Write these exponential expressions as logarithmic expressions:
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is equivalent to 
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is equivalent to 
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Example 2

Write these logarithmic expressions as exponential expressions
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is equivalent to 
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is equivalent to 
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Try it Now

Write the exponential expression 
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 as a logarithm.

By establishing the relationship between exponential and logarithmic functions, we can now solve basic logarithmic and exponential equations by rewriting.

Example 3

Solve 
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)

2

log

4

=

x

 for x.

By rewriting this expression as an exponential, 
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Example 4

Solve 
[image: image171.wmf]10
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 for x.

By rewriting this expression as a logarithm, we get 
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While this does define a solution, and an exact solution at that, you may find it somewhat unsatisfying since it is difficult to compare this expression to the decimal estimate we had made to the solution earlier.  Also, giving an exact expression for a solution is not always useful – often we really need a decimal approximation to the solution.  Luckily, this is a task calculators and computers are quite adept at.  Unluckily for us, most calculators and computers will only evaluate logarithms of two bases.  Happily, this ends up not being a problem, as we’ll see briefly.

Common and Natural Logarithms
The common log XE "Common Log" 

 XE "Logarithmic Functions:Common Log"  is the logarithm with base 10, and is typically written 
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The natural log XE "Natural Log" 

 XE "Logarithmic Functions:Natural Log"  is the logarithm with base e, and is typically written 
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Example 5
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Evaluate 
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 using the definition of the common log.

To evaluate 
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, then rewrite into exponential form using the common log base of 10.
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From this, we might recognize that 1000 is the cube of 10, so x = 3.

We also can use the inverse property of logs to write 
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Try it Now

2. Evaluate 
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Example 6

Evaluate 
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 using the definition of the natural log.

To evaluate 
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Example 7

Evaluate log(500) using your calculator or computer.

Using a computer, we can evaluate 
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To utilize the common or natural logarithm functions to evaluate expressions like 
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, we need to establish some additional properties.

 XE "Logarithmic Functions:Exponential Property" 
Properties of Logs: Exponent Property
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To show why this is true, we offer a proof.
Since the logarithm and exponential are inverses, 
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Utilizing the exponential rule that states 
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So then 
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Again utilizing the inverse property on the right side yields the result
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Example 8

Rewrite 
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 using the exponent property for logs.

Since 25 = 52, 


[image: image195.wmf](

)

(

)

5

log

2

5

log

25

log

3

2

3

3

=

=


Example 9

Rewrite 
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using the exponent property for logs

Using the property in reverse, 
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Try it Now

3. Rewrite using the exponent property for logs: 
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The exponent property allows us to find a method for changing the base of a logarithmic expression.

 XE "Logarithmic Functions:Change of Base" 

 XE "Change of Base" 
Properties of Logs: Change of Base
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Proof.

Let 
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.  Rewriting as an exponential gives 
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Now utilizing the exponent property for logs on the left side, 


[image: image203.wmf]A

b

x

c

c

log

log

=


Dividing, we obtain
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or replacing our expression for x, 
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With this change of base formula, we can finally find a good decimal approximation to our question from the beginning of the section.

Example 10

Evaluate 
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 using the change of base formula.

According to the change of base formula, we can rewrite the log base 2 as a logarithm of any other base.  Since our calculators can evaluate the natural log, we might choose to use the natural logarithm, which is the log base e
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Using our calculators to evaluate this,
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This finally allows us to answer our original question – the population of flies we discussed at the beginning of the section will take 3.32 weeks to grow to 500.

Example 11

Evaluate 
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 using the change of base formula.

We can rewrite this expression using any other base.  If our calculators are able to evaluate the common logarithm, we could rewrite using the common log, base 10.
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While we were able to solve the basic exponential equation 
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x

 by rewriting in exponential form and then using the change of base formula to evaluate the logarithm, the proof of the change of base formula illuminates an alternative approach to solving exponential equations. 

 XE "Exponential Functions:Solving Exponential Equations" 
Solving exponential equations:

1. Isolate the exponential expressions when possible

2. Take the logarithm of both sides

3. Utilize the exponent property for logarithms to pull the variable out of the exponent

4. Use algebra to solve for the variable.

Example 12

Solve 
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 for x.

Using this alternative approach, rather than rewrite this exponential into logarithmic form, we will take the logarithm of both sides of the equation.  Since we often wish to evaluate the result to a decimal answer, we will usually utilize either the common log or natural log.  For this example, we’ll use the natural log:
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Utilizing the exponent property for logs,
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Now dividing by ln(2),
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Notice that this result is equivalent to the result we found using the change of base formula.

