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Growth Models

Populations of people, animals, and items are growing all around us.  By understanding how things grow, we can better understand what to expect in the future.

Linear (Algebraic) Growth

Example:  Marco is a collector of antique soda bottles.  His collection currently contains 437 bottles.  Every year, he budgets enough money to buy 32 new bottles.  How many bottles will he have in 5 years?  How long will it take for his collection to reach 1000 bottles?

While both of these questions you could probably solve without an equation or formal mathematics, we are going to formalize our approach to this problem to provide a means to answer more complicated questions.

Suppose that P​n represents the number, or population, of bottles Marco has after n years.  So P​0 would represent the number of bottles now, P​1 would represent the number of bottles after 1 year, P​2 would represent the number of bottles after 2 years, and so on.  We could describe how Marco’s bottle collection is changing using:

P​0 = 437

P​n = P​n-1 + 32

This is called a recursive relationship.  A recursive relationship is a formula which relates the next value in a sequence to the previous values.  Here, the number of bottles in year n can be found by adding 32 to the number of bottles in the previous year, P​n-1.  Using this relationship, we could calculate:

P​1 = P​0 + 32 = 437 + 32 = 469

P​2 = P​1 + 32 = 469 + 32 = 501

P3 = P​2 + 32 = 501 + 32 = 533

P​4 = P​3 + 32 = 533 + 32 = 565

P​5 = P​4 + 32 = 565 + 32 = 597

We have answered the question of how many bottles Marco will have in 5 years.  However, solving how long it will take for his collection to reach 1000 bottles would require a lot more calculations.  

While recursive relationships are excellent for describing simply and cleanly how a quantity is changing, they are not convenient for making predictions or solving problems that stretch far into the future.  For that, a closed or explicit form for the relationship is preferred.  An explicit equation allows us to calculate P​n directly, without needing to know P​n-1.  While you may already be able to guess the explicit equation, let us derive it from the recursive formula.  We can do so by selectively not simplifying as we go:

P​1 = 437 + 32 

P​2 = P​1 + 32 = 437 + 32 + 32 = 437 + 2(32)

P3 = P​2 + 32 = (437 + 2(32)) + 32 = 437 + 3(32)

P​4 = P​3 + 32 = (437 + 3(32)) + 32 = 437 + 4(32)

You can probably see the pattern now, and generalize that

P​n = 437 + n(32) = 437 + 32n
From this we can calculate

P​5 = 437 + 32(5) = 437 + 160 = 597

We can now also solve for when the collection will reach 1000 bottles by substituting in 1000 for P​n and solving for n
1000 = 437 + 32n

[image: image1]563 = 32n
n = 563/32 = 17.59

So Marco will reach 1000 bottles in 18 years.

In the previous example, Marco’s collection grew by the same number of bottles every year.  This constant change is the hallmark of linear growth.    Plotting the values we calculated for Marco’s collection, we can see the values form a straight line, the shape of linear growth.
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In this equation, d represents the common difference – the amount that the population changes each time n increases by 1.  You may also recognize it as slope.  In fact, the entire explicit equation should look familiar – it is the same linear equation you learned in algebra, probably stated as y = mx + b.  In that equation recall m was the slope, or increase in y per x, and b was the y-intercept, or the y value when x was zero.  Notice that the equations mean the same thing and can be used the same ways, we’re just writing it somewhat differently.
Example:  The population of elk in a national forest was measured to be 12,000 in 2003, and was measured again to be 15,000 in 2007.  If the population continues to grow linearly at this rate, what will the elk population be in 2014?

To begin, we need to define how we’re going to measure n.   Remember that P​0 is the population when n = 0, so we probably don’t want to literally use the year 0.  Since we already know the population in 2003, let us define n = 0 to be the year 2003.  Then P​0 = 12,000.

Next we need to find d.  Remember d is the growth per time period, in this case growth per year.  Between the two measurements, the population grew by 15,000-12,000 = 3,000, but it took 2007-2003 = 4 years to grow that much.  To find the growth per year, we can divide:  3000 elk / 4 years = 750 elk in 1 year.   We can now write our equation in whichever form is preferred. 

