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Historical Counting Systems

Introduction and Basic Number and Counting Systems

Introduction

As we begin our journey through the history of neatlatics, one question to be asked is
“Where do we start?” Depending on how you view reathtics or numbers, you could
choose any of a number of launching points fromctwho begin. Howard Eves suggests the
following list of possibilities:

Where to start the study of the history of mathérsat

— At the first logical geometric “proofs” traditiolya credited to Thales of Miletus (600
BCE).

— With the formulation of methods of measurement enlagithe Egyptians and
Mesopotamians/Babylonians.

— Where prehistoric peoples made efforts to orgathieeconcepts of size, shape, and
number.

— In pre-human times in the very simple number sense aridrpatecognition that can
be displayed by certain animals, birds, etc.

— Even before that in the amazing relationshipsushber and shapes found in plants.

— With the spiral nebulae, the natural course of@ls, and other universe phenomena.

We can choose no starting point at all and inséepde that mathematics halsraysexisted
and has simply been waiting in the wings for hunmtardiscover. Each of these positions
can be defended to some degree and which one ymi @flany) largely depends on your
philosophical ideas about mathematics and numbers.

Nevertheless, we need a starting point. And witlpasising judgment on the validity of any
of these patrticular possibilities, we will choosecaur starting point the emergence of the idea
of number and the process of counting as our langgbad. This is done primarily as a
practical matter given the nature of this coursethe following chapter, we will try to focus
on two main ideas. The first will be an examinatudripasic number and counting systems
and the symbols that we use for numbers. We wok lat our own modern (Western) number
system as well those of a couple of selected zatiibns to see the differences and diversity
that is possible when humans start counting. Therskidea we will look at will be base
systems. By comparing our own base-ten (decimalesy with other bases, we will quickly
become aware that the system that we are so usetiéo slightly changed, will challenge
our notions about numbers and what symbols foremasnbers actually mean.

Recognition of More vs. Less

The idea of number and the process of counting gaek far beyond history began to be
recorded. There is some archeological evidencestiggests that humans were counting as
far back as 50,000 years ago.However, we do not really know how this procsissted or
developed over time. The best we can do is to mak@od guess as to how things
progressed. It is probably not hard to believeé ¢évan the earliest humans had some sense
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of moreandless Even some small animals have been shown to halresssense. For
example, one naturalist tells of how he would scremove one egg each day from a
plover’s nest. The mother was diligent in layingexttra egg every day to make up for the
missing egg. Some research has shown that herizedaained to distinguish between even
and odd numbers of pieces of fobdith these sorts of findings in mind, it is notdhao
conceive that early humans had (at least) a sirmdase of more and less. However, our
conjectures about how and when these ideas emangedg humans are simply that;
educated guesses based on our own assumptionabmight or could have been.

The Need for Simple Counting

As societies and humankind evolved, simply havisgrse of more or less, even or odd,
etc., would prove to be insufficient to meet theaeof everyday living. As tribes and
groups formed, it became important to be able tmkhow many members were in the
group, and perhaps how many were in the enemy’camd certainly it was important for
them to know if the flock of sheep or other possdsmimals were increasing or decreasing
in size. “Just how many of them do we have, anyWweay@ question that we do not have a
hard time imagining them asking themselves (or exlcér).

In order to count items such as animals, it isroftenjectured that one of the earliest
methods of doing so would be with “tally sticks &se are objects used to track the
numbers of items to be counted. With this methadhé'stick” (or pebble, or whatever
counting device being used) represents one anin@ject. This method uses the idea of
one to one correspondence. In a one to one correspondence, items thateing ltounted are
uniquely linked with some counting tool.

In the picture to the right, you see each stickesponding to one horse.
By examining the collection of sticks in hand om®Wws how many
animals should be present. You can imagine theulrsefs of such a
system, at least for smaller numbers of items &pkeack of. If a herder
wanted to “count off” his animals to make sure thwre all present, he
could mentally (or methodically) assign each st@kne animal and
continue to do so until he was satisfied that &tevaccounted for.

Of course, in our modern system, we have repladoedticks with more
abstract objects. In particular, the top stickeislaced with our symbol “1,” the second stick
gets replaced by a “2” and the third stick is repreged by the symbol “3.” But we are
getting ahead of ourselves here. These modern dgrtdmk many centuries to emerge.

Another possible way of employing the “tally stickunting method is by making marks or
cutting notches into pieces of wood, or even tyngts in string (as we shall see later). In
1937, Karl Absolom discovered a wolf bone that go&sk possibly 30,000 years. It is
believed to be a counting deviteAnother example of this kind of tool is the IsgarBone,
discovered in 1960 at Ishango, and shown béltivis reported to be between six and nine
thousand years old and shows what appear to benganksed to do counting of some sort.
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The markings on rows (a) and (b)

each add up to 60. Row (b) 3 2. M
contains the prime numbers [ ( (i WWT_WWMMT I |]
between 10 and 20. Row (c) seen " W\ Wi | M

to illustrate for the method of QS R % e Row (b}
doubling and multiplication used

by the Egyptians (which we will

Row (a)

study in the next topic). It is — )
believed that this may also ([mm \\'\'\ n “( llu’f r
represent a lunar phase counter. . 4 Raw (c]

Spoken Words

As methods for counting developed, and as langpeagressed as well, it is natural to
expect that spoken words for numbers would appéaortunately, the development of
these words, especially those for our numbers spomding from one through ten, are not
easy to trace. Past ten, however, we do see sattezIs:

Eleven comes from “ein lifon,” meaning “one leftesy’

Twelve comes from “twe lif,” meaning “two left ovér

Thirteen comes from “Three and ten” as do fourtéeough nineteen.
Twenty appears to come from “twitgg” which means “two tens.”
Hundred probably comes from a term meaning “teresirh

Written Numbers

When we speak of “written” numbers, we have to &reful because this could mean a
variety of things. It is important to keep in miticht modern paper is only a little more than
100 years old, so “writing” in times past often kamn forms that might look quite unfamiliar
to us today.

As we saw earlier, some might consider wooden stiakh notches carved in them as
writing as these are means of recording informadioa medium that can be “read” by
others. Of course, the symbols used (simple noycleainly did not leave a lot of
flexibility for communicating a wide variety of ids or information.

Other mediums on which “writing” may have takengalanclude carvings in stone or clay
tablets, rag paper made by hand"(&2ntury in Europe, but earlier in China), papyrus
(invented by the Egyptians and used up until thee®s), and parchments from animal skins.
And these are just a few of the many possibilities.

