
 Graph Theory 117

© David Lippman Creative Commons BY-SA

Graph Theory and Network Flows
In the modern world, planning efficient routes is essential for business and industry, with
applications as varied as product distribution, laying new fiber optic lines for broadband
internet, and suggesting new friends within social network websites like Facebook.

This field of mathematics started nearly 300 years ago as a look into a mathematical puzzle
(we’ll look at it in a bit). The field has exploded in importance in the last century, both
because of the growing complexity of business in a global economy and because of the
computational power that computers have provided us.

Graphs

Drawing Graphs

Example 1
Here is a portion of a housing development from Missoula, Montana1. As part of her job, the
development’s lawn inspector has to walk down every street in the development making sure
homeowners’ landscaping conforms to the community requirements.

1 Sam Beebe. http://www.flickr.com/photos/sbeebe/2850476641/, CC-BY

118

Naturally, she wants to minimize the amount of walking she has to do. Is it possible for her
to walk down every street in this development without having to do any backtracking?
While you might be able to answer that question just by looking at the picture for a while, it
would be ideal to be able to answer the question for any picture regardless of its complexity.

To do that, we first need to simplify the picture into a form that is easier to work with. We
can do that by drawing a simple line for each street. Where streets intersect, we will place a
dot.

This type of simplified picture is called a graph.

Graphs, Vertices, and Edges
A graph consists of a set of dots, called vertices, and a set of edges connecting pairs of
vertices.

While we drew our original graph to correspond with the picture we had, there is nothing
particularly important about the layout when we analyze a graph. Both of the graphs below
are equivalent to the one drawn above since they show the same edge connections between
the same vertices as the original graph.

You probably already noticed that we are using the term graph differently than you may have
used the term in the past to describe the graph of a mathematical function.

A

B

C

D

E

F

G

H

I

J

K
L

M

N

O P Q

R

A

B

C

D

E F

G

H

I

J

K

L

M

N O

P Q

R

A
B C

D
E F

G

H

I J

K

L

M

N
O

P

Q

R

 Graph Theory 119

Example 2
Back in the 18th century in the Prussian city of
Königsberg, a river ran through the city and seven
bridges crossed the forks of the river. The river
and the bridges are highlighted in the picture to
the right2.

As a weekend amusement, townsfolk would see if
they could find a route that would take them
across every bridge once and return them to
where they started.

Leonard Euler (pronounced OY-lur), one of the
most prolific mathematicians ever, looked at this problem in 1735, laying the foundation for
graph theory as a field in mathematics. To analyze this problem, Euler introduced edges
representing the bridges:

Since the size of each land mass it is not relevant to the question of bridge crossings, each
can be shrunk down to a vertex representing the location:

Notice that in this graph there are two edges connecting the north bank and island,
corresponding to the two bridges in the original drawing. Depending upon the interpretation
of edges and vertices appropriate to a scenario, it is entirely possible and reasonable to have
more than one edge connecting two vertices.

While we haven’t answered the actual question yet of whether or not there is a route which
crosses every bridge once and returns to the starting location, the graph provides the
foundation for exploring this question.

2 Bogdan Giuşcă. http://en.wikipedia.org/wiki/File:Konigsberg_bridges.png

North Bank

Island

South Bank

East Bank

EB

NB

SB

I

120

Definitions
While we loosely defined some terminology earlier, we now will try to be more specific.

Vertex
A vertex is a dot in the graph that could represent an intersection of streets, a land
mass, or a general location, like “work” or “school”. Vertices are often connected by
edges. Note that vertices only occur when a dot is explicitly placed, not whenever two
edges cross. Imagine a freeway overpass – the freeway and side street cross, but it is
not possible to change from the side street to the freeway at that point, so there is no
intersection and no vertex would be placed.

Edges
Edges connect pairs of vertices. An edge can represent a physical connection between
locations, like a street, or simply that a route connecting the two locations exists, like
an airline flight.

Loop
A loop is a special type of edge that connects a vertex to itself. Loops are not used
much in street network graphs.

Degree of a vertex
The degree of a vertex is the number of edges meeting at that vertex. It is possible for
a vertex to have a degree of zero or larger.