Recursive form:

P​0 = 12,000
P​n = P​n-1 + 750
Explicit form:

P​n = 12,000 + 750n

To answer the question, we need to first note that the year 2014 will be n = 11, since 2014 is 11 years after 2003.  The explicit form will be easier to use for this calculation:

P​11 = 12,000 + 750(11) = 20,250 elk

Example:  Gasoline consumption in the US has been increasing steadily.  Consumption data from 1992 to 2004 is shown below
 

	Year
	‘92
	‘93
	‘94
	‘95
	‘96
	‘97
	‘98
	‘99
	‘00
	‘01
	‘02
	‘03
	‘04

	Consumption (billion of gallons)
	110
	111
	113
	116
	118
	119
	123
	125
	126
	128
	131
	133
	136


Plotting this data, it appears to have an approximately linear relationship: 
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While there are more advanced statistical techniques that can be used to find an equation to model the data, to get an idea of what is happening, we can find an equation by using two pieces of the data – perhaps the data from 1993 and 2003.  

To find d, we need to know how much the gas consumption increased each year, on average. From 1993 to 2003 the gas consumption increased from 111 billion gallons to 133 billion gallons, a total change of 133 – 111 = 22 billion gallons, over 10 years.  This gives us an average change of 22 billion gallons / 10 year = 2.2 billion gallons/year.  Letting n = 0 correspond with 1993 would give P​0 = 111 billion gallons.

We can now write our equation in whichever form is preferred.   

Recursive form:

P​0 = 111 
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P​n = P​n-1 + 2.2
Explicit form:

P​n = 111 + 2.2n

Calculating values using the explicit form and plotting them with the original data shows how well our model fits the data.  

We could now use our model to make predictions about the future, assuming that the previous trend continues unchanged.  For example, we could predict that the gasoline consumption in 2016 would be:

n = 23 (2016 – 1993 = 23 years later)

P​23 = 111 + 2.2(23) = 161.6 

Our model predicts that the US will consume 161.6 billion gallons of gasoline in 2016 if the current trend continues.

When good models go bad

When using mathematical models to predict future behavior, it is important to keep in mind that very few trends will continue indefinitely.  

Example:  Suppose a four year old boy is currently 39 inches tall, and you are told to expect him to grow 2.5 inches a year.  We can set up a growth model, with n = 0 corresponding to 4 years old.
Recursive form:

P​0 = 39 
P​n = P​n-1 + 2.5
Explicit form:

P​n = 39 + 2.5n

So at 6 years old, we would expect him to be

P​2 = 39 + 2.5(2) = 44 inches tall

Any mathematical model will break down eventually.  Certainly, we shouldn’t expect this boy to continue to grow at the same rate all his life.  If he did, at age 50 he would be

P​46 = 39 + 2.5(46) = 154 inches tall = 12.8 feet tall!

When using any mathematical model, we have to consider which inputs are reasonable to use.  Whenever we extrapolate, or make predictions into the future, we are assuming the model will continue to be valid.

Exponential (Geometric) Growth
Suppose that every year, only 10% of the fish in a lake have surviving offspring.  If there were 100 fish in the lake last year, there would now be 110 fish.  If there were 1000 fish in the lake last year, there would now be 1100 fish.  Absent any inhibiting factors, populations of people and animals tend to grow by a percent each year.  

Suppose our lake began with 1000 fish, and 10% of the fish have surviving offspring each year.  Since we start with 1000 fish, P​0 = 1000.  How do we calculate P​1?  The new population will be the old population, plus an additional 10%.  Symbolically:
P​1 = P​0 + 0.10P​0
Notice this could be condensed to a shorter form by factoring:

P​1 = P​0 + 0.10P​0 = 1P​0 + 0.10P​0 = (1+ 0.10)P​0 = 1.10P​0
While 10% is the growth rate, 1.10 is the growth multiplier.  Notice that 1.10 can be thought of as “the original 100% plus an additional 10%”

For our fish population,

P​1 = 1.10(1000) = 1100
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We could then calculate the population in later years:

P​2 = 1.10P​1 = 1.10(1100) = 1210

P​3 = 1.10P2 = 1.10(1210) = 1331

Notice that in the first year, the population grew by 100 fish, in the second year, the population grew by 110 fish, and in the third year the population grew by 121 fish.  While there is a constant percentage growth, the actual increase in number of fish is increasing each year.  Graphing these values we see that this growth doesn’t quite appear linear.  