Example 13

In the first section, we predicted the population (in billions) of India t years after 2008 by the equation 
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.  If the population continues following this trend, when will the population reach 2 billion?

We need to solve for the t so that f(t) = 2
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Divide by 1.14 to isolate the exponential expression
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Take the logarithm of both sides of the equation


[image: image219.wmf](

)

t

0134

.

1

ln

14

.

1

2

ln

=

÷

ø

ö

ç

è

æ


Apply the exponent property on the right side
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Divide both sides by ln(1.0134)
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If this growth rate continues, the model predicts the population of India will reach 2 billion about 42 years after 2008, or approximately in the year 2050.

Try it Now

4.  Solve 
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In addition to solving exponential equations, logarithmic expressions are common in many physical situations.

Example 14

In chemistry, pH is a measure of the acidity or basicity of a liquid.  The pH is related to the concentration of hydrogen ions, H+, measured in Moles, by the equation 
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If a liquid has concentration of 0.0001 Moles, determine the pH.

Determine the hydrogen concentration of a liquid with pH of 7.

To answer the first question, we evaluate the expression 
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.  While we could use our calculators for this, we do not really need them here, since we can use the inverse property of logs:
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To answer the second question, we need to solve the equation 
[image: image226.wmf](

)

+

-

=

H

log

7

.  Begin by isolating the logarithm on one side of the equation by dividing by a negative.
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Now rewriting into exponential form yields the answer
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Logarithms also provide us a mechanism for finding continuous growth equations for exponentials given two points.

Example 15

A population of beetles grows from 100 to 130 in 2 weeks.  Find the continuous growth rate.

Measuring t is weeks, we are looking for an equation 
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 so that P(0) = 100 and P(2) = 130.  Using the first pair of values,
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Using the second pair of values, 
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Divide by 100
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Take the natural log of both sides
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Use the inverse property of logs
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This population is growing at a continuous rate of 13.12% per week.

In general, we can relate the standard form of an exponential with the continuous growth form by noting (using k to represent the continuous growth rate to avoid the confusion of using r twice in two different ways in the same formula)
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Using this, we see that it is always possible to convert from the continuous growth form of an exponential to the standard form and vice versa.

Example 16

A company’s sales have been growing following the function 
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Noting that 
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, so the annual growth rate is 12.75%.  The sales function could also be written in the form 
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Important Topics of this Section
The Logarithmic function as the inverse of the exponential function

Writing logarithmic & exponential expressions

Properties of logs

    Inverse properties

    Exponential properties

    Change of base 

Common log

Natural log

Solving exponential equations

Try it Now Answers
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Section 4.4 Logarithmic Properties

In the previous section, we derived two important properties of logarithms, which allowed us to solve some basic exponential and logarithmic equations.  

Properties of Logs

Inverse Properties XE "Inverse Properties" 

 XE "Logarithmic Functions:Inverse Properties" :
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Exponential Property XE "Exponential Property" 

 XE "Logarithmic Functions:Exponential Property" :
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Change of Base XE "Change of Base" 

 XE "Logarithmic Functions:Change of Base" :
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While these properties allow us to solve a large number of problems, they are not sufficient to solve all problems in exponential and logarithmic equations. 

Properties of Logs

Sum of Logs Property XE "Sum of Logs Property" 

 XE "Logarithmic Functions:Sum of Logs Property" :
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Difference of Logs Property XE "Difference of Logs Property" 

 XE "Logarithmic Functions:Difference of Logs Property" :
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As an important note, the logarithm represents a function and does not follow regular algebraic distribution rules that you may be used to. The “word log” does not distribute into parenthesis, and so you must learn these new rules.  

To help in this process we offer a proof to help solidify our new rules and show how they follow from properties you’ve already seen.

Let 
[image: image251.wmf](

)

A

a

b

log

=

 and 
[image: image252.wmf](

)

C

c

b

log

=
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Using these expressions, 
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Using exponent rules on the right, 
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Taking the log of both sides, and utilizing the inverse property of logs, 
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Replacing a and c with their definition establishes the result
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The proof for the difference property is very similar.
With these properties, we can rewrite expressions involving multiple logs as a single log, or a break an expression involving a single log into expressions involving multiple logs.

Example 1

Write 
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 as a single logarithm.

Using the sum of logs property on the first two terms,
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This reduces our original expression to 
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Then using the difference of logs property,
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Example 2
Evaluate 
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 without a calculator by first rewriting as a single logarithm.