These are just a few examples of early methodswifting and simple symbols for
representing numbers. Extensive books, articlesesghrch have been done on this topic
and could provide enough information to fill thistiee course if we allowed it to. The range
and diversity of creative thought that has beeml us¢he past to describe numbers and to
count objects and people is staggering. Unfortupatee don’t have time to examine them
all, but it is fun and interesting to look at orystem in more detail to see just how ingenious
people have been.
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The Number and Counting System of the Inca Civiliza  tion

Background

There is generally a lack of books and researclemahtoncerning the historical foundations
of the Americas. Most of the “important” informati@vailable concentrates on the eastern
hemisphere, with Europe as the central focus. €asans for this may be twofold: first, it is
thought that there was a lack of specialized ma#tiesiin the American regions; second,
many of the secrets of ancient mathematics in timercas have been closely guardethe
Peruvian system does not seem to be an exceptien mevo researchers, Leland Locke and
Erland Nordenskiold, have carried out researchihatattempted to discover what
mathematical knowledge was known by the Incas amdthey used the Peruvian quipu, a
counting system using cords and knots, in theiherattics. These researchers have come to
certain beliefs about the quipu that we will sumaehere.

Counting Boards

It should be noted that the Incas did not havernapticated system of computation. Where
other peoples in the regions, such as the Mayasi® doing computations related to their
rituals and calendars, the Incas seem to havernees concerned with the simpler task of
record-keeping. To do this, they used what are calleddb&u” to record quantities of
items. (We will describe them in more detail in ament.) However, they first often needed
to do computations whose results would be recooteguipu. To do these computations,
they would sometimes use a counting board constluetth a slab of stone. In the slab were
cut rectangular and square compartments so thattagonal (eightsided) region was left in
the middle. Two opposite corner rectanglg
were raised. Another two sections were
mounted on the original surface of the sla
so that there were actually three levels
available. In the figure shown, the darkes
shaded corner regions represent the highest,
third level. The lighter shaded regions
surrounding the corners are the second
highest levels, while the clear white
rectangles are the compartments cut into the
stone slab.

Pebbles were used to keep accounts and theirgusitithin the various levels and
compartments gave totals. For example, a pebldesmaller (white) compartment
represented one unit. Note that there are 12 syedrss around the outer edge of the figure.
If a pebble was put into one of the two (whitepkr, rectangular compartments, its value
was doubled. When a pebble was put in the octagegain in the middle of the slab, its
value was tripled. If a pebble was placed on #wsd (shaded) level, its value was
multiplied by six. And finally, if a pebble was fod on one of the two highest corner levels,
its value was multiplied by twelve. Different obje could be counted at the same time by
representing different objects by different colopathbles.
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Example 1
Suppose you have the
following counting L
board with two different o ®
kind of pebbles places 35
as illustrated. Let the ¢ e
solid black pebble S
represent a dog and the S
striped pebble represen & ©
a cat. How many dogs
are being represented? &

Solution
There are two black pebbles in the outer squaiemsg.these represent 2
dogs.

There are three black pebbles in the larger (wngefangular
compartments. These represent 6 dogs.

There is one black pebble in the middle region...te@Eesents 3 dogs.
There are three black pebbles on the second lewesetrepresent 18 dogs.
Finally, there is one black pebble on the highester level...this
represents 12 dogs. We then have a total of 2+63-8#2 = 41 dog=

CheckPoint A
How many cats are represented on this board? Sees for the
solution!

The Quipu

This kind of board was good for doing quick compiotas, but it did ~

not provide a good way to keep a permanent recgrafiguantities ”F_H_ T

or computations. For this purpose, they used tiygug@he quipu is | g ”

a collection of cords with knots in them. Thesedsaand knots are | [/} . }

carefully arranged so that the position and typeaoél or knot gives | /| |:' ', II o

specific information on how to decipher the cord. II f | ! | ||
|

A quipu is made up of a main cord which has otleeds (branches) -‘“;
tied to it. See pictures to the right.

Locke called the branches H cords. They are atthtthéhe main ' / O
cord. B cords, in turn, were attached to the H sokdost of these \ . | | \eord
cords would have knots on them. Rarely are kraaiad on the cocas | J,-f’ ‘\_
main cord, however, and tend to be mainly on trenti B cords. A |\ pN
A quipu might also have a “totalizer” cord that suarizes all of s 0

the information on the cord group in one place.

Locke points out that there are three types ofknedich representing a different value,
depending on the kind of knot used and its posiiorthe cord. The Incas, like us, had a
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decimal (baseten) system, so each kind of
knot had a specific decimal value. The Sing -
knot, pictured in the middle of the diagram |
was used to denote tens, hundreds, thousan
and ten thousands. They would be on the Lag Koot

. . wilh 4 turns (L)
upper levels of the H cords. The figuegght Singlé knot (8
knot on the end was used to denote the inte Figure cight knot (E)
“one.” Every other integer from 2 to 9 was
represented with a long knot, shown on the letheffigure. (Sometimes long knots were
used to represents tens and hundreds.) Note #n&irig knot has several turns in it...the
number of turns indicates which integer is beiqyesented. The units (ones) were placed
closest to the bottom of the cord, then tens raggave them, then the hundreds, and so on.

In order to make reading these pictures more a@syyill adopt a convention that is
consistent. For the long knot with turns in ifpfresenting the numbers 2 through 9), we will
use the following notation:

=

The four horizontal bars represent four turns dedcurved arc on the right links the four
turns together. This would represent the number 4.

We will represent the single knot with a large @ef) and we will represent the figure eight
knot with the a sideways eighto().

Example 2
What number is represented on the cord Main Corc
shown?

Solution
On the cord, we see a long knot with four turhs
in it...this represents four in the ones place.
Then 5 single knots appear in the tens positipn
immediately above that, which represents 5
tens, or 50. Finally, 4 single knots are tied in

the hundreds, representing four 4 hundreds, ‘ot
400. Thus, the total shown on this cord is 464.

CheckPoint B

What numbers are represented on
each of the four cords hanging from
the main cord?