Path
A path is a sequence of vertices using the edges. Usually we are interested in a path
between two vertices. For example, a path from vertex A to vertex M is shown below.
It is one of many possible paths in this graph.

Degree 0 Degree 1 Degree2 Degree 3 Degree 4

A B C D

E F G H

J K L M

 Graph Theory 121

Circuit
A circuit is a path that begins and ends at the same vertex. A circuit starting and
ending at vertex A is shown below.

Connected
A graph is connected if there is a path from any vertex to any other vertex. Every
graph drawn so far has been connected. The graph below is disconnected; there is no
way to get from the vertices on the left to the vertices on the right.

Weights
Depending upon the problem being solved, sometimes weights are assigned to the
edges. The weights could represent the distance between two locations, the travel time,
or the travel cost. It is important to note that the distance between vertices in a graph
does not necessarily correspond to the weight of an edge.

Try it Now 1

1. The graph below shows 5 cities. The weights on the edges represent the airfare for a
one-way flight between the cities.

Seattle

LA

Chicago

Dallas

Atlanta

$165
$150

$120

$85
$75

$100

$70

$145

$140
$170

a. How many vertices and edges does the graph have?
b. Is the graph connected?
c. What is the degree of the vertex representing LA?
d. If you fly from Seattle to Dallas to Atlanta, is that a path or a circuit?
e. If you fly from LA to Chicago to Dallas to LA, is that a path or a circuit?

A B C D

E F G H

J K L M

122

Shortest Path
When you visit a website like Google Maps or use your Smartphone to ask for directions
from home to your Aunt’s house in Pasadena, you are usually looking for a shortest path
between the two locations. These computer applications use representations of the street
maps as graphs, with estimated driving times as edge weights.

While often it is possible to find a shortest path on a small graph by guess-and-check, our
goal in this chapter is to develop methods to solve complex problems in a systematic way by
following algorithms. An algorithm is a step-by-step procedure for solving a problem.
Dijkstra’s (pronounced dike-stra) algorithm will find the shortest path between two vertices.

Dijkstra’s Algorithm
1. Mark the ending vertex with a distance of zero. Designate this vertex as current.
2. Find all vertices leading to the current vertex. Calculate their distances to the end.

Since we already know the distance the current vertex is from the end, this will just
require adding the most recent edge. Don’t record this distance if it is longer than a
previously recorded distance.

3. Mark the current vertex as visited. We will never look at this vertex again.
4. Mark the vertex with the smallest distance as current, and repeat from step 2.

Example 3
Suppose you need to travel from Tacoma, WA (vertex T) to Yakima, WA (vertex Y).
Looking at a map, it looks like driving through Auburn (A) then Mount Rainier (MR) might
be shortest, but it’s not totally clear since that road is probably slower than taking the major
highway through North Bend (NB). A graph with travel times in minutes is shown below.
An alternate route through Eatonville (E) and Packwood (P) is also shown.

Step 1: Mark the ending vertex
with a distance of zero. The
distances will be recorded in
[brackets] after the vertex name.

96
79

27
76

96
57

20

36
104

T

A

NB

MR

E
P

Y

96
79

27
76

96
57

20

36
104

T

A

NB

MR

E
P

Y [0]

 Graph Theory 123

Step 2: For each vertex leading to
Y, we calculate the distance to the
end. For example, NB is a
distance of 104 from the end, and
MR is 96 from the end.
Remember that distances in this
case refer to the travel time in
minutes.

Step 3 & 4: We mark Y as visited, and mark the vertex with the smallest recorded distance
as current. At this point, P will be designated current. Back to step 2.

Step 2 (#2): For each vertex leading to P (and not leading to a visited vertex) we find the
distance from the end. Since E is 96 minutes from P, and we’ve already calculated P is 76
minutes from Y, we can compute
that E is 96+76 = 172 minutes
from Y.

If we make the same computation
for MR, we’d calculate 76+27 =
103. Since this is larger than the
previously recorded distance from
Y to MR, we will not replace it.

Step 3 & 4 (#2): We mark P as visited, and designate the vertex with the smallest recorded
distance as current: MR. Back to step 2.