On the first term, we can use the exponent property of logs to write
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With the expression reduced to a sum of two logs, 
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, we can utilize the sum of logs property
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Since 100 = 102, we can evaluate this log without a calculator:
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Try it Now

1. Without a calculator evaluate by first rewriting as a single logarithm 
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Example 3

Rewrite 
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 as a sum or difference of logs

First noticing we have a quotient of two expressions, we can utilize the difference property of logs to write
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Then seeing the product in the first term, we use the sum property
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Finally, we could use the exponent property on the first term
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Interestingly, solving exponential equations was not the reason logarithms were originally developed.  Historically, up until the advent of calculators and computers, the power of logarithms was that these log properties allowed multiplication, division, roots, and powers to be evaluated using addition and subtraction, which is much easier to compute without a calculator.  Large books of logarithm values were published listing the logarithms of numbers, such as in the table to the right.  To find the product of two numbers, the sum of log properties were used.  Suppose for example we didn’t know the value of 2 times 3.  Using the sum property of logs
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Using the log table,
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We can then use the table again in reverse, looking for 0.7781513 as the result of the log.  From that we can determine
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By doing addition and the table of logs, we were able to determine
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Likewise, to compute a cube root like 
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So 
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Although these calculations are simple and insignificant they illustrate the same idea that was used for hundreds of years as an efficient way to calculate the product, quotient, roots, and powers of large and complicated numbers, either using tables of logarithms or mechanical tools called slide rules.

These properties still have practical applications for interpreting changes in exponential and logarithmic relationships.

Example 4

Recall that in chemistry, 
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Suppose C is the original concentration of hydrogen ions, and P is the original pH of the liquid, so 
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.   If the concentration is doubled, the new concentration is 2C.  Then the pH of the new liquid is
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Using the sum property of logs,
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Since 
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, the new pH is
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After the concentration of hydrogen ions is doubled, the pH will decrease by 0.301.
Log properties in solving equations

The logarithm properties often arise when solving problems involving logarithms

Example 5

Solve 
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In order to rewrite as an exponential, we need a single logarithmic expression on the left side of the equation.  Using the difference property of logs, we can rewrite the left side:
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Rewriting in exponential form reduces this to an algebraic equation
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Solving,
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Try it Now

2.  Solve 
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More complex exponential equations can often be solved in more than one way.  In the following example, we will solve the same problem in two ways – one using logarithm properties, and the other using exponential properties.

Example 6a

In 2008, the population of Kenya was approximately 38.8 million, and was growing by 2.64% each year, while the population of Sudan was approximately 41.3 million and growing by 2.24% each year
.  If these trends continue, when will the population of Kenya match that of Sudan?

We start by writing an equation for each population in terms of t, years after 2008.
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To find when the populations will be equal, we can set the equations equal
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For our first approach, we take the log of both sides of the equation
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Utilizing the sum property of logs, we can rewrite each side,
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Then utilizing the exponent property, we can pull the variables out of the exponent
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Moving all the terms involving t to one side of the equation and the rest of the terms to the other side,
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Factoring out the t on the left,
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Dividing to solve for t
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years until the populations will be equal

Example 6b

Solve the problem above using rewriting before taking the log

Starting at the equation 


[image: image299.wmf]t

t

)

224

.

1

(

3

.

41

)

264

.

1

(

8

.

38

=


Divide to move the exponential terms to one side of the equation and the constants to the other side
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Using exponent rules to group on the left,
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Taking the log of both sides
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Utilizing the exponent property on the left,
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Dividing gives
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While the answer does not immediately appear identical to that produced using the previous method, note that by using the different property of logs, the answer could be rewritten:
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While both methods work equally well, it often requires less steps to utilize algebra before taking logs, rather than relying on log properties.

Try it Now 

3.  Tank A contains 10 liters of water, and 35% of the water evaporates each week.  Tank B contains 30 liters of water, and 50% of the water evaporates each week.  In how many weeks will the tanks contain the same amount of water? 

Important Topics of this Section
Inverse 

Exponential

Change of base

Sum of logs property

Difference of logs property

Solving equations using log rules

Try it Now Answers

1.  5

2.  12
3.  4.1874 weeks

Section 4.5 Graphs of Logarithmic Functions

 XE "Logarithmic Functions:Graphs of Logarithmic Functions" 
Recall that the exponential function 
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 would produce this table of values

	x
	-3
	-2
	-1
	0
	1
	2
	3

	f(x)
	1/8
	¼
	½
	1
	2
	4
	8


Since the logarithmic function is an inverse of the exponential, 
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 would produce the table of values

	x
	1/8
	¼
	½
	1
	2
	4
	8

	g(x)
	-3
	-2
	-1
	0
	1
	2
	3


Notice that

1) As the input increases, the output increases

2) As x increases, the output decreases more slowly

3) Since the exponential function only outputs positive values, the logarithm can only accept positive values as inputs.