Main Corc

Answer .
From left to right:
Cord 1=2,162
Cord 2 =301
Cord3=0
Cord 4 =2,070
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The colors of the cords had meaning and couldndjatsh one object from another. One
color could represent llamas, while a differenbcohight represent sheep, for example.
When all the colors available were exhausted, theyld have to be raised. Because of
this, the ability to read the quipu became a cooapdid task and specially trained individuals
did this job. They were called Quipucamayoc, whakans keeper of the quipus. They
would build, guard, and decipher quipus.

As you can see from this photograph of
an actual quipu, they could get quite
complex.

There were various purposes for the
quipu. Some believe that they were use
to keep an account of their traditions ant
history, using knots to record history
rather than some other formal system of
writing. One writer has even suggested
that the quipu replaced writing as it
formed a role in the Incan postal
system™® Another proposed use of the
quipu is as a translation tool. After the
conquest of the Incas by the Spaniards
and subsequent “conversion” to
Catholicism, an Inca supposedly could use the qiamonfess their sins to a priest. Yet
another proposed use of the quipu was to recordrtsrelated to magic and astronomy,
although this is not a widely accepted interpretati

The mysteries of the quipu have not been fully ergad yet. Recently, Ascher and Ascher
have published a bookhe Code of the Quipu: A Study in Media, Mathemsatad Culture
which is “an extensive elaboration of the logicahrerical system of the quipt®” For more
information on the quipu, you may want to check thetfollowing Internet link:

http://www.anthropoloqgy.wisc.edu/salomon/Chaysikingous.php

We are so used to seeing the symbols 1, 2, 3¢cAthett it may be somewhat surprising to see
such a creative and innovative way to compute andrd numbers. Unfortunately, as we
proceed through our mathematical education in gaadehigh school, we receive very little
information about the wide range of number systdrashave existed and which still exist

all over the world. That's not to say our own gystis not important or efficient. The fact
that it has survived for hundreds of years and shaovsign of going away any time soon
suggests that we may have finally found a systeahwiorks well and may not need further
improvement. But only time will tell that whether ot that conjecture is valid or not. We
now turn to a brief historical look at how our et system developed over history.
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The Hindu — Arabic Number System

The Evolution of a System

Our own number system, composed of the ten synjbds?,3,4,5,6,7,8,9} is called the
Hindu-Arabic system This is a basg¢en (decimal) system since place values increase by
powers of ten. Furthermore, this system is positiomhich means that the position of a
symbol has bearing on the value of that symboliwithe number. For example, the position
of the symbol 3 in the number 435,681 gives itlaeanuch greater than the value of the
symbol 8 in that same number. (We'll explore bastesns more thoroughly later.) The
development of these ten symbols and their usepwsdional system comes to us primarily
from Indial?

It was not until the 1B century that the symbols that we are familiar wittiay first
took form in Europe. However, the history of thesenbers and their developmen
goes back hundreds of years. One important sodiicéoomation on this topic is
the writer atBiruni, whose picture is shown hefe Al-Biruni, who was born in
modern day Uzbekistan, had visited India on sevameédsions and made commen
on the Indian number system. When we look at tigerar of the numbers that
al-Biruni encountered, we have to go back to the tbéndgtury B.C.E. to explore
their origins. It is then that the Brahmi numenakre being used.

The Brahmi numerals were more complicated tharetlusgd in our own modern system.
They had separate symbols for the numbers 1 thréughk well as distinct symbols for 10,
100, 1000,..., also for 20, 30, 40,..., and other2fad, 300, 400, ..., 900. The Brahmi
symbols for 1, 2, and 3 are shown befjw.

1 2

[T |

Brahmi one, twa, three

These numerals were used all the way up to theedtury C.E., with variations through time
and geographic location. For example, in the @iesttury C.E., one particular set of Brahmi
numerals took on the following forth

112134 |56 |7 ]8]3

S|E |t el 7|9




Historical Counting Systems 175

From the &' century on, you can actually trace several diffepaths that the Brahmi
numerals took to get to different points and inesions. One of those paths led to our
current numeral system, and went through whatateccthe Gupta numerals. The Gupta
numerals were prominent during a time ruled byGlupta dynasty and were spread
throughout that empire as they conquered landsigtiie ' through &' centuries. They
have the following forrt:

T 121214 |56 | 7189
SN T 2 B I I

1l

How the numbers got to their Gupta form is opeoadusiderable debate. Many possible
hypotheses have been offered, most of which beilrdim two basic types The first type of
hypothesis states that the numerals came fromnthial iletters of the names of the numbers.
(This is not uncommon...the Greek numerals develapéois manner.) The second type of
hypothesis states that they were derived from segmiéer number system. However, there
are other hypotheses that are offered, one of wkibly the researcher Ifrah. His theory is
that there were originally nine numerals, eachegsgnted by a corresponding number of
vertical lines. One possibility is thi&:

11234 |56 |7 ]85

Because these symbols would have taken a lot @f tonwrite, they eventually evolved into
cursive symbols that could be written more quickiyve compare these to the Gupta
numerals above, we can try to see how that evalatioprocess might have taken place, but
our imagination would be just about all we woulddé#o depend upon since we do not know
exactly how the process unfolded.

The Gupta numerals eventually evolved into andikbren of numerals called the Nagari
numerals, and these continued to evolve until #feckntury, at which time they looked like
this:"

11234 |56 | 7|83

112(3 8|4 €9 =|e|o

Note that by this time, the symbol for O has appeébf{The Mayans in the Americas had a
symbol for zero long before this, however, as wallsee later in the chapter.)
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These numerals were adopted by the Arabs, mody likkéhe eighth century during Islamic
incursions into the northern part of Indfdt is believed that the Arabs were instrumental in
spreading them to other parts of the world, inalgdspain (see below).

Other examples of variations up to the eleventhuwgnnclude:

Devangari, eighth centufyy

[ 3% 1S 7L

West Arab Gobar, tenth centafy

1223 G 67X 9

Spain, 976 B.C.E?

¢4 YL /87

Finally, one more graphfi¢

shows various forms of these —=E¥rje 602
numerals as they developed anc Brahmi numerals
eventually converged to the"15 I

century in Europe.

“n?izult')rﬂo

Indian (Gvalior)

The Positional System ]

More important than the form of

the number symbols is the 1 Q $ 8 E{ E 9 CCO

devel()pment of the place value Sanskrit-Devanagari (Indian)

system. Although it is in slight

dispute, the earliest known (22 =5 | 6§ 1759 | ¥ r’r”o,q VA9 .
document in which the Indian

system diSp|ayS a pOSitiOﬂ&' Woest Arabic (gubar) East Arabic (still used in Turkey)

system dates back to 346 C.E.
However, some evidence

suggests that they may have 12 3R G | g Ag9e 123545 6—739LJ
actually developed a positional

system as far back as the first I5¢th century I6th century (Direr)
century C.E.