To get a better picture of how this percentage-based growth affects things, we need an explicit form, so we can quickly calculate values further out in the future.
Like we did for the linear model, we will start building from the recursive equation:

P​1 = 1.10P​0 = 1.10(1000)
P​2 = 1.10P​1 = 1.10(1.10(1000)) = 1.102(1000)

P​3 = 1.10P​2 = 1.10(1.102(1000)) = 1.103(1000)

P​4 = 1.10P​3 = 1.10(1.103(1000)) = 1.104(1000)

Observing a pattern, we can generate the explicit form to be:

P​n = 1.10n(1000)
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From this, we can calculate the number of fish in 10, 20, or 30 years:

P​10 = 1.1010(1000) = 2594

P​20 = 1.1020(1000) = 6727

P​30 = 1.1030(1000) = 17449

Adding these values to our graph reveals a shape that is definitely not linear.  If our fish population had been growing linearly, by 100 fish each year, the population would have only reached 4000 in 30 years compared to almost 18000 with this percent-based growth, called exponential growth.  

In exponential growth, the population grows proportional to the size of the population, so as the population gets larger, the same percent growth will yield a larger numeric growth.


[image: image3]
To evaluate expressions like 1.0520, it will be easier to use a calculator than multiply 1.05 by itself twenty times.  Most scientific calculators have a button for exponents.  It is typically either labeled like: 
 ^  ,  yx , or  xy .
To evaluate 1.0520 we’d type 1.05  ^  20, or 1.05  yx  20.  Try it out - you should get something around 2.6532977.
Example:  Between 2007 and 2008, Olympia, WA grew almost 3% to a population of 245 thousand people.  If this growth rate was to continue, what would the population of Olympia be in 2014?

As we did before, we first need to define what year will correspond to n = 0.  Since we know the population in 2008, it would make sense to have 2008 correspond to n = 0, so P​0 = 245,000.   The year 2014 would then be n = 6.  We know the growth rate is 3%, giving r = 0.03.  
Using the explicit form:

P​6 = (1+0.03)6 (245,000) = 1.19405(245,000) = 292,542.25

So in 2014, Olympia would have a population of about 293 thousand people.

Example:  In 1990, the residential energy use in the US was responsible for 962 million metric tons of carbon dioxide emissions.  By the year 2000, that number had risen to 1182 million metric tons
.  If the emissions grow exponentially and continue at the same rate, what will the emissions grow to by 2050?

Similar to before, we will correspond n = 0 with 1990, as that is the year for the first piece of data we have.  That will make P​0 = 962 (million metric tons of CO2).  In this problem, we are not given the growth rate, but instead are given that P​10 = 1182.  

P​10 = (1+r)10 P​0
P​10 = (1+r)10 962
We also know that P​10 = 1182, so substituting that in, we get

1182 = (1+r)10 962

We can now solve this equation for the growth rate, r.
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So if the emissions are growing exponentially, they are growing by about 2.08% per year.  We can now predict the emissions in 2050 by finding P​60
P​60 = (1+0.0208)60 962 = 3308.4 million metric tons of CO2 in 2050

As a note on rounding, notice that if we had rounded the growth rate to 2.1%, our calculation for the emissions in 2050 would have been 3347.   Rounding to 2% would have changed our result to 3156.  A very small difference in the growth rates gets magnified greatly in exponential growth.  For this reason, it is recommended to round the growth rate as little as possible.  If you need to round, keep at least three significant digits - numbers after any leading zeros.   So 0.4162 could be reasonably rounded to 0.416.  A growth rate of 0.001027 could be reasonably rounded to 0.00103.

For the sake of comparison, what would the carbon emissions be in 2050 if emissions grow linearly at the same rate?   Again we will get n = 0 correspond with 1990, giving P​0 = 962.  Using an approach similar to that which we used to find the exponential equation, we’ll use our knowledge that P​10 = 1182.  

P​10 = P​0 + 10d
P​10 = 962 + 10d
Since we know that P​10 = 1182, substituting that in we get

1182 = 962 + 10d

We can now solve this equation for the common difference, d.
1182 – 962 = 10d
220 = 10d
d = 22
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So if the emissions are changing linearly, they are growing by 22 million metric tons each year.  Predicting the emissions in 2050,

P​60 = 962 + 22(60) = 2282 million metric tons.

You will notice that this number is substantially smaller than the prediction from the exponential growth model.  Calculating and plotting more values helps illustrate the differences.