4) Since the exponential function can accept all real numbers as inputs, the logarithm can output any real number

5) We can also recall from our study of toolkit functions that the domain if the logarithmic function is
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 and the range is all real numbers or 
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Sketching the graph,

Notice that as the input approaches zero from the right, the output of the function grows very large in the negative direction, indicating a vertical asymptote at x = 0.

In symbolic notation we write as 
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Graphical Features of the Logarithm
Graphically, in the function 
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The graph has a horizontal intercept at (1, 0)

The graph has a vertical asymptote at x = 0

The domain of the function is x > 0 or 
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The range of the function is all real numbers 
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When sketching a general logarithm, it can be helpful to remember that the graph will pass through the points (1, 0) and (b, 1)

To get a feeling for how the base affects the shape of the graph, examine the sets of graphs below.
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Notice that the larger the base, the slower the graph will grow.  For example, the common log graph, while it can grow as large as you’d like, it does so very slowly.  For example, to reach an output of 8, the input must be 100,000,000.

Another important observation made was the domain of the logarithm.  Along with division and the square root, the logarithm is a function that restricts the domain of a function.

Example 1

Find the domain of the function 
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The logarithm is only defined with the input is positive, so this function will only be defined when 
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.  Solving this inequality,
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The domain of this function is 
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, or in interval notation, 
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Try it Now

1. Find the domain of the function 
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, before solving this as an inequality, consider how the function has been transformed.

Transformations of the Logarithmic Function XE "Logarithmic Functions:Transformations of the Logarithmic Function" 
Like with exponentials, transformations can be done using the basic transformation techniques, but several transformations have interesting relations.

First recall the change of base property tells us that 
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From this, we can see that 
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 is a vertical stretch or compression of the graph of the 
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 graph.  This tells us that a vertical stretch or compression is equivalent to a change of base.  For this reason, we typically represent all graphs of logarithmic functions in terms of the common or natural log functions.

Next, consider the effect of a horizontal compression on the graph of a logarithmic function.  Considering 
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, we can use the sum property to see
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Since log(c) is a constant, the effect of a horizontal compression is the same as the effect of a vertical shift.  To see what this effect looks like,

Example 2

Sketch 
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Graphing these,
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Note that as we saw, this vertical shift could also be written as a horizontal compression:
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While a horizontal stretch or compression can be written as a vertical shift, a horizontal reflection is unique and separate from vertical shifting.

Finally, we will consider the effect of a horizontal shift on the graph of a logarithm

Example 3

Sketch a graph of 
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This is a horizontal shift to the left by 2 units.  Notice that none of our logarithm rules allow us rewrite this in another form, so the effect of this transformation is unique.  Shifting the graph,
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Notice that due to the horizontal shift, the vertical asymptote shifted as well, to x = -2

Combining these transformations,

Example 4

Sketch a graph of 
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Factoring the inside as 
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 reveals that this graph is that of the common logarithm, horizontally reflected, vertically stretched by a factor of 5, and shifted to the right by 2 units.  
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The vertical asymptote will have been shifted to x = 2, and the graph will be defined for x < 2.  A rough sketch can be created by using the vertical asymptote along with a couple points on the graph, such as
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Try it Now

2. Sketch a graph of the function 
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Example 5

Find an equation for the logarithmic function graphed below
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This graph has a vertical asymptote at x = -2 and has been vertically reflected.  We do not know yet the vertical shift (equivalent to horizontal stretch) or the vertical stretch (equivalent to a change of base).  We know so far that the equation will have form
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It appears the graph passes through the points (-1,1) and (2,-1).  Substituting in (-1,1),
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Next substituting in (2,-1),
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This gives us the equation 
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Flashback

3. Using the graph above write the Domain & Range and describe the long run behavior. 

Important Topics of this Section
Graph of the logarithmic function (domain & range)

Transformation of logarithmic functions

Creating graphs from equations

Creating equations from graphs

Try it Now Answers

1. Domain:  {x| x > 5}  

2. Input a graph of 
[image: image342.wmf]1

)

2

log(

3

)

(

+

-

-

=

x

x

f


Flashback Answers

3.  Domain:  {x|x>-2}, Range: All Real Numbers;  As 
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Section 4.6 Exponential and Logarithmic Models

While we have explored some basic applications of exponential and logarithmic functions, in this section we explore some important applications in more depth.