The Indians were not the first to use a positi@yatem. The Babylonians (as we will see in
Chapter 3) used a positional system with 60 as base. However, there is not much
evidence that the Babylonian system had much impa&iter numeral systems, except with
the Greeks. Also, the Chinese had a baBesystem, probably derived from the use of a
counting boartf. Some believe that the positional system useddialwas derived from the
Chinese system.



Historical Counting Systems 177

Wherever it may have originated, it appears thatiaad 600 C.E., the Indians abandoned the
use of symbols for numbers higher than nine an@még use our familiar system where the
position of the symbol determines its overall véilieNumerous documents from the
seventh century demonstrate the use of this paosit®ystem.

Interestingly, the earliest dated inscriptions ggime system with a symbol for zero come
from Cambodia. In 683, the 60%ear of the Saka era is written with three digitsl a dot in
the middle. The 608year uses three digits with a modern 0 in the feitfd The dot as a
symbol for zero also appears in a Chinese watky—chih li). The author of this document
gives a strikingly clear description of how the ibmdsystem works:

Using the [Indian] numerals, multiplication and @ion are carried out. Each
numeral is written in one stroke. When a numbepoisted to ten, it is advanced into
the higher place. In each vacant place a dot issglsvput. Thus the numeral is always
denoted in each place. Accordingly there can bemar in determining the place.
With the numerals, calculations is easy’.”

Transmission to Europe

It is not completely known how the system got traited to Europe. Traders and travelers
of the Mediterranean coast may have carried iethéris found in a tenttcentury Spanish
manuscript and may have been introduced to Spathéprabs, who invaded the region in
711 C.E. and were there until 1492.

In many societies, a division formed between tholse
used numbers and calculation for practical, evesy d = @&y
business and those who used them for ritualistipgees _( 11 P
or for state busine<8.The former might often use older/,
systems while the latter were inclined to use thear,
more elite written numbers. Competition between the
two groups arose and continued for quite some tima. |
14™ century manuscript of Boethiu$he Consolations ofi
Philosophy there appears a weknown drawing of two
mathematicians. One is a merchant and is using an
abacus (the “abacist”). The other is a Pythagorean
philosopher (the “algorist”) using his “sacred” nioens.
They are in a competition that is being judgedHsy t )
goddess of number. By 1500 C.E., however, the newes;_
symbols and system had won out and has persevered
until today. The Seattle Times recently reporteat the
Hindu-Arabic numeral system has been included in th™
bookThe Greatest Inventions of the Past 2000 Y.&ars

One question to answerwsythe Indians would develop such a positional notati
Unfortunately, an answer to that question is notently known. Some suggest that the
system has its origins with the Chinese countingrté® These boards were portable and it is
thought that Chinese travelers who passed througja took their boards with them and
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ignited an idea in Indian mathematitsOthers, such as G. G. Joseph propose thatieis t
Indian fascination with very large numbers thatvdrthem to develop a system whereby
these kinds of big numbers could easily be writtewn. In this theory, the system
developed entirely within the Indian mathematicahfework without considerable influence
from other civilizations.

The Development and Use of Different Number Bases

Introduction and Basics

During the previous discussions, we have beenriefgto positional base systems. In this
section of the chapter, we will explore exactly wadase system is and what it means if a
system is “positional.” We will do so by first lomlg at our own familiar, base-ten system
and then deepen our exploration by looking at gtlessible base systems. In the next part of
this section, we will journey back to Mayan civdiion and look at their unique base system,
which is based on the number 20 rather than thebeudD.

A base system is a structure within which we colihe easiest way to describe a base
system is to think about our own baten system. The basen system, which we call the
“decimal” system, requires a total of ten differegimbols/digits to write any number. They
are, of course, 0,1, 2, ..... 9.

The decimal system is also an example pbsitionalbase system, which simply means that
the position of a digit gives its place value. Mbtcivilizations had a positional system even
though they did have a base with which they worked.

In our baseten system, a number like 5,783,216 has meaning tecause we are familiar
with the system and its places. As we know, thegesix ones, since there is a 6 in the ones
place. Likewise, there are seven “hundred thousasoiee the 7 resides in that place. Each
digit has a value that is explicitly determineditsyposition within the number. (We make a
distinction between digit, which is just a symbotk as 5, and a number, which is made up
of one or more digits.) We can take this number @ssign each of its digits a value. One
way to do this is with a table, which follows:

5,000,000 = 5x 1,000,000 =510 Five million

+700,000 | = 7 x 100,000 =% 10 Seven hundred thousand
+80,000 | = 8x 10,000 = & 10 Eighty thousand

+3,000 | =3x1000 =3x 10° Three thousand

+200 =2x 100 = 2x 10° Two hundred

+10 =1x10 =1x 10" Ten

+6 =6x1 =6x 1P Six

5,783,216 Five million, seven hundred eighty-three thousawn, hundred sixteen

From the third column in the table we can seedhah place is simply a multiple of ten. Of
course, this makes sense given that our base. i endigits that are multiplying each place
simply tell us how many of that place we have. Weerastricted to having at most 9 in any
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one place before we have to “carry” over to thet péxce. We cannot, for example, have 11
in the hundredthousands place. Instead, we would carry 1 to titleons place and retain 1
in the hundredthousands place. This comes as no surprise tmos gie readily see that 11
hundredthousands is the same as one million, one hunteegand. Carrying is a pretty
typical occurrence in a base system.

However, base-ten is not the only option we havactitally any positive integer greater
than or equal to 2 can be used as a base for aensystem. Such systems can work just
like the decimal system except the number of symidl be different and each position will
depend on the base itself.

Other Bases

For example, let's suppose we adopt a bfase system. The only modern digits we would
need for this system are 0,1,2,3 and 4. Whatrer@lace values in such a system? To
answer that, we start with the ones place, as basst systems do. However, if we were to
count in this system, we could only get to fourl§éjore we had to jump up to the next
place. Our base is 5, after alll What is that rn@ate that we would jump to? It would not be
tens, since we are no longer in basa. We're in a different numerical world. As the
baseten system progresses fronf 1010", so the basdive system moves from’5o 5 = 5.
Thus, we move from the ones to the fives. Afterfies, we would move to the Blace, or
the twenty fives. (Note that in bagen, we would have gone from the tens to the husire
which is, of course, 10

Let's take an example and Base 5 This column coverts to basen | In Base-Ten
build a table. Consider the 3x5 | =3x625 - 1875
number 30412 in base five.

