
 Scheduling 79

© David Lippman Creative Commons BY-SA

Scheduling
An event planner has to juggle many workers completing different tasks, some of which must
be completed before others can begin. For example, the banquet tables would need to be
arranged in the room before the catering staff could begin setting out silverware. The event
planner has to carefully schedule things so that everything gets done in a reasonable amount
of time.

The problem of scheduling is fairly universal. Contractors need to schedule workers and
subcontractors to build a house as quickly as possible. A magazine needs to schedule
writers, editors, photographers, typesetters, and others so that an issue can be completed on
time.

Getting Started
To begin thinking about scheduling, let us consider an auto shop that is converting a car from
gas to electric. A number of steps are involved. A time estimate for each task is given.

Task 1: Remove engine and gas parts (2 days)
Task 2: Steam clean the inside of the car (0.5 day)
Task 3: Buy an electric motor and speed controller (2 days for travel)
Task 4: Construct the part that connects the motor to the car’s transmission (1 day)
Task 5: Construct battery racks (2 days)
Task 6: Install the motor (0.5 day)
Task 7: Install the speed controller (0.5 day)
Task 8: Install the battery racks (0.5 day)
Task 9: Wire the electricity (1 day)

Some tasks have to be completed before others – we certainly can’t install the new motor
before removing the old engine! There are some tasks, however, that can be worked on
simultaneously by two different people, like constructing the battery racks and installing the
motor.

To help us visualize the ordering of tasks, we will create a digraph, a graphical
representation in which tasks are represented with dots, called vertices, and arrows between
vertices are used to show ordering. For example, this digraph shows that Task 1, notated T1
for compactness, needs to be completed before Task 2. The number in parentheses after the
task name is the time required for the task.

T1 (2) T2 (0.5)

80

Example: A complete digraph for our car conversion would look like this:

The time it takes to complete this job will partially depend upon how many people are
working on the project. In scheduling jargon, the workers are called processors. While in
this example the processors are humans, in some situations the processors are computers,
robots, or other machines. For simplicity, we are going to make the very big assumptions
that every processor can do every task, that they all would take the same time to complete it,
and that only one processor can work on a task at a time.

If we had only one processor working on this task, it is easy to determine the finishing time -
how long it will take to complete all the tasks; just add up the individual times. We assume
one person can’t work on two tasks at the same time, ignore things like drying times during
which someone could work on another task. Scheduling with one processor, a possible
schedule would look like this, with a finishing time of 10 days.

Time: 0 1 2 3 4 5 6 7 8 9 10

P1 T1 T3 T4 T5 T2 T6 T7 T8 T9

In this schedule, all the ordering requirements are met. This is certainly not the only possible
schedule for one processor, but no other schedule could complete the job in less time.
Because of this, this is an optimal schedule with optimal finishing time – there is nothing
better.

For two processors, things become more interesting. For small digraphs like this, we
probably could fiddle around and guess-and-check a pretty good schedule. Here would be a
possibility:

Time: 0 1 2 3 4 5 6 7 8 9 10

P1 T1 T3 T6 T9
P2 T5 T4 T2 T8 T7

With two processors, the finishing time was reduced to 5.5 days. What was processor 2
doing during the last day? Nothing, because there were no tasks for the processor to do.
This is called idle time.

T1 (2) T2 (0.5)

T3 (2)

T4 (1)

T5 (2)

T6 (0.5)

T7 (0.5)

T8 (0.5)

T9 (1)

 Scheduling 81

Is this schedule optimal? Could it have been completed in 5 days? Because every other task
had to be completed before task 9 could start, there would be no way that both processors
could be busy during task 9, so it is not possible to create a shorter schedule.

So how long will it take if we use three processors? About 10/3 = 3.33 days? Again we will
guess-and-check a schedule:

Time: 0 1 2 3 4 5 6 7 8 9 10

P1 T1 T2 T6 T8 T9
P2 T3 T7
P3 T4 T5

With three processors, the job still took 4.5 days. It is a little harder to tell whether this
schedule is optimal. However, it might be helpful to notice that since Task 1, 2, 6, and 9
have to be completed sequentially, there is no way that this job could be completed in less
than 2+0.5+0.5+1 = 4 days, regardless of the number of processors. Four days is, for this
digraph, the absolute minimum time to complete the job, called the critical time.