Radioactive Decay
In an earlier section, we discussed radioactive decay – the idea that radioactive isotopes change over time.  One of the common terms associated with radioactive decay is half-life.

Half Life
The half-life XE "Half-Life"  of a radioactive isotope is the time it takes for half the substance to decay.

Given the basic exponential growth/decay equation 
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, half life can be found by solving for when half the original amount remains – by solving 
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 .  Notice how the initial amount is irrelevant when solving for half life

Example 1

Bismuth-210 is an isotope that decays by about 13% each day.  What is the half-life of Bismuth-210?

We were not given a starting quantity, so we could either make up a value or use an unknown constant to represent the starting amount.  To show that starting quantity does not affect the result, let us denote the initial quantity by the constant a.   Then the decay of Bismuth-210 can be described by the equation 
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To find the half-life, we want to determine when the remaining quantity is half the original:  ½a.  Solving,
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Dividing by a,
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Take the log of both sides
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Use the exponent property of logs
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Divide to solve for d
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 days

This tells us that the half-life of Bismuth-210 is approximately 5 days.

Example 2

Cesium-137 has a half-life of about 30 years.  If you begin with 200mg of cesium-137, how much will remain after 30 years?  60 years?  90 years?

Since the half-life is 30 years, after 30 years, half the original amount, 100mg, will remain.

After 60 years, another 30 years have passed, so during that second 30 years, another half of the substance will decay, leaving 50mg.  

After 90 years, another 30 years have passed, so another half of the substance will decay, leaving 25mg. 

Example 3

Cesium-137 has a half-life of about 30 years.  Find the annual decay rate.

Since we are looking for an annual growth rate, we will use an equation of the form 
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.  We know that after 30 years, half the original amount will remain.  Using this information
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Dividing by a
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Taking the 30th root of both sides
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Subtracting one from both sides,
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This tells us cesium-137 is decaying at an annual rate of 2.284% per year.

Try it Now 

Chlorine-36 is eliminated from the body with a biological half-life of 10 days
.  Find the daily decay rate.

Example 4

Carbon-14 is a radioactive isotope that is present in organic materials, and is commonly used for dating historical artifacts.   Carbon-14 has a half-life of 5730 years.  If a bone fragment is found that contains 20% of its original carbon-14, how old is the bone?

To find how old the bone is, we first will need to find an equation for the decay of the carbon-14.  We could either use a continuous or annual decay formula – we will use the continuous decay formula since it is more common in scientific texts.  The half life tells us that after 5730 years, half the original substance remains.  Solving for the rate,
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Dividing by a

[image: image360.wmf]5730

2

1

r

e

=



Taking the natural log of both sides
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Use the inverse property of logs on the right side
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Divide by 5730
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Now we know the decay will follow the equation 
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.   To find how old the bone fragment is that contains 20% of the original amount, we solve for t so that Q(t) = 0.20a.
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The bone fragment is about 13301 years old.

Try it Now

2. In example 2 we learned that Cesium-137 has a half-life of about 30 years.  If you begin with 200mg of cesium-137, will it take more or less than 230 years until only 1 milligram remains?

Doubling Time
For decaying quantities, we asked how long it takes for half the substance to decay.  For growing quantities we might ask how long it takes for the quantity to double.

Doubling Time
The doubling time XE "Doubling Time"  of a growing quantity is the time it takes for the quantity to double.

Given the basic exponential growth equation 
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Example 5

Cancerous cells can grow exponentially.  If a cancerous growth contained 300 cells last month and 360 cells this month, how long will it take for the number of cancerous cells to double?

Defining t to be time in months, with t = 0 corresponding to this month, we are given two pieces of data:  this month, (0, 360), and last month, (-1, 300).

From this data, we can find an equation for the growth.  Using the form 
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This gives us the equation 
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To find the doubling time, we look for the time until we have twice the original amount, so when C(t) = 2a.
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It will take about 3.8 years for the number of cancerous cells to double.

Example 6

A new social networking website has been growing exponentially, with the number of new members doubling every 5 months.  If they currently have 120 thousand users and this trend continues, how many users will the site have in 1 year?

We can use the doubling time to find an equation for the growth of the site, and then use that equation to answer the question.  While we could use an arbitrary a as we have before for the initial amount, in this case, we know the initial amount was 120 thousand.

If we use a continuous growth equation, it would look like
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, measured in thousands of users after t months.  Based on the doubling time, there would be 240 thousand users after 5 months.  This allows us to solve for the continuous growth rate:
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Now that we have an equation, 
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, we can predict the number of users after 12 months:
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So after 1 year, we would expect the site to have around 633,140 users.