3 — —
We will write this as 30412 gi 22 :Zi 325 —100
, Wwhere the subscript 5 is not —— —
part of the number but *]lx 50 =1x5 =
indicates the base we're t12x5 |=2x1 =

using. First off, note that Total 1982

this is NOT the number

“thirty thousand, four hundred twelve.” We mustdageful not to impose the bagen
system on this number. Here’s what our table migbk like. We will use it to convert this
number to our more familiar bagen system.

As you can see, the number 304equivalent to 1,982 in bagen. We will say 30412=
1982. All of this may seem strange to you, but thatifydecause you are so used to the
only system that you've ever seen.
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Example 3
Convert 6234to a base 10 number.

Solution
We first note that we are given a base-7 numbentkaare to convert.
Thus, our places will start at the one®(@nd then move up to the 7’s, 49's
(7%, etc. Here's the breakdown:

Base 7 | Convert| Base 10
=6x7°| = 6x 343 = 2058
+|=2x7%|=2x49 |=98
=3x7 | =3x7 =21
+1=4x1 | =4x1 |=4
Total 2181

+

Thus 6234 = 2181. ¢

CheckPoint C
Convert 41065to a base 10 number. See endnotes for the afiswer.

Converting from Base 10 to Other Bases

Converting from an unfamiliar base to the famiti@cimal system is not that difficult once
you get the hang of it. It's only a matter of idénhg each place and then multiplying each
digit by the appropriate power. However, going titteer direction can be a little trickier.
Suppose you have a basen number and you want to convert to béise. Let’s start with
some simple examples before we get to a more coatpll one.

Example 4
Convert twelve to a basBve number.

Solution:
We can probably easily see that we can rewriterthisber as follows:

12=x5 +@2x1)

Hence, we have two fives and 2 ones. Hence, iefige we would write
twelve as?2s. Thus, 120 = 22¢

Example5
Convert sixty-nine to a basdive number. We can see now that we have
more than 25, so we rewrite sixtyine as follows:

69=2x25)+@x5)+@x1)
Solution

Here, we have two twentfives, 3 fives, and 4 ones. Hence, in base five we
have234.Thus, 69, = 234.4
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Example 6
Convert the baseseven number 32610 base 10.
Solution
The powers of 7 are:
7°=1
=7
7° =49
7° =343
Etc...
3261 = (3x343) + (%49) + (6x7) + (1x1) = 117Q,. Thus 3261= 117Q..¢
CheckPoint D
Convert 143 to base 5. See the footnotes for soiii
CheckPoint E

Convert the bas¢hree number 210310 base 10. See the endnotes for the
solution®

In general, when converting from basen to some other base, it is often helpful to
determine the highest power of the base that wiltld into the given number at least once.
In the last example,?5 25 is the largest power of five that is preser@9, so that was our
starting point. If we had moved t3 5 125, then 125 would not divide into 69 at lezrste.

Example7
Convert the bas¢éen number 348 to baskve.

Solution
The powers of five are:
5°=1
5'=5
52=25
5°=125
5'=625
Etc...

Since 348 is smaller than 625, but bigger than t@5see that’5125 is the
highest power of five present in 348. So we divi@8 into 348 to see how
many of them there are:

348+125 =2 with remainder 98

There are 98 left over, so we see how many 25&rfdxt smallest power of
five) there are in the remainder:
98+25 =3 with remainder 23

There are 23 left over, so we look at the nextgl#ue 5's:
23+5 =4 with remainde
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This leaves us with 3 ones, and we are ready &nase our basdive
number:
348 = @x5°) + (3x5%) + (4x5%) + (3x1)

Hence, our basdive number i2343 We’'ll say that 348 = 2343. ¢

Example 8
Convert the basg¢en number 4,509 to basseven.
Solution
The powers of 7 are:
=1
=7
7°=49
7% =343
7 = 2401
7° - 16807
Etc...
The highest power of 7 that will divide evenlydnt,509 is ¥ = 2401. With
division, we see that it will go in 1 time with @amainder of 2108. So we
have 1 in the 7place. The next power down i3 343, which goes into
2108 six times with a new remainder of 50. So weet&in the 7 place.
The next power down is*% 49, which goes into
50 once with a new remainder of 1. So there is 4 4,509+ 7'= 1R 2108
in the 7 place. The next power down i$ but 2108+ 7°= 6R50
there was only a remainder of 1, so that means | 50+ 7°= 1R1
there is a 0 in the 7’s place and we still have 2a| 1+ 7' = OR1
remainder. That, of course, means that we havg 1+ 7° = 1
in the ones place. Putting all of this together nse4
that 4,509, = 1610%. ¢ 4,509,=1610%
CheckPoint F
Convert 657, to a base 4 number. See endnotes for the ari3wer.
CheckPoint G

Convert 8377, to a base 8 number. See endnotes for the ariéwer.

A New Method For Converting From Base 10 to Other Bases

As you read the solution to this last example dtehgpted the “You Try It” problems, you
may have had to repeatedly stop and think about whaga going on. The fact that you are
probably struggling to follow the explanation aegroduce the process yourself is mostly
due to the fact that the non-decimal systems atsm&miliar to you. In fact, the only system
that you are probably comfortable with is the dedisystem. As budding mathematicians,
you should always be asking questions like “Howlddwsimplify this process?” In general,
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that is one of the main things that mathematicams.they look for ways to take
complicated situations and make them easier or faondiar. In this section we will attempt
to do that.

To do so, we will start by looking at our own dealmystem. What we do may seem obvious
and maybe even intuitive but that’s the point. Wantto find a process that we readily
recognize works and makes sense to us in a familstem and then use it to extend our
results to a different, unfamiliar system.

Let’s start with the decimal number, 4863We will convert this number to base 10. (Yeah,
| know it’s already in base 10, but if you carejuibllow what we're doing, you'll see it
makes things work out very nicely with other basgésr on.) We first note that the highest
power of 10 that will divide into 4863 at least eris 16 = 1000. In general, this is the first
step in our new process; we find the highest pdiatra given base that will divide at least
once into our given number.