Adding an algorithm
Up until now, we have been creating schedules by guess-and-check, which works well
enough for small schedules, but would not work well with dozens or hundreds of tasks. To
create a more procedural approach, we might begin by somehow creating a priority list.
Once we have a priority list, we can begin scheduling using that list and the list processing
algorithm.

Example: Using our digraph from above, schedule it using the priority list below:
T1, T3, T4, T5, T6, T7, T8, T2, T9

Time 0: Mark ready tasks

Priority list: T1, T3, T4, T5, T6, T7, T8, T2, T9

We assign the first task, T1 to the first processor, P1, and the second ready task, T3, to the
second processor. Making those assignments, we mark those tasks as in progress:

List Processing Algorithm
1) On the digraph or priority list, circle all tasks that are ready, meaning that all pre-

requisite tasks have been completed.
2) Assign to each available processor, in order, the first ready task. Mark the task as

in progress, perhaps by putting a single line through the task.
3) Move forward in time until a task is completed. Mark the task as completed,

perhaps by crossing out the task. If any new tasks become ready, mark them as
such.

4) Repeat until all tasks have been scheduled.

82

Priority list: T1, T3, T4, T5, T6, T7, T8, T2, T9

Schedule up to here:

Time: 0 1 2 3 4 5 6 7 8 9 10

P1 T1
P2 T3

Time 2: Both processors complete their tasks. We mark those tasks as complete. With Task
1 complete, Task 2 becomes ready:

Priority list: T1, T3, T4, T5, T6, T7, T8, T2, T9

We assign the next ready task on the list, T4 to P1, and T5 to P2.

Priority list: T1, T3, T4, T5, T6, T7, T8, T2, T9

Time: 0 1 2 3 4 5 6 7 8 9 10

P1 T1 T4
P2 T3 T5

Time 3: Processor 1 has completed T4. Completing T4 does not make any other tasks ready
(note that all the rest require that T2 be completed first).

Priority list: T1, T3, T4, T5, T6, T7, T8, T2, T9

Since the next three tasks are not yet ready, we assign the next ready task, T2 to P1

Priority list: T1, T3, T4, T5, T6, T7, T8, T2, T9

Time: 0 1 2 3 4 5 6 7 8 9 10

P1 T1 T4 T2
P2 T3 T5

Time 3.5: Processor 1 has completed T2. Completing T2 causes T6 and T7 to become ready.
We assign T6 to P1

Priority list: T1, T3, T4, T5, T6, T7, T8, T2, T9

Time: 0 1 2 3 4 5 6 7 8 9 10

P1 T1 T4 T2 T6
P2 T3 T5

 Scheduling 83

Time 4: Both processors complete their tasks. The completion of T5 allows T8 to become
ready. We assign T7 to P1and T8 to P2.

Priority list: T1, T3, T4, T5, T6, T7, T8, T2, T9

Time: 0 1 2 3 4 5 6 7 8 9 10

P1 T1 T4 T2 T6 T7
P2 T3 T5 T8

Time 4.5: Both processors complete their tasks. T9 becomes ready, and is assigned to P1.
There is no ready task for P2 to work on, so P2 idles.

Priority list: T1, T3, T4, T5, T6, T7, T8, T2, T9

Time: 0 1 2 3 4 5 6 7 8 9 10

P1 T1 T4 T2 T6 T7 T9
P2 T3 T5 T8

With the last task completed, we have a schedule.

It is worth noting that the list processing algorithm itself does not influence the resulting
schedule – the schedule is completely determined by the priority list followed. The list
processing, while do-able by hand, could just as easily be computed by a computer. The
interesting part of scheduling, then, is how to create the best priority list possible.

Choosing a priority list
We will explore two algorithms for selecting a priority list.

Decreasing time algorithm
The decreasing time algorithm takes the approach of trying to get the very long tasks out of
the way as soon as possible by putting them first on the priority list.

Decreasing Time Algorithm
Create the priority list by listing the tasks in order from longest completion time to
shortest completion time.

84

Example: Consider the scheduling problem represented by the digraph below.

To use the decreasing time list algorithm, we create our priority list by listing the tasks in
order from longest task time to shortest task time. If there is a tie, we will list the task with
smaller task number first (not for any good reason, but just for consistency).