Try it Now

3.  If tuition is increasing by 6.6% each year, how many years will it take to tuition to double? 

Newton’s Law of Cooling
When a hot object is left in surrounding air that is lower temperature, the object’s temperature will decrease exponentially, leveling off towards the surrounding air temperature.  Since the graph levels off at the surrounding air temperature, the equation must have a horizontal asymptote at this value, meaning the equation for a decaying exponential must have been shifted up.

Newton’s Law of Cooling

 XE "Newton's Law of Cooling" The temperature of an object, T, in surrounding air with temperature Ts will behave according to the formula
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Where 

t is time

a is a constant determined by the initial temperature of the object

k is a constant, the continuous rate of cooling of the object

While an equation of the form 
[image: image390.wmf]s

t

T

ab

t

T

+

=

)

(

 could be used, the continuous form is more common.

Example 7

A cheesecake is taken out of the oven with an ideal internal temperature of 165 degrees Fahrenheit, and is placed into a 35 degree refrigerator.  After 10 minutes, the cheesecake has cooled to 150 degrees.  If you must wait until the cheesecake has cooled to 70 degrees before you eat it, how long will you have to wait?

Since the surrounding air temperature in the refrigerator is 35 degrees, the cheesecake’s temperature will decay exponentially towards 35, following the equation 


[image: image391.wmf]35

)

(

+

=

kt

ae

t

T


We know the initial temperature was 165, so 
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We were given another pair of data, 
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Together this gives us the equation for cooling: 
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Now we can solve for the time it will take for the temperature to cool to 70 degrees.
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It will take about 107 minutes, or a little over an hour and half, for the cheesecake to cool enough to be eaten.

Try it Now

4.  A thermos of water at 40 degrees Fahrenheit is placed into a 70 degree room.  One hour later the temperature has risen to 45 degrees.  How long will it take for the temperature to rise to 60 degrees?

Logarithmic Scales XE "Logarithmic Functions:Logarithmic Scales" 
For quantities that vary greatly in magnitude, a standard scale of measurement is not always effective, and utilizing logarithms can make the values more manageable.  For example, if the distances from the sun to the major bodies in our solar system are listed, you see they vary greatly.

	Planet
	Distance (millions of km)

	Mercury
	58

	Venus
	108

	Earth
	150

	Mars
	228

	Jupiter
	779

	Saturn
	1430

	Uranus
	2880

	Neptune
	4500


Placed on a linear scale – one with equally spaced values – these values get bunched up.  
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However, by taking the logarithm of these values makes the values more manageable.  Placing these values on a number line by their log values makes the relative distances more apparent.  

	Planet
	Distance (millions of km)
	log(distance)

	Mercury
	58
	1.76

	Venus
	108
	2.03

	Earth
	150
	2.18

	Mars
	228
	2.36

	Jupiter
	779
	2.89

	Saturn
	1430
	3.16

	Uranus
	2880
	3.46

	Neptune
	4500
	3.65
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Sometimes a log scale will show the logarithm of values, but more commonly the values are listed, sometimes as powers of 10 as in the scale here
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Example 8

Estimate the value of point P on the log scale above

The point P appears to be half way between -2 and -1 in log value, so if V is the value of this point,
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Rewriting in exponential form,
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Example 9

Place the number 6000 on a logarithmic scale.

Since 
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, this point would belong on the log scale about here:
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Try it Now

5.  Plot the data in the table below on a logarithmic scale


[image: image409]
Notice that on a log scale from above, the visual distance on the scale between points A and B and between C and D is the same.  When looking at the values these points correspond to, notice B is ten times the value of A, and D is ten times the value of C.  A visual linear difference between points corresponds to a relative (ratio) change between the corresponding values.

Logarithms are useful for showing these relative changes.  For example, comparing $1,000,000 to $10,000, the first is 100 times larger than the second.
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Likewise, comparing $1000 to $10, the first is 100 times larger than the second.
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When one quantity is ten times larger than another, we say it is one order of magnitude larger.  In both these cases, the first number was two orders of magnitude larger than the second.   
Notice that the order of magnitude can be found as the common logarithm of the ratio of the quantities.  On the log scale above, B is one order of magnitude larger than A, and D is one order of magnitude larger than C.

Orders of Magnitude
Given two values A and B, to determine how many orders of magnitude XE "Orders of Magnitude" 

 XE "Logarithmic Functions:Orders of Magnitude"  B is greater than A, 

Difference in orders of magnitude = 
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Example 10

On the log scale above, how many orders of magnitude larger is C than B.  