We now divide 1000 into 4863:

4863+ 1000 = 4.863
This says that there are four thousands in 486@dably). However, it also says that there
are 0.863 thousands in 4863. This fractional gaouir remainder and will be converted to

lower powers of our base (10). If we take that ehetiand multiply by 10 (since that’s the
base we’re in) we get the following:

0.863x 10 = 8.63

Why multiply by 10 at this point? We need to recagrhere that 0.863 thousands is the
same as 8.63 hundreds. Think about that untihkssin.

(0.863(1000 =863
(863)(100) =863

These two statements are equivalent. So, what @/eeatly doing here by multiplying by 10
is rephrasing or converting from one place (thodsato the next place down (hundreds).

0.863x10= 863
(Parts of Thousands)10 = Hundreds

What we have now is 8 hundreds and a remainde68flundreds, which is the same as 6.3
tens. We can do this again with the 0.63 that nesnafter this first step.

0.63x10= 6.3
Hundredsx 10= Tens

So we have six tens and 0.3 tens, which is the sen3eones, our last place value.
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Now here’s the punch line. Let’s put all of theétiwer in one place:

4863+ 10 = @.8|63
\Z
0.863x 10 = .(?3

\Z
0.63x10= ®.3

0.3x10= 3.0

Note that in each step, the remainder is carriedhdo the next step and multiplied by 10,
the base. Also, at each step, the whole numberwhith is circled, gives the digit that
belongs in that particular place. What is amaisntpat this works for any base! So, to
convert from a base 10 number to some other ase have the following steps we can
follow:

Converting from Base 10 to Base b
1. Find the highest power of the basthat will divide into the given number at least
once and then divide.
Keep the whole number part, and multiply tleefional part by the base
Repeat step two, keeping the whole number(pantuding 0), carrying the fractional
part to the next step until only a whole numbeultes obtained.
4. Collect all your whole number parts to getryoumber in basbk notation.

S

We will illustrate this procedure with some exangple

Example 9
Convert the base 10 number, 3480 base 5.

Solution
This is actually a conversion that we have done mevious example. The

powers of five are:

50=1

5'=5
52=25
5%=125
5%=625
Etc...

The highest power of five that will go into 348l@ast once is5 So we
divide by 125 and then proceed.

348+ 5°=©®.784
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0.784x5=03.92

i—I

0.92x5=®0.6

l—/

0.6x5=03.0

By keeping all the whole number parts, from tofidio, gives 2343 as our
base 5 number. Thus, 2343 348,.

We can compare our result with what we saw eardiesimply check with
our calculator, and find that these two numberyr@ae equivalent to each
other.+

Example 10
Convert the base 10 number, 3@ 7o base 5.

Solution
The highest power of 5 that divides at least onte 3007 is 5= 625. Thus,
we have:

3007+ 625 =®.8112
0.8112x 5 =®.056
0.056x 5 =0©.28
0.28x5=00.4
0.4x5=0.0

This gives us that 30Qy= 44012. Notice that in the third line that
multiplying by 5 gave us 0 for our whole numbertpaiNe don’t discard
that! The zero tells us that a zero in that platet is, there are nd’s in
this numbers

This last example shows the importance of usingleutator in certain situations and taking
care to avoid clearing the calculator's memoryispldy until you get to the very end of the
process.

Example 11
Convert the base 10 number, 632010 base 7.

Solution
The powers of 7 are:

7°=
7=
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CheckPoint H

CheckPoint |

7?2 =149
7° =343
74 =2401
7°-16807

etc...

The highest power of 7 that will divide at leaste into 63201 is°7 When
we do the initial division on a calculator, we ¢f& following:

63201+ 7° = 3.760397453

The decimal part actually fills up the calculatdisplay and we don’t know
if it terminates at some point or perhaps evenatpdown the road. (It must
terminate or repeat since 6320T°is a rational number.) So if we clear our
calculator at this point, we will introduce errbat is likely to keep this
process from ever ending. To avoid this problem|ease the result in the
calculator and simply subtractf®m this to get the fractional part all by
itself. DO NOT ROUND OFF! Subtraction and thenlaplication by

seven gives:

63201+ 7° = ®.760397453
0.76039745% 7 =(®.322782174
0. 322782174 7 =2.259475219
0.25947521% 7 =©.816326531
0. 81632653k 7 =®.714285714
0. 714285714 7 =®.000000000

Yes, believe it or not, that last product is ekabt as long as you don’t
clear anything out on your calculatofhis gives us our final result: 632@1
= 352155. If we round, even to two decimal places in estelp, clearing
our calculator out at each step along the way, leget a series of
numbers that do not terminate, but begin repedtiamselves endlessly.
(Try it!) We end up with something that doesn’tkeany sense, at least
not in this context. So be careful to use youculaltor cautiously on these
conversion problems.

Convert the base 10 number, 93520 base 5. See endnotes for ansiver.

Convert the base 10 number, 1500, to base 3. r@k®tes for answef.

Be careful not to clear your calculator on thig oAlso, if you're not careful
in each step, you may not get all of the digits’s@looking for, so move
slowly and with caution.
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The Mayan Numeral System

Background

As you might imagine, the development of a baséegyss an important step in making the
counting process more efficient. Our own bdsa system probably arose from the fact that
we have 10 fingers (including thumbs) on two hafdss is a natural development.
However, other civilizations have had a varietypaées other than ten. For example, the
Natives of Queensland used a baa® system, counting as follows: “one, two, two amet,
two two’s, much.” Some Modern South American Tsilbeve a baséive system counting

in this way: “one, two, three, four, hand, hand ané, hand and two,” and so on. The
Babylonians used a bassxty (sexigesimal) system that we will study more later

chapter. In this chapter, we wrap up with a speetkample of a civilization that actually
used a base system other than 10.