For this digraph, the decreasing time algorithm would create a priority list of:
T6 (10), T3 (7), T10 (7), T1 (6), T5 (5), T4 (4), T7 (4), T2 (3), T8 (3), T9 (2)

Once we have the priority list, we can create the schedule using the list processing algorithm.
With two processors, we’d get:

Time 0: We identify ready tasks, and assign T3 to P1 and T1 to P2

Priority list: T6, T3, T10, T1, T5, T4, T7, T2, T8, T9

Time 6: P2 completes T1. No new tasks become ready, so T4 is assigned to P2.

Priority list: T6, T3, T10, T1, T5, T4, T7, T2, T8, T9

Time 7: P1 completes T3. No new tasks become ready, so T2 is assigned to P1.

Priority list: T6, T3, T10, T1, T5, T4, T7, T2, T8, T9

T1 (6) T5 (5)

T2 (3)

T3 (7)

T4 (4)

T6 (10)

T7 (4)

T10 (7) T8 (3)

T9 (2)

 T3 P1

P2 T1

 7

 6

 T3 P1

P2 T1

 7

 6
 T4

 10

 T3 P1

P2 T1

 7

 6
 T4

 10

 T2

 Scheduling 85

Time 10: Both processors complete their tasks. T6 becomes ready, and is assigned to P1.
No other tasks are ready, so P2 idles.

Priority list: T6, T3, T10, T1, T5, T4, T7, T2, T8, T9

Time 20: With T6 complete, T5 and T7 become ready, and are assigned to P1 and P2
respectively.

Priority list: T6, T3, T10, T1, T5, T4, T7, T2, T8, T9

Time 24: P2 completes T7. No new items become ready, so P2 idles.
Time 25: P1 completes T5. T8 and T9 become ready, and are assigned.

Priority list: T6, T3, T10, T1, T5, T4, T7, T2, T8, T9

Time 27: T9 is completed. No items ready, so P2 idles.
Time 28: T8 is completed. T10 becomes ready, and is assigned to P1.

Priority list: T6, T3, T10, T1, T5, T4, T7, T2, T8, T9

Using the decreasing time algorithm, the priority list led to a schedule with a finishing time
of 35. Is this good? It certainly looks like there was a lot of idle time in this schedule. To
get some idea how good or bad this schedule is, we could compute the critical time, the
minimum time to complete the job. To find this, we look for the sequence of tasks with the
highest total completion time. For this digraph that sequence would appear to be: T2, T6, T5,
T8, T10, with total sequence time of 28. From this we can conclude that our schedule isn’t
horrible, but there is a possibility that a better schedule exists.

 T3 P1

P2 T1

 7

 6
 T4

 10

 T2 T6

 20

 T3 P1

P2 T1

 7

 6
 T4

 10

 T2 T6

 20
 T5

 T7

 25

 24

 T3 P1

P2 T1

 7

 6
 T4

 10

 T2 T6

 20
 T5

 T7

 25

 24

 T8

 T9

 28

 27

 T3 P1

P2 T1

 7

 6
 T4

 10

 T2 T6

 20
 T5

 T7

 25

 24

 T8

 T9

 28

 27

 T10

 35

86

Critical path algorithm
A sequence of tasks in the digraph is called a path. In the previous example, we saw that the
critical path dictates the minimum completion time for a schedule. Perhaps, then, it would
make sense to consider the critical path when creating our schedule. For example, in the last
schedule, the processors began working on tasks 1 and 3 because they were longer tasks, but
starting on task 2 earlier would have allowed work to begin on the long task 6 earlier.

The critical path algorithm allows you to create a priority list based on ideas of critical paths.

Example: The original digraph from above has critical path T2, T6, T5, T8, T10, so T2 gets
added first to the priority list. Removing T2 from the digraph, it now looks like:

The critical path is now T6, T5, T8, T10, so T6 is added to the priority list and removed.

Now there are two paths with the same length: T1, T5, T8, T10 and T3, T7, T8, T10. We can add
T1 to the priority list (or T3 – we usually add the one with smaller item number) and remove
it, and continue the process.

Critical Path Algorithm (version 1)
1) Find the critical path.
2) The first task in the critical path gets added to the priority list.
3) Remove that task from the digraph
4) Repeat, finding the new critical path with the revised digraph.