The value B corresponds to 
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The value C corresponds to 
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The relative change is 
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.  The log of this value is 3.  C is three orders of magnitude greater than B, which can be seen on the log scale by the visual difference between the points on the scale.
Try it Now

6.  Using the table from Try it Now #5, what is the difference of order of magnitude between the softest sound a human can hear and the launching of the space shuttle.  

An example of a logarithmic scale is the Moment Magnitude Scale (MMS) used for earthquakes.  This scale is commonly and mistakenly called the Richter Scale, which was a very similar scale succeeded by the MMS.

Moment Magnitude Scale

 XE "Moment Magnitude Scale" 

 XE "Logarithmic Functions:Moment Magnitude Scale" For an earthquake with seismic moment S, a measurement of earth movement, the MMS value, or magnitude of the earthquake, is
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Where S0 is a baseline measure for the seismic moment.  
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Example 11

If one earthquake has a MMS magnitude of 6.0, and another has a magnitude of 8.0, how much more powerful – more earth movement – does the second earthquake have?

Since the first earthquake has magnitude 6.0, we can find the amount of earth movement.  The value of S0 is not particularly relevant, so we will not replace it with its value.
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Doing the same with the second earthquake with a magnitude of 8.0,
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From this, we can see that this second value’s earth movement is 1000 times as large as the first earthquake.

Example 12

One earthquake has magnitude of 3.0.  If a second earthquake has twice as much earth movement as the first earthquake, find the magnitude of the second quake.

Since the first quake has magnitude 3.0,
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Since the second earthquake has twice as much earth movement, for the second quake,
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Finding the magnitude,
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The second earthquake with twice as much earth movement will have a magnitude of about 3.2.

In fact, using log properties, we could show that whenever the earth movement doubles, the magnitude will increase by about 0.201:
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This illustrates the most important feature of a log scale: that multiplying the quantity being considered will add to the scale value, and vice versa.

Important Topics of this Section
Radioactive decay

Half life

Doubling time

Newton’s law of cooling

Logarithmic Scales

Orders of Magnitude

Moment Magnitude scale

Try it Now Answers

1. 
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 or 6.7% is the daily rate of decay.

2. Less than 230 years, 229.3157 to be exact

3. 10.845 years or approximately 11 years tuition will have doubled

4. 6.026 hours

5. 
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6. 
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  The sound pressure in µPa created by launching the space shuttle is 8 orders of magnitude greater than the sound pressure in µPa created by the softest sound a human ear can hear.

Section 4.7 Fitting Exponentials to Data

In the previous section, we saw numbers lines using logarithmic scales.  It is also common to see two dimensional graphs with one or both axes represented on a logarithmic scale.

One common use of a logarithmic scale on the vertical axis is in graphing quantities that are changing exponentially, since it helps reveal relative differences.  This is commonly used in stock charts, since values historically have grown exponentially over time.   Both stock charts below show the Dow Jones Industrial Average, from 1928 to 2010.
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Both charts have a linear horizontal scale, but the first graph has a linear vertical scale, while the second has a logarithmic vertical scale.  The first scale is the one we are more used to, and shows what appears to be a strong exponential trend, at least up until the year 2000.  

Example 1

There were stock market drops in 1929 and 2008.  Which was larger?

In the first graph, the stock market drop around 2008 looks very large, and in terms of dollar values, it was indeed a large drop.  However the second graph shows relative changes, and the drop in 2009 seems less major on this graph, and in fact the drop starting in 1929 was, percentage-wise, much more significant.  

Specifically, in 2008, the Dow value dropped from about 14,000 to 8,000, a drop of 6,000.  This is obviously a large value drop, and accounts to about a 43% drop.  In 1929, the Dow value dropped from a high of around 380 to a low of 42 by July of 1932.  While value-wise this drop of 338 is smaller than the 2008 drop, but this corresponds to a 89% drop, a much larger relative drop than in 2008.  The logarithmic scale shows these relative changes.

The second graph above, in which one axis uses a linear scale and the other axis uses a logarithmic scale, is an example of a semi-log graph.  

Semi-log and Log-log Graphs
A semi-log XE "Semi-Log Graph"  XE "Logarithmic Functions:Semi-Log Graph"  graph is a graph with one axis using a linear scale and one axis using a logarithmic scale.

A log-log XE "Log-Log Graph"  XE "Logarithmic Functions:Log-Log Graph"  graph is a graph with both axes using logarithmic scales.
Example 2

Plot 5 points from the equation
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 on a semi-log graph with a logarithmic scale on the vertical axis.