The Mayan civilization is generally dated from 139.E to 1700 C.E. The Yucatan
Peninsula (see mah in Mexico was the
scene for the development of one of the
most advanced civilizations of the A Merida
. ] !
ancient world. The Mayans had a - 1 P
sophisticated ritual system that was
overseen by a priestly class. This class

s "

Yucatan Peninsula

; DC atmpeche 5

5

priests developed a philosophy with tim |, .,.../':

as divine and etern&!.The calendar, NP o Chezmal/ f
and calculations related to it, were thus T i e e
very important to the ritual life of the 4 o Befize: City

priestly class, and hence the Mayan
people. In fact, much of what we know
about this culture comes from their

+ _:Be}mu:lpa'n
/ BELIZE
y

. ]
Thtla Gutierrez
GUATEMALS

Ea‘n Pedro Sula

calendar records and astronomy data. Caban +
(Another important source of Fastrdle 8 HDNDUR#: .
information on the Mayans is the e
writings of Father Diego de Landa, whc * r—/¥
went to Mexico as a missionary in ETATADOR T oS
1549.)
1. Chichen ltza 5. Bonampak, Yazchilan

There were two numeral systems 2. Uxmal 6. Tikal
developed by the Mayansone for the 3. Tulum ; é'tw) Ha

- Lapan

common people and one for the priests 4- Falenaue
Not only did these two systems use

different symbols, they also used different basgesys. For the priests, the number system
was governed by ritual. The days of the year weoeght to be gods, so the formal symbols
for the days were decorated he&tgSee sample I€ff) Since the basic
calendar was based on 360 days, the priestly nlisystem used a mixed
base system employing multiples of 20 and 360. fakes for a confusing
system, the details of which we will skip in thigrpcular course.




188

The Mayan Number System Powers| Base-Ten Value| Place Name
Instead, we will focus on the numeration system 20’ 12,800,000,000 Hablat
of the “common” people, which used a more 20° 64,000,000 Alau
consistent base system. As we stated earlier, the 20° 3,200,000 Kinchil
Mayans used a bas20 system, called the 20" 160,000 Cabal
“vigesimal” system. Like our system, it is 20° 8,000 Pic
positional, meaning that the position of a numefic 2¢? 400 Bak
symbol indicates its place value. In the following 20" 20 Kal
table you can see the place value in its vertical| 2(f 1 Hun
format*®
In order to write numbers down, there were onlgéhr
symbols needed in this system. A horizontal bar
represented the quantity 5, a dot represented the Murmber | Yertical Mumber | fertical
quantity 1, and a special symbol (thought to be a Form Form
shell) represented zero. The Mayan system may haye
been the first to make use of zero as a 0 Ay 10 —
placeholder/number. The first 20 numbers are showp
in the table that follows' ] . y o
Unlike our system, where the ones place starthen t e
right and then moves to the left, the Mayan systems 2 - 12
places the ones on the bottafa vertical orientation
and moves up as the place value increases. 3 ooo 13 coo
When numbers are written in vertical form, there 4 R 14 sooo
should never be more than four dots in a singlegla
When writing Mayan numbers, every group of five c
dots becomes one bar. Also, there should never be o 15 =
more than three bars in a single place...four bars
would be converted to one dot in the next place up. B - 16 =
(It's the same as 10 getting converted to a 1eén th
next place up when we carry during addition.) 7 e 17 oo
a 18 ooo

Example 12 noe

What is the value of this number,

which is shown in vertical form? g sooo " oooo
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Example 13

Solution

CheckPoint J

Example 14
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Starting from the bottom, we have the ones plaberd are two bars and
three dots in this place. Since each bar is wortheshave 13 ones when we
count the three dots in the ones place. Lookingemlace value above it
(the twenties places), we see there are threesdoige have three twenties.

a0 o > 2018

oo > 11S

Hence we can write this number in bassm as:

(3x 20)+ (13x 20°) = (3% 20) + (13x1)
=60+13
=73

What is the value of the following Mayan number?

-0

This number has 11 in the ones place, zero in@se®ace, and 18 in the
20°=400’s place. Hence, the value of this number seb&n is:

18x400 + x20 + 1x1 = 7211.+

Convert the Mayan number below to base 10. Seerttirotes for the
solution?®

Convert the base 10 number 35/ Mayan numerals.
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Solution
This problem is done in two stages. First we neetbhvert to a base 20
number. We will do so using the method providethmlast section of the
text. The second step is to convert that numbstagan symbols.

The highest power of 20 that will divide into 3582F = 400, so we start
by dividing that and then proceed from there:
3575+ 400 = 8.9375
0.9375%x 20 = 18.75
0.75x 20 =15.0

This means that 357%= 8,18,15¢

The second step is to convert this to Mayan nataiiis number indicates
that we have 15 in the ones position. That's thias at the bottom of the
number. We also have 18 in the 20’s place, so¢sthtatee bars and three
dots in the second position. Finally, we have than400’s place, so that's
one bar and three dots on the top. We get thewoilp

00

[x]

Q0

[n]

NOTE: We are using a new notation here. The conbeaseen the three numbers 8, 18, and
15 are now separating place values for us so thatan keep them separate from each other.
This use of the comma is slightly different thamttbey’re used in the decimal system.
When we write a number in base 10, such as 7,587{B& commas are used primarily as an
aide to read the number easily but they do notragpaingle place values from each other.
We will need this notation whenever the base weisikger than 10.

CheckPoint K

Convert the base 10 number 10588 Mayan numerals. See endnotes for
answer’’

CheckPoint L
Convert the base 10 number 5glib Mayan numerals. See endnotes for
answert’
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Adding Mayan Numbers

When adding Mayan numbers together, we’ll adophese that the Mayans probably did
not use but which will make life a little easier fas.

Example 15
Add, in Mayan, the numbers 37 and 2%:

Solution

First draw a box around each of the vertical plagcéss will help keep the
place values from being mixed up.

Next, put all of the symbols from both numbers iatsingle set of places
(boxes), and to the right of this new number drasetaof empty boxes
where you will place the final sum:

You are now ready to start carrying. Begin with pitece that has the lowest
value, just as you do with Arabic numbers. Stathatbottom place, where
each dot is worth 1. There are six dots, but a mam of four are allowed

in any one place. (Once you get to five dots, yastneonvert to a bar.)
Since five dots make one bar, we draw a bar thrdwghof the dots,

leaving us with one dot which is under the four-itoit. Put this dot into

the bottom place of the empty set of boxes youquesiv:

Il
I
S

Now look at the bars in the bottom place. Therefiaes and the maximum
number the place can hold is thrEeur bars are equal to one dot in the
next highest placeWhenever we have four bars in a single placevile
automatically convert that todotin the next place up. So we draw a circle
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CheckPoint M

around four of the bars and an arrow up to the' detgion of the higher
place. At the end of that arrow, draw a new doatTdot represents 20 just
the same as the other dots in that place. Not gaytite circled bars in the
bottom place, there is one bar left. One bar iutitk three-bar limit; put it
under the dot in the set of empty places to thetrig

}'..