T1 (6) T5 (5)

T3 (7)

T4 (4) T7 (4)

T10 (7) T8 (3)

T9 (2)

T1 (6) T5 (5)

T3 (7)

T4 (4)

T6 (10)

T7 (4)

T10 (7) T8 (3)

T9 (2)

 Scheduling 87

I’m sure you can imagine that searching for the critical path every time you remove a task
from the digraph would get really tiring, especially for a large digraph. In practice, the
critical path algorithm is implementing by first working from the end backwards. This is
called the backflow algorithm.

One you have completed the backflow algorithm, you can easily create the critical path
priority list by using the critical times you just found.

This version of the Critical Path Algorithm will usually be the easier to implement.

Critical Path Algorithm (version 2)
1. Apply the backflow algorithm to the digraph
2. Create the priority list by listing the tasks in order from longest critical time to

shortest critical time

Backflow Algorithm
1) Introduce an “end” vertex, and assign it a time of 0, shown in [brackets]
2) Move backwards to every vertex that has an arrow to the end and assign it a

critical time
3) From each of those vertices, move backwards and assign those vertices critical

times. Notice that the critical time for the earlier vertex will be that task’s time
plus the critical time for the later vertex.
Example:

In this case, if T2 has already been determined to have a critical time of 10, then T1
will have a critical time of 5+10 = 15

If you have already assigned a critical time to a vertex, replace it only if the new
time is larger.

Example: In the digraph below, T1 should be labeled with a critical time of 16,
since it is the longer of 5+10 and 5+11.

4) Repeat until all vertices are labeled with their critical times

T1 (5) T2 (4) [10]

T1 (5) [15] T2 (4) [10]

T1 (5) T2 (4) [10]

T2 (3) [11]

88

Example: Applying this to our digraph from earlier, we add an end vertex and give it a
critical time of 0.

We then move back to T4, T9, and T10, labeling them with their critical times

From each vertex marked with a critical time, we go back. T7, for example, will get labeled
with a critical time 11 – the task time of 4 plus the critical time for T10. For T5, there are two
paths to the end. We use the longer, labeling T5 with critical time 5+7 = 12. (This value will
end up getting replaced later with the even longer path through T8).

T1 (6) T5 (5)

T2 (3)

T3 (7)

T4 (4)

T6 (10)

T7 (4)

T10 (7) T8 (3)

T9 (2)

End [0]

T1 (6) T5 (5)

T2 (3)

T3 (7)

T4 (4) [4]

T6 (10)

T7 (4)

T10 (7) [7] T8 (3)

T9 (2) [2]

End [0]

T1 (6) T5 (5) [12]

T2 (3)

T3 (7)

T4 (4) [4]

T6 (10)

T7 (4) [14]

T10 (7) [7] T8 (3) [10]

T9 (2) [2]

End [0]

 Scheduling 89

Continue the process until all vertices are labeled.

We can now quickly create the critical path priority list by listing the tasks in decreasing
order of critical time:

Priority list: T2, T6, T1, T3, T5, T7, T8, T10, T4, T9

Applying this priority list using the list processing algorithm, we get the schedule:

In this particular case, we were able to achieve the minimum possible completion time with
this schedule, suggesting that this schedule is optimal. This is certainly not always the case.

Example: This example is designed to show that the critical path algorithm doesn’t always
work wonderfully.

T1 (6) [21] T5 (5) [15]

T2 (3) [28]

T3 (7) [21]

T4 (4) [4]

T6 (10) [25]

T7 (4) [14]

T10 (7) [7] T8 (3) [10]

T9 (2) [2]

End [0]

 T3

P1

P2 T1

 3

 6

 T4

 17

 T2 T6

 13

 T5

 T7

 18

 23

 T8

 T9

 21

 T10

 28

T1 (1) T6 (2)

T3 (1)

T4 (6)

T7 (2)

T8 (2)

T5 (6)

T9 (6) T2 (1)

90

To create a critical path priority list, we could first apply the backflow algorithm:

This yields the critical-path priority list: T1, T6, T7, T8, T4, T5, T9, T2, T3.

Applying the list processing algorithm to this priority list leads to the schedule:

By observation, we can see that a much better schedule exists:

In most cases the critical path algorithm will lead to a very good schedule. There are cases,
like this, where it will not. Unfortunately, there is no known algorithm to always produce the
optimal schedule.