To do this, we need to find 5 points on the graph, then calculate the logarithm of the output value.  Arbitrarily choosing 5 input values,
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Plotting these values on a semi-log graph,
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Notice that on this semi-log scale, values from the exponential function appear linear.  We can show this is expected by utilizing logarithmic properties.  For the function 
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, finding log(f(x)) gives


[image: image442.wmf](

)

(

)

x

ab

x

f

log

)

(

log

=



Utilizing the sum property of logs,


[image: image443.wmf](

)

(

)

(

)

x

b

a

x

f

log

log

)

(

log

+

=


Now utilizing the exponent property,
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This relationship is linear, with log(a) as the vertical intercept, and log(b) as the slope.  This relationship can also be utilized in reverse.

Example 3

An exponential graph is plotted on a semi-log graph below.  Find an equation for the exponential function g(x) that generated this graph.
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The graph is linear, with vertical intercept at (0,1).  Looking at the change between the points (0,1) and (4,4), we can determine the slope of the line is 
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.  Since the output is log(g(x)), this leads to the equation 
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.  
We can solve this formula for g(x) by rewriting as an exponential and simplifying:
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Rewriting as an exponential,
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Breaking this apart using exponent rules,
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Using exponent rules to group the second factor,
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Evaluating the powers of 10,
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Try it Now

1. [image: image493.png]& DA




An exponential graph is plotted on a semi-log graph below.  Find an equation for the exponential function g(x) that generated this graph.
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Fitting Exponential Functions to Data XE "Exponential Functions:Fitting Exponential Functions to Data" 
Some technology options provide dedicated functions for finding exponential functions that fit data, but many only provide functions for fitting linear functions to data.  The semi-log scale provides us with a method to fit an exponential function to data by building upon the techniques we have for fitting linear functions to data.  

To fit an exponential function to a set of data using linearization
1. Find the log of the data output values

2. Find the linear equation that fits the (input, log(output)) pairs.  This equation will be of the form log(f(x)) = b + mx
3. Solve this equation for the exponential function f(x)
Example 4
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The table below shows the cost in dollars per megabyte of storage space on computer hard drives from 1980 to 2004
, and the data is shown on a standard graph to the right, with the input changed to years after 1980
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This data appears to be decreasing exponentially.  To find an equation for this decay, we would start by finding the log of the costs. 
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[image: image455]
As expected, the graph of the log of costs appears fairly linear, suggesting the original data will be fit reasonably well with an exponential equation.  Using technology, we can find an equation to fit the log(Cost) values.  Using t as years after 1980, regression gives the equation:
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Solving for C(t),
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This equation suggests that the cost per megabyte for storage on computer hard drives is decreasing by about 41% each year.

Using this function, we could predict the cost of storage in the future.  Predicting the cost in the year 2020 (t = 40):
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dollars per megabyte, a really small number.  That is equivalent to $0.36 per terabyte of hard drive storage.

Comparing the values predicted by this model to the actual data, we see the model matches the original data in order of magnitude, but the specific values appear quite different.  This is, unfortunately, the best exponential that can fit the data.  It is possible that a different model would fit the data better, or there could just be a wide enough variability in the data that no relatively simple model would fit the data any better.
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Try it Now

2. The table below shows the value V, in billions of dollars, of US imports from China t years after 2000.  
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This data appears to be growing exponentially.  Linearize this data and build a model to predict how many billions of dollars of imports we could expect in 2011.
Important Topics of this Section
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Linearizing exponential functions

Fitting an exponential equation to data

Try it Now Answers
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.  Predicting in 2011, 
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� World Bank, World Development Indicators, as reported on � HYPERLINK "http://www.google.com/publicdata" �http://www.google.com/publicdata�, retrieved August 20, 2010


� World Bank, World Development Indicators, as reported on � HYPERLINK "http://www.google.com/publicdata" �http://www.google.com/publicdata�, retrieved August 24, 2010


� � HYPERLINK "http://www.ead.anl.gov/pub/doc/chlorine.pdf" ��http://www.ead.anl.gov/pub/doc/chlorine.pdf�


� From � HYPERLINK "http://www.epd.gov.hk/epd/noise_education/web/ENG_EPD_HTML/m1/intro_5.html" �http://www.epd.gov.hk/epd/noise_education/web/ENG_EPD_HTML/m1/intro_5.html�, retrieved Oct 2, 2010


� Selected values from � HYPERLINK "http://www.swivel.com/workbooks/26190-Cost-Per-Megabyte-of-Hard-Drive-Space" �http://www.swivel.com/workbooks/26190-Cost-Per-Megabyte-of-Hard-Drive-Space�, retrieved Aug 26, 2010
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