Step 2 (#3): For each vertex
leading to MR (and not leading to
a visited vertex) we find the
distance to the end. The only
vertex to be considered is A, since
we’ve already visited Y and P.
Adding MR’s distance 96 to the
length from A to MR gives the
distance 96+79 = 175 minutes
from A to Y.

Step 3 & 4 (#3): We mark MR as visited, and designate the vertex with smallest recorded
distance as current: NB. Back to step 2.

96
79

27
76

96
57

20

36
104

T

A

NB [104]

MR [96]

E
P [76]

Y [0]

96
79

27
76

96
57

20

36
104

T

A

NB [104]

MR [96]

E [172]
P [76]

Y [0]

96
79

27
76

96
57

20

36
104

T

A [175]

NB [104]

MR [96]

E [172]
P [76]

Y [0]

124

Step 2 (#4): For each vertex
leading to NB, we find the
distance to the end. We know the
shortest distance from NB to Y is
104 and the distance from A to
NB is 36, so the distance from A
to Y through NB is 104+36 = 140.
Since this distance is shorter than
the previously calculated distance
from Y to A through MR, we
replace it.

Step 3 & 4 (#4): We mark NB as visited, and designate A as current, since it now has the
shortest distance.

Step 2 (#5): T is the only
non-visited vertex leading to
A, so we calculate the
distance from T to Y through
A: 20+140 = 160 minutes.

Step 3 & 4 (#5): We mark A as visited, and designate E as current.

Step 2 (#6): The only non-visited vertex leading to E is T. Calculating the distance from T
to Y through E, we compute 172+57 = 229 minutes. Since this is longer than the existing
marked time, we do not replace it.

Step 3 (#6): We mark E as visited. Since all vertices have been visited, we are done.

From this, we know that the shortest path from Tacoma to Yakima will take 160 minutes.
Tracking which sequence of edges yielded 160 minutes, we see the shortest path is T-A-NB-
Y.

Dijkstra’s algorithm is an optimal algorithm, meaning that it always produces the actual
shortest path, not just a path that is pretty short, provided one exists. This algorithm is also
efficient, meaning that it can be implemented in a reasonable amount of time. Dijkstra’s
algorithm takes around V2 calculations, where V is the number of vertices in a graph3. A
graph with 100 vertices would take around 10,000 calculations. While that would be a lot to
do by hand, it is not a lot for computer to handle. It is because of this efficiency that your
car’s GPS unit can compute driving directions in only a few seconds.

3 It can be made to run faster through various optimizations to the implementation.

96
79

27
76

96
57

20

36
104

T

A [140]

NB [104]

MR [96]

E [172]
P [76]

Y [0]

96
79

27
76

96
57

20

36
104

T [160]

A [140]

NB [104]

MR [96]

E [172]
P [76]

Y [0]

 Graph Theory 125

In contrast, an inefficient algorithm might try to list all possible paths then compute the
length of each path. Trying to list all possible paths could easily take 1025 calculations to
compute the shortest path with only 25 vertices; that’s a 1 with 25 zeros after it! To put that
in perspective, the fastest computer in the world would still spend over 1000 years analyzing
all those paths.

Example 4
A shipping company needs to route a package from Washington, D.C. to San Diego, CA. To
minimize costs, the package will first be sent to their processing center in Baltimore, MD
then sent as part of mass shipments between their various processing centers, ending up in
their processing center in Bakersfield, CA. From there it will be delivered in a small truck to
San Diego.

The travel times, in hours, between their processing centers are shown in the table below.
Three hours has been added to each travel time for processing. Find the shortest path from
Baltimore to Bakersfield.

While we could draw a graph, we can also work directly from the table.

Step 1: The ending vertex, Bakersfield, is marked as current.

Step 2: All cities connected to Bakersfield, in this case Denver and Dallas, have their
distances calculated; we’ll mark those distances in the column headers.

Step 3 & 4: Mark Bakersfield as visited. Here, we are doing it by shading the corresponding
row and column of the table. We mark Denver as current, shown in bold, since it is the
vertex with the shortest distance.