So how do we know which growth model to use when working with data?  There are two approaches which should be used together whenever possible:

1) Find more than two pieces of data.  Plot the values, and look for a trend.  Does the data appear to be changing like a line, or do the values appear to be curving upwards?

2) Consider the factors contributing to the data.  Are they things you would expect to change linearly or exponentially?  For example, in the case of carbon emissions, we could expect that, absent other factors, they would be tied closely to population values, which tend to change exponentially.

Logistic Growth

In our basic exponential growth scenario, we had a recursive equation of the form

P​n = P​n-1 + r P​n-1
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In a confined environment, however, the growth rate may not remain constant.  In a lake, for example, there is some maximum sustainable population of fish, also called a carrying capacity, which is the largest population that the resources in the lake can sustain.  If the population in the lake is far below the carrying capacity, then the population will grow essentially exponentially, but as the population approaches the carrying capacity, the growth rate will decrease.  If the population exceeds the carrying capacity, there won’t be enough resources to sustain all the fish and there will be a negative growth rate.  If the carrying capacity was 5000, the growth rate might vary something like that in the graph shown.  Noting that this is a linear equation with intercept at 0.1 and slope -0.1/5000, we could write an equation for this adjusted growth rate as:

radjusted = 0.1 - 0.1/5000P = 0.1( 1 – P/5000)

Substituting this in to our original exponential growth model gives

P​n = P​n-1 + 0.1( 1 – P​n-1/5000)P​n-1
Generalizing, given exponential growth rate r and carrying capacity K, we have a growth model for Logistic Growth.


[image: image5]
Unlike linear and exponential growth, logistic growth behaves differently if the populations grow steadily throughout the year or if they have one breeding time per year.  The recursive formula provided above models generational growth, where there is one breeding time per year (or, at least a finite number); there is no explicit formula for this type of logistic growth.  

Example:  A forest is currently home to a population of 200 rabbits.  The forest is estimated to be able to sustain a population of 2000 rabbits.  Absent any restrictions, the rabbits would grow by 50% per year.  Modeling this with a logistic growth model, r  = 0.50, K = 2000, and P​0 = 200.  Calculating the next few years:

P​1 = P​0 + 0.50( 1 – P​0/2000)P​0 = 200 + 0.50( 1 – 200/2000)200 = 290
P​2 = P​1 + 0.50( 1 – P​1/2000)P​1 = 290 + 0.50( 1 – 290/2000)290 = 414 (rounded)

A calculator was used to calculate more values:

	n
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	P
	200
	290
	414
	578
	784
	1022
	1272
	1503
	1690
	1821
	1902
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Plotting these values, we can see that the population starts to increase faster and the graph curves upwards during the first few years, like exponential growth, but then the growth slows down as the population approaches the carrying capacity.

Example:   On an island that can support a population of 1000 lizards, there is currently a population of 600.  These lizards have a lot of offspring and not a lot of natural predators, so have very high growth rate, around 150%.  Calculating out the next couple generations:

P​1 = P​0 + 1.50( 1 – P​0/1000)P​0 = 600 + 1.50( 1 – 600/1000)600 = 960

P​2 = P1 + 1.50( 1 – P​1/1000)P​1 = 960 + 1.50( 1 – 960/1000)960 = 1018

Interestingly, even though the factor that limits the growth rate slowed the growth a lot, the population still overshot the carrying capacity.  We would expect the population to decline the next year.

P​3 = P2 + 1.50(1 – P​2/1000)
P​3 = 1018 + 1.50(1 – 1018/1000)1018 = 991

Calculating out a few more years and plotting the results, we see the population wavers above and below the carrying capacity, but eventually settles down, leaving a steady population near the carrying capacity.