T1 (1) [9] T6 (2) [8]

T3 (1) [1]

T4 (6) [6]

T7 (2) [8]

T8 (2) [8]

T5 (6) [6]

T9 (6) [6] T2 (1) [1]

 T3

P1

P2

 T1

 1

 6

 T4

 T6

 3

 T5

 T7

 5
 T8

 T2

 7
 T9

 13

P3

 T3

P1

P2

 T1

 1

 T4

 T6

 3

 T5 T7

 9

 T8

 T2

 T9

P3

 Scheduling 91

Exercises

Skills
1. Create a digraph for the following set of tasks:

Task Time required Tasks that must be
completed first

A 3
B 4
C 7
D 6 A, B
E 5 B
F 5 D, E
G 4 E

2. Create a digraph for the following set of tasks:

Task Time required Tasks that must be
completed first

A 3
B 4
C 7
D 6 A
E 5 A
F 5 B
G 4 D, E

Use this digraph for the next 6 problems.

3. Using the priority list T4, T3, T9, T10, T8, T5, T6, T1, T7, T2 schedule the project with
two processors.

4. Using the priority list T2, T4, T6, T8, T10, T1, T3, T5, T7, T9 schedule the project with

two processors.

5. Using the priority list T4, T3, T9, T10, T8, T5, T6, T1, T7, T2 schedule the project with

three processors.

T1 (8) T5 (9)

T2 (6)

T3 (7)

T4 (4)

T6 (3)

T7 (2)

T10 (7) T8 (5)

T9 (2)

92

6. Using the priority list T2, T4, T6, T8, T10, T1, T3, T5, T7, T9 schedule the project with

three processors.

7. Use the decreasing time algorithm to create a priority list for the digraph above, and
schedule with two processors.

8. Use the decreasing time algorithm to create a priority list for the digraph above, and

schedule with three processors.

9. Use the decreasing time algorithm to create a priority list for the problem from #1,

and schedule with two processors.

10. Use the decreasing time algorithm to create a priority list for the problem from #2,
and schedule with two processors.

11. With the digraph from above question 3:

a. Apply the backflow algorithm to find the critical time for each task
b. Find the critical path for the project and the minimum completion time
c. Use the critical path algorithm to create a priority list and schedule on two

processors.

12. With the digraph from above question 3, use the critical path algorithm to schedule on
three processors.

13. Use the critical path algorithm to schedule the problem from #1 on two processors.

14. Use the critical path algorithm to schedule the problem from #2 on two processors.

Concepts
15. If an additional order requirement is added to a digraph, can the optimal finishing

time ever become longer? Can the optimal finishing time ever become shorter?

16. Will an optimal schedule always have no idle time?

17. Consider the digraph below.

a. How many priority lists could be created for these tasks?
b. How many unique schedules are created by those priority lists?

T2 (5) T1 (6)

T3 (3) T5 (4)

T4 (7)

 Scheduling 93

18. Create a digraph and priority list that would lead to the schedule below.

19. Is it possible to create a digraph with three tasks for which every possible priority list

creates a different schedule? If so, create it.

20. Is it possible to create a digraph with four tasks for which every possible priority list

creates a different schedule? If so, create it.

Exploration
21. Independent tasks are ones that have no order requirements; they can be completed in

any order.
a. Consider three tasks, with completion times 2, 2, and 4 hours respectively.

Construct two different schedules on two processors with different completion
times to show that the priority list still matters with independent tasks.

b. Choose a set of independent tasks with different completion times, and
implement the decreasing time list algorithm and the critical path algorithm.
What do you observe?

c. Will using the decreasing time list or critical path algorithms with independent
tasks always produce an optimal schedule?

d. Will using the decreasing time list or critical path algorithms with independent
tasks always produce an optimal schedule?

22. In a group, choose ten tasks necessary to throw a birthday party for a friend or child

(for example, cleaning the house or buying a cake). Determine order requirements
for the tasks, create a digraph, and schedule the tasks for two people.

 T2 P1

P2 T1

 5

 4

 T5

 7

 T3 T4

 T6

 10 14

 15

94

	Scheduling
	Getting Started
	Adding an algorithm
	Choosing a priority list
	Decreasing time algorithm
	Critical path algorithm

	Exercises
	Skills
	Concepts
	Exploration