 Baltimore

Denver
[19]

Dallas
[25]

Chicago Atlanta Bakersfield
[0]

Baltimore * 15 14
Denver * 18 24 19
Dallas * 18 15 25
Chicago 15 18 18 * 14
Atlanta 14 24 15 14 *
Bakersfield 19 25 *

Baltimore Denver Dallas Chicago Atlanta Bakersfield

Baltimore * 15 14
Denver * 18 24 19
Dallas * 18 15 25
Chicago 15 18 18 * 14
Atlanta 14 24 15 14 *
Bakersfield 19 25 *

126

Step 2 (#2): For cities connected to Denver, calculate distance to the end. For example,
Chicago is 18 hours from Denver, and Denver is 19 hours from the end, the distance for
Chicago to the end is 18+19 = 37 (Chicago to Denver to Bakersfield). Atlanta is 24 hours
from Denver, so the distance to the end is 24+19 = 43 (Atlanta to Denver to Bakersfield).

Step 3 & 4 (#2): We mark Denver as visited and mark Dallas as current.

Step 2 (#3): For cities connected to Dallas, calculate the distance to the end. For Chicago,
the distance from Chicago to Dallas is 18 and from Dallas to the end is 25, so the distance
from Chicago to the end through Dallas would be 18+25 = 43. Since this is longer than the
currently marked distance for Chicago, we do not replace it. For Atlanta, we calculate 15+25
= 40. Since this is shorter than the currently marked distance for Atlanta, we replace the
existing distance.

Step 3 & 4 (#3): We mark Dallas as visited, and mark Chicago as current.

Step 2 (#4): Baltimore and Atlanta are the only non-visited cities connected to Chicago. For
Baltimore, we calculate 15+37 = 52 and mark that distance. For Atlanta, we calculate 14+37
= 51. Since this is longer than the existing distance of 40 for Atlanta, we do not replace that
distance.

 Baltimore

Denver
[19]

Dallas
[25]

Chicago
[37]

Atlanta
[40]

Bakersfield
[0]

Baltimore * 15 14
Denver * 18 24 19
Dallas * 18 15 25
Chicago 15 18 18 * 14
Atlanta 14 24 15 14 *
Bakersfield 19 25 *

 Baltimore

Denver
[19]

Dallas
[25]

Chicago
[37]

Atlanta
[43]

Bakersfield
[0]

Baltimore * 15 14
Denver * 18 24 19
Dallas * 18 15 25
Chicago 15 18 18 * 14
Atlanta 14 24 15 14 *
Bakersfield 19 25 *

 Graph Theory 127

Step 3 & 4 (#4): Mark Chicago as visited and Atlanta as current.

Step 2 (#5): The distance from Atlanta to Baltimore is 14. Adding that to the distance
already calculated for Atlanta gives a total distance of 14+40 = 54 hours from Baltimore to
Bakersfield through Atlanta. Since this is larger than the currently calculated distance, we do
not replace the distance for Baltimore.

Step 3 & 4 (#5): We mark Atlanta as visited. All cities have been visited and we are done.

The shortest route from Baltimore to Bakersfield will take 52 hours, and will route through
Chicago and Denver.

Try it Now 2
Find the shortest path between vertices A and G in the graph below.

Euler Circuits and the Chinese Postman Problem
In the first section, we created a graph of the Königsberg bridges and asked whether it was
possible to walk across every bridge once. Because Euler first studied this question, these
types of paths are named after him.

Euler Path
An Euler path is a path that uses every edge in a graph with no repeats. Being a path,
it does not have to return to the starting vertex.

 Baltimore
[52]

Denver
[19]

Dallas
[25]

Chicago
[37]

Atlanta
[40]

Bakersfield
[0]

Baltimore * 15 14
Denver * 18 24 19
Dallas * 18 15 25
Chicago 15 18 18 * 14
Atlanta 14 24 15 14 *
Bakersfield 19 25 *

7

4 4

5

2

1 2

6

6

A

B

G

F C

D

E

3
2

128

Example 5
In the graph shown below, there are several Euler paths. One such path is CABDCB. The
path is shown in arrows to the right, with the order of edges numbered.

Euler Circuit
An Euler circuit is a circuit that uses every edge in a graph with no repeats. Being a
circuit, it must start and end at the same vertex.