I}

Now there are only three dots in the next high&stey so draw them in the
corresponding empty box.

LN \'...

We can see here that we have 3 twenties (60), am@$, for a total of 66.
We check and note that 37 + 29 = 66, so we have ttos addition
correctly. Is it easier to just do it in basen? Probably. But that’s only
because it's more familiar to you. Your task heréoitry to learn a new
base system and how addition can be done in gligifterent ways than
what you have seen in the past. Note, howeverthieatoncept of carrying
is still used, just as it is in our own additiog@lithm. ¢

Try adding 174 and 78 in Mayan by first convertingMayan numbers and
then working entirely within that system. Do notlad baseten (decimal)
until the very end when yotheckyour work. A sample solution is shown
below, but you should try it on your own beforekow at the one given.

00O 000 0 60-606-6-0 e 200

0000 | 000 ||eeeee00|;

\
I
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Conclusion

In this first chapter, we have briefly sketched deeelopment of numbers and our counting
system, with the emphasis on the “brief” part. Eh@re numerous sources of information
and research that fill many volumes of books os thpic. Unfortunately, we cannot begin
to come close to covering all of the informatioattls out there.

We have only scratched the surface of the wealtlks#arch and information that exists on
the development of numbers and counting throughootan history. What is important to
note is that the system that we use every daypisd@uct of thousands of years of progress
and development. It represents contributions byynanlizations and cultures. It does not
come down to us from the sky, a gift from the gdts not the creation of a textbook
publisher. It is indeed as human as we are, &®isgetst of mathematics. Behind every
symbol, formula and rule there is a human faceetfolind, or at least sought.

Furthermore, | hope that you now have a basic &jgiren for just how interesting and
diverse number systems can get. Also, I'm prettg $iat you have also begun to recognize
that we take our own number system for granted wchnthat when we try to adapt to other
systems or bases, we find ourselves truly havingptwentrate and think about what is going
on. This is something that you are likely to exg@ece even more as you study this chapter.
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Exercises

Skills

Counting Board And Quipu

1) Inthe following Peruvian counting board, detemenhow many of each item is
represented. Please show all of your calculat@borsg with some kind of explanation
of how you got your answer. Note the key at thitdoo of the drawing.

® ® e, o
%
2 @ 2
®e
®
%
%
® ®
@-=ars = haskets 7= tools

2) Draw a quipu with a main cord that has bran¢kiesords) that show each of the
following numbers on them. (You should produce dreaving for this problem with
the cord for paré on the left and moving to the right for pabtshroughd.)

a. 232 b. 5065

c. 23451 d. 3002

Basic Base Conversions

3) 423in base 5to base 10 4) 3044 in basebage 10
5) 387 in base 10 to base 5 6) 2546 in bage hése 5

7) 110101 in base 2 to base 10 8) 11010001sa Bdo base 10
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9) 100 in base 10 to base 2 10) 2933 in bade hése 2
11) Convert 653 in base 7 to base 10. 12) Cod&3tn base 10 to base 7
13) 3412 in base 5 to base 2 14) 10011011se Bdo base 5

(Hint: convert first to base 10 then to the finakoted base)

The Caidoz System

Suppose you were to discover an ancient bB3asystem made up twelve symbols. Let’s call
this base system the Caidoz system. Here are thieody for each of the numbers 0 through
12:

0=V ] 6=
1= | 7=m
2=1 | 8=x
3=05| 9=Y
4=48) [10==
5= | 11 =X

Convert each of the following numbers in Caidokdee 10

15) my== 16) X*ISV H

17) 241 18) My ==Y

Convert the following base 10 numbers to Caidomguthe symbols shown above.
19) 175 20) 3030

21) 10,000 22) 5507

Mayan Conversions

Convert the following numbers to Mayan notatioro8lyour calculations used to get your
answers.

23) 135 24) 234
25) 360 26) 1,215

27) 10,500 28) 1,100,000
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Convert the following Mayan numbers to decimal @4€) numbers. Show all calculations.

29) . 30) . 31)  ees 32)
. ssee @
— @ eoe

661 I

James Bidwell has suggested that Mayan additiondeag by “simply combining bars and
dots and carrying to the next higher place.” Heegmn to say, “After the combining of dots
and bars, the second step is to exchange evergdigefor one bar in the same position.”
After converting the following base 10 numbers irgdical Maya notation (in base 20, of
course), perform the indicated addition:

33) 32+11 34) 82 + 15
35) 35+ 148 36) 2412 + 5000
37) 450 + 844 38) 10,000 + 20,000

39) 4,500 + 3,500 40) 130,000 + 30,000
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41)  Use the fact that the Mayans had a base-20 eusyistem to complete the following
multiplication table. The table entries shouldm®ayan notation. Remember: Their zero
looked like this..=. Xerox and then cut out the table below, fill itamd paste it onto your
homework assignment if you do not want to duplitdaetable with a ruler.
(To think about but not write up: Bidwell claimsationly these entries are needed for
“Mayan multiplication.” What does he mean?)

X L L 1] L 11 [TT Y] — —
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Exploration

Write a_shortessay on the given topic. It should not be mioag tone page and if you can
type it (doublespaced), | would appreciate it. If you cannot tigpgour writing must be
legible. Attention to grammar is important, althbugdoes not have to be perfect
grammatically...l just want to be able to understand

42) What are the advantages and disadvantageses b¢her than ten.

43) Supposed you are charged with creating ati&seumber system. What symbols
would you use for your system and why? Explain waitheast two specific examples
how you would convert between your batsg system and the decimal system.

44) Describe an interesting aspect of Mayan ciilan that we did not discuss in class.
Your findings must come from some source such anagiclopedia article, or internet
site and you must provide reference(s) of the naseyou used (either the publishing
information or Internet address).

45) For a Papuan tribe in southeast New Guineggstnecessary to translate the bible
passage John 5:5 “And a certain man was therepwiad an infirmity 30 and 8 years”
into “A man lay ill one man, both hands, five ahdee years.” Based on your own
understanding of bases systems (and some commesa)sarnish an explanation of
the translationPlease use complete sentences to do so. (HirdoThis problem, | am
asking you to think about how base systems worlere/they come from, and how
they are used. You won’t necessarily find an “andwereadings or such...you’ll have
to think it through and come up with a reasonab$ponse. Just make sure that you
clearly explain why the passage was translateavihethat it was.)
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