[image: image14.wmf]0

500

1000

1500

2000

2500

3000

3500

0

10

20

30

40

50

60

Years after 1990

Emissions (Millions Metric 

Tons)


Example:  On a neighboring island, the growth rate is even higher – about 205%.  Calculating out several generations and plotting the results, we get a surprise:  the population seems to be oscillating between two values, a pattern called a 2-cycle.  While it would be tempting to treat this only as a strange side effect of mathematics, this has actually been observed in nature.  Researchers from the University of California observed a stable 2-cycle in a lizard population in California
.
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Taking this even further, we get more and more extreme behaviors as the growth rate increases higher.   It is possible to get stable 4-cycles, 8-cycles, and higher.  Quickly, though, the behavior approaches chaos (remember the movie Jurassic Park?).
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Exercises

Skills

1. Marko currently has 20 tulips in his yard.  Each year he plants 5 more.

a. Write a recursive formula for the number of tulips Marko has

b. Write an explicit formula for the number of tulips Marko has

2. Pam is a Disc Jockey.  Every week she buys 3 new albums to keep her collection current.  She currently owns 450 albums.

a. Write a recursive formula for the number of albums Pam has

b. Write an explicit formula for the number of albums Pam has

3. A store’s sales (in thousands of dollars) grow according to the recursive rule       Pn=Pn-1 + 15, with initial population P0=40.

a. Calculate P1 and P2
b. Find an explicit formula for Pn
c. Use your formula to predict the store’s sales in 10 years

4. The number of houses in a town has been growing according to the recursive rule Pn=Pn-1 + 30, with initial population P0=200.

a. Calculate P1 and P2
b. Find an explicit formula for Pn
c. Use your formula to predict the number of houses in 10 years

5. A population of beetles is growing according to a linear growth model. The initial population (week 0) was P0=3, and the population after 8 weeks is P8=67.

a. Find an explicit formula for the beetle population in week n

b. After how many weeks will the beetle population reach 187?

6. The number of streetlights in a town is growing linearly.  Four months ago (n = 0) there were 130 lights.  Now (n = 4) there are 146 lights.  If this trend continues,

a. Find an explicit formula for the number of lights in month n
b. How many months will it take to reach 200 lights?

7. Tacoma's population in 2000 was about 200 thousand, and has been growing by about 9% each year. 

a. Write a recursive formula for the population of Tacoma

b. Write an explicit formula for the population of Tacoma

c. If this trend continues, what will Tacoma's population be in 2016?

8. Portland's population in 2007 was about 568 thousand, and has been growing by about 1.1% each year. 

a. Write a recursive formula for the population of Portland

b. Write an explicit formula for the population of Portland

c. If this trend continues, what will Portland's population be in 2016?

9. Diseases tend to spread according to the exponential growth model. In the early days of AIDS, the growth rate was around 190%. In 1983, about 1700 people in the U.S. died of AIDS. If the trend had continued unchecked, how many people would have died from AIDS in 2005?

10. The population of the world in 1987 was 5 billion and the annual growth rate was estimated at 2 percent per year. Assuming that the world population follows an exponential growth model, find the projected world population in 2015.

11. A bacteria culture is started with 300 bacteria.  After 4 hours, the population has grown to 500 bacteria.  If the population grows exponentially,

a. Write a recursive formula for the number of bacteria

b. Write an explicit formula for the number of bacteria

c. If this trend continues, how many bacteria will there be in 1 day?

12. A native wolf species has been reintroduced into a national forest.  Originally 200 wolves were transplanted.  After 3 years, the population had grown to 270 wolves.  If the population grows exponentially,
a. Write a recursive formula for the number of wolves

b. Write an explicit formula for the number of wolves

c. If this trend continues, how many wolves will there be in 10 years?

13. One hundred trout are seeded into a lake.  Absent constraint, their population will grow by 70% a year.  The lake can sustain a maximum of 2000 trout.   Using the logistic growth model, 

a. Write a recursive formula for the number of trout

b. Calculate the number of trout after 1 year and after 2 years.

14. Ten blackberry plants started growing in my yard.  Absent constraint, blackberries will spread by 200% a month.  My yard can only sustain about 50 plants.  Using the logistic growth model, 

a. Write a recursive formula for the number of blackberry plants in my yard

b. Calculate the number of plants after 1, 2, and 3 months

15. In 1968, the U.S. minimum wage was $1.60 per hour. In 1976, the minimum wage was $2.30 per hour. Assume the minimum wage grows according to an exponential model where n represents the time in years after 1960.
a. Find an explicit formula for the minimum wage.

b. What does the model predict for the minimum wage in 1960?
c. If the minimum wage was $5.15 in 1996, is this above, below or equal to what the model predicts?
Concepts

16. The population of a small town can be described by the equation P​n = 4000 + 70n, where n is the number of years after 2005.  Explain in words what this equation tells us about how the population is changing.