Example 6
The graph below has several possible Euler circuits. Here’s a couple, starting and ending at
vertex A: ADEACEFCBA and AECABCFEDA. The second is shown in arrows.

Look back at the example used for Euler paths – does that graph have an Euler circuit? A
few tries will tell you no; that graph does not have an Euler circuit. When we were working
with shortest paths, we were interested in the optimal path. With Euler paths and circuits,
we’re primarily interested in whether an Euler path or circuit exists.

Why do we care if an Euler circuit exists? Think back to our housing development lawn
inspector from the beginning of the chapter. The lawn inspector is interested in walking as
little as possible. The ideal situation would be a circuit that covers every street with no
repeats. That’s an Euler circuit! Luckily, Euler solved the question of whether or not an
Euler path or circuit will exist.

Euler’s Path and Circuit Theorems
A graph will contain an Euler path if it contains at most two vertices of odd degree.

A graph will contain an Euler circuit if all vertices have even degree

A

B C

D

A

B C

D
1 2

3 4
5

A

B

E

D

C F

A

B

E

D

C F

1
2 3 4

5 6 7

8 9

 Graph Theory 129

Example 7
In the graph below, vertices A and C have degree 4, since there are 4 edges leading into each
vertex. B is degree 2, D is degree 3, and E is degree 1. This graph contains two vertices with
odd degree (D and E) and three vertices with even degree (A, B, and C), so Euler’s theorems
tell us this graph has an Euler path, but not an Euler circuit.

Example 8
Is there an Euler circuit on the housing development lawn inspector graph we created earlier
in the chapter? All the highlighted vertices have odd degree. Since there are more than two
vertices with odd degree, there are no Euler paths or Euler circuits on this graph.
Unfortunately our lawn inspector will need to do some backtracking.

Example 9
When it snows in the same housing development, the snowplow has to plow both sides of
every street. For simplicity, we’ll assume the plow is out early enough that it can ignore
traffic laws and drive down either side of the street in either direction. This can be visualized
in the graph by drawing two edges for each street, representing the two sides of the street.

Notice that every vertex in this graph has even degree, so this graph does have an Euler
circuit.

A

B
C

D
E

130

Now we know how to determine if a graph has an Euler circuit, but if it does, how do we find
one? While it usually is possible to find an Euler circuit just by pulling out your pencil and
trying to find one, the more formal method is Fleury’s algorithm.

Fleury’s Algorithm
1. Start at any vertex if finding an Euler circuit. If finding an Euler path, start at one

of the two vertices with odd degree.
2. Choose any edge leaving your current vertex, provided deleting that edge will not

separate the graph into two disconnected sets of edges.
3. Add that edge to your circuit, and delete it from the graph.
4. Continue until you’re done.

Example 10
Let’s find an Euler Circuit on this graph using Fleury’s algorithm, starting at vertex A.

Try it Now 3
Does the graph below have an Euler Circuit? If so, find one.

A

B

G

F C

D

E

Original Graph.
Choosing edge AD.

Circuit so far: AD

AD deleted. D is current.
Can’t choose DC since that
would disconnect graph.
Choosing DE

Circuit so far: ADE

E is current.
From here, there is only one
option, so the rest of the
circuit is determined.

Circuit: ADEBDCA

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

 Graph Theory 131

Eulerization and the Chinese Postman Problem
Not every graph has an Euler path or circuit, yet our lawn inspector still needs to do her
inspections. Her goal is to minimize the amount of walking she has to do. In order to do
that, she will have to duplicate some edges in the graph until an Euler circuit exists.

Eulerization
Eulerization is the process of adding edges to a graph to create an Euler circuit on a
graph. To eulerize a graph, edges are duplicated to connect pairs of vertices with odd
degree. Connecting two odd degree vertices increases the degree of each, giving them
both even degree. When two odd degree vertices are not directly connected, we can
duplicate all edges in a path connecting the two.

Note that we can only duplicate edges, not create edges where there wasn’t one before.
Duplicating edges would mean walking or driving down a road twice, while creating an edge
where there wasn’t one before is akin to installing a new road!

Example 11
For the rectangular graph shown, three possible eulerizations are shown. Notice in each of
these cases the vertices that started with odd degrees have even degrees after eulerization,
allowing for an Euler circuit.

In the example above, you’ll notice that the last eulerization required duplicating seven
edges, while the first two only required duplicating five edges. If we were eulerizing the
graph to find a walking path, we would want the eulerization with minimal duplications. If
the edges had weights representing distances or costs, then we would want to select the
eulerization with the minimal total added weight.

Try it Now 4
Eulerize the graph shown, then find an Euler circuit
on the eulerized graph.

A

B C

D

132

Example 12
Looking again at the graph for our lawn inspector from Examples 1 and 8, the vertices with
odd degree are shown highlighted. With eight vertices, we will always have to duplicate at
least four edges. In this case, we need to duplicate five edges since two odd degree vertices
are not directly connected. Without weights we can’t be certain this is the eulerization that
minimizes walking distance, but it looks pretty good.

The problem of finding the optimal eulerization is called the Chinese Postman Problem, a
name given by an American in honor of the Chinese mathematician Mei-Ko Kwan who first
studied the problem in 1962 while trying to find optimal delivery routes for postal carriers.
This problem is important in determining efficient routes for garbage trucks, school buses,
parking meter checkers, street sweepers, and more.

Unfortunately, algorithms to solve this problem are fairly complex. Some simpler cases are
considered in the exercises.

Hamiltonian Circuits and the Traveling Salesman Problem
In the last section, we considered optimizing a walking route for a postal carrier. How is this
different than the requirements of a package delivery driver? While the postal carrier needed
to walk down every street (edge) to deliver the mail, the package delivery driver instead
needs to visit every one of a set of delivery locations. Instead of looking for a circuit that
covers every edge once, the package deliverer is interested in a circuit that visits every vertex
once.

Hamiltonian Circuits and Paths
A Hamiltonian circuit is a circuit that visits every vertex once with no repeats. Being
a circuit, it must start and end at the same vertex. A Hamiltonian path also visits
every vertex once with no repeats, but does not have to start and end at the same
vertex.

Hamiltonian circuits are named for William Rowan Hamilton who studied them in the
1800’s.

 Graph Theory 133

Example 13
One Hamiltonian circuit is shown on the graph below. There are several other Hamiltonian
circuits possible on this graph. Notice that the circuit only has to visit every vertex once; it
does not need to use every edge.

This circuit could be notated by the sequence of vertices visited, starting and ending at the
same vertex: ABFGCDHMLKJEA. Notice that the same circuit could be written in reverse
order, or starting and ending at a different vertex.

Unlike with Euler circuits, there is no nice theorem that allows us to instantly determine
whether or not a Hamiltonian circuit exists for all graphs.4

Example 14
Does a Hamiltonian path or circuit exist on the graph below?

We can see that once we travel to vertex E there is no way to leave without returning to C, so
there is no possibility of a Hamiltonian circuit. If we start at vertex E we can find several
Hamiltonian paths, such as ECDAB and ECABD.

With Hamiltonian circuits, our focus will not be on existence, but on the question of
optimization; given a graph where the edges have weights, can we find the optimal
Hamiltonian circuit; the one with lowest total weight.

This problem is called the Traveling
salesman problem (TSP) because the
question can be framed like this: Suppose a
salesman needs to give sales pitches in four
cities. He looks up the airfares between each
city, and puts the costs in a graph. In what
order should he travel to visit each city once
then return home with the lowest cost?

4 There are some theorems that can be used in specific circumstances, such as Dirac’s theorem, which says that
a Hamiltonian circuit must exist on a graph with n vertices if each vertex has degree n/2 or greater.

A B C D

E F G H

J K L M

A

B
C

D
E

Home (Seattle)

LA

Chicago

Dallas

Atlanta

$165
$150

$120

$85
$75

$100

$70

$145

$140
$170

134

To answer this question of how to find the lowest cost Hamiltonian circuit, we will consider
some possible approaches. The first option that might come to mind is to just try all different
possible circuits.

Brute Force Algorithm (a.k.a. exhaustive search)
1. List all possible Hamiltonian circuits
2. Find the length of each circuit by adding the edge weights
3. Select the circuit with minimal total weight.