17. The population of a small town can be described by the equation P​n = 4000(1.04)n, where n is the number of years after 2005.  Explain in words what this equation tells us about how the population is changing.
Exploration

All the examples in the text examined growing quantities, but linear and exponential equations can also describe decreasing quantities, as the next few problems will explore.

18. A new truck costs $32,000.  The car’s value will depreciate over time, which means it will lose value.  For tax purposes, depreciation is usually calculated linearly.  If the truck is worth $24,500 after three years, write an explicit formula for the value of the car after n years. 
19. Inflation causes things to cost more, and for our money to buy less (hence your grandparents saying "In my day, you could buy a cup of coffee for a nickel"). Suppose inflation decreases the value of money by 5% each year. In other words, if you have $1 this year, next year it will only buy you $0.95 worth of stuff. How much will $100 buy you in 20 years?
20. Suppose that you have a bowl of 500 M&M candies, and each day you eat ¼ of the candies you have.  Is the number of candies left changing linearly or exponentially? Write an equation to model the number of candies left after n days.  

21. A warm object in a cooler room will decrease in temperature exponentially, approaching the room temperature according to the formula 
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 where Tn is the temperature after n minutes, r is the rate at which temperature is changing, a is a constant, and Tr is the temperature of the room.  Forensic investigators can use this to predict the time of death of a homicide victim.  Suppose that when a body was discovered (n = 0) it was 85 degrees.  After 20 minutes, the temperature was measured again to be 80 degrees.  The body was in a 70 degree room.  
a. Use the given information with the formula provided to find a formula for the temperature of the body.

b. When did the victim die, if the body started at 98.6 degrees?  You will either need to guess-and-check answers or your teacher will need to teach logarithms.
22. Recursive equations can be very handy for modeling complicated situations for which explicit equations would be hard to interpret.  As an example, consider a lake in which 2000 fish currently reside.  The fish population grows by 10% each year, but every year 100 fish are harvested from the lake by people fishing.  
a. Write a recursive equation for the number of fish in the lake after n years.

b. Calculate the population after 1 and 2 years.  Does the population appear to be increasing or decreasing?

c. What is the maximum number of fish that could be harvested each year without causing the fish population to decrease in the long run?  
23. The number of Starbucks stores has been growing since they first opened.  The number of stores, as reported on their corporate website
, is shown below.  

a. Carefully plot the data.  Does is appear to be changing linearly or exponentially?

b. Try finding an equation to model the data by picking two points to work from.  How well does the equation model the data?

c. Try using an equation of the form 
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, where k is a constant, to model the data.  This type of model is called a Power model.  Compare your results to the results from part b.

	Year
	Number of Starbucks stores

	1990
	84

	1991
	116

	1992
	165

	1993
	272

	1994
	425

	1995
	677

	1996
	1015

	1997
	1412

	1998
	1886

	1999
	2498

	2000
	3501

	2001
	4709

	2002
	5886

	2003
	7225

	2004
	8569

	2005
	10241

	2006
	12440

	2007
	15756


24. Thomas Malthus was an economist who put forth the principle that population grows based on an exponential growth model, while food and resources grow based on a linear growth model. Based on this, Malthus predicted that eventually demand for food and resources would out outgrow supply, with doom-and-gloom consequences.  Do some research about Malthus to answer these questions.

a. What societal changes did Malthus propose to avoid the doom-and-gloom outcome he was predicting?

b. Why do you think his predictions did not occur?

c. What are the similarities and differences between Malthus's theory and the logistic growth model?
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Linear Growth


If a quantity starts at size P�0 and grows by d every time period, then the quantity after n time periods can be determined using either of these relations:





Recursive form:


P�n = P�n-1 + d





Explicit form:


P�n = P�0 + d n





Exponential Growth


If a quantity starts at size P�0 and grows by R% (written as a decimal, r) every time period, then the quantity after n time periods can be determined using either of these relations:





Recursive form:


P�n = (1+r) P�n-1 





Explicit form:


P�n = (1+r)n P�0 





Logistic Growth





P�n = P�n-1 + r ( 1 – P�n-1 / K) P�n-1








� http://www.bts.gov/publications/national_transportation_statistics/2005/html/table_04_10.html


� http://www.eia.doe.gov/oiaf/1605/ggrpt/carbon.html


� http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/P/Populations2.html


� http://www.starbucks.com/aboutus/Company_Timeline.pdf retrieved May 2009
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