Example 15
Apply the Brute force algorithm to find the minimum cost Hamiltonian circuit on the graph
below.

To apply the Brute force algorithm, we list all possible Hamiltonian circuits and calculate
their weight:

Note: These are the unique circuits on this graph. All other possible circuits are the reverse
of the listed ones or start at a different vertex, but result in the same weights.

From this we can see that the second circuit, ABDCA, is the optimal circuit.

The Brute force algorithm is optimal; it will always produce the Hamiltonian circuit with
minimum weight. Is it efficient? To answer that question, we need to consider how many
Hamiltonian circuits a graph could have. For simplicity, let’s look at the worst-case
possibility, where every vertex is connected to every other vertex. This is called a complete
graph.

Suppose we had a complete graph with five vertices like the air travel graph above. From
Seattle there are four cities we can visit first. From each of those, there are three choices.
From each of those cities, there are two possible cities to visit next. There is then only one
choice for the last city before returning home.

Circuit Weight
ABCDA 4+13+8+1 = 26
ABDCA 4+9+8+2 = 23
ACBDA 2+13+9+1 = 25

A

B C
D 4 2

1

9 8
13

 Graph Theory 135

This can be shown visually:

Counting the number of routes, we can see there are 4 3 2 1 24⋅ ⋅ ⋅ = routes. For six cities there
would be 5 4 3 2 1 120⋅ ⋅ ⋅ ⋅ = routes.

Number of Possible Circuits
For n vertices in a complete graph, there will be (1)! (1)(2)(3) 3 2 1n n n n− = − − − ⋅ ⋅

routes. Half of these are duplicates in reverse order, so there are
2

)!1(−n unique

circuits.

The exclamation symbol, !, is read “factorial” and is shorthand for the product shown.

Example 16
How many circuits would a complete graph with 8 vertices have?

A complete graph with 8 vertices would have (8 1)! 7! 7 6 5 4 3 2 1− = = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = 5040 possible
Hamiltonian circuits. Half of the circuits are duplicates of other circuits but in reverse order,
leaving 2520 unique routes.

While this is a lot, it doesn’t seem unreasonably huge. But consider what happens as the
number of cities increase:

Cities Unique Hamiltonian Circuits
9 8!/2 = 20,160
10 9!/2 = 181,440
11 10!/2 = 1,814,400
15 14!/2 = 43,589,145,600
20 19!/2 = 60,822,550,204,416,000

As you can see the number of circuits is growing extremely quickly. If a computer looked at
one billion circuits a second, it would still take almost two years to examine all the possible
circuits with only 20 cities! Certainly Brute Force is not an efficient algorithm.

Home (Seattle)

LA Chicago Dallas Atlanta

D A C

C A D A C D

L A C

C A L A C L

D A L

L A D A L D

D L C

C L D L C D

A C A D D C A C A L L C A L A D D L L C L D D C

136

Unfortunately, no one has yet found an efficient and optimal algorithm to solve the TSP, and
it is very unlikely anyone ever will. Since it is not practical to use brute force to solve the
problem, we turn instead to heuristic algorithms; efficient algorithms that give approximate
solutions. In other words, heuristic algorithms are fast, but may or may not produce the
optimal circuit.

Nearest Neighbor Algorithm (NNA)
1. Select a starting point.
2. Move to the nearest unvisited vertex (the edge with smallest weight).
3. Repeat until the circuit is complete.

Example 17
Consider our earlier graph, shown to the right.
Starting at vertex A, the nearest neighbor is vertex D with a weight of 1.
From D, the nearest neighbor is C, with a weight of 8.
From C, our only option is to move to vertex B, the only unvisited vertex,
with a cost of 13.
From B we return to A with a weight of 4.

The resulting circuit is ADCBA with a total weight of 1+8+13+4 = 26.

We ended up finding the worst circuit in the graph! What happened? Unfortunately, while it
is very easy to implement, the NNA is a greedy algorithm, meaning it only looks at the
immediate decision without considering the consequences in the future. In this case,
following the edge AD forced us to use the very expensive edge BC later.

Example 18
Consider again our salesman. Starting in Seattle,
the nearest neighbor (cheapest flight) is to LA, at
a cost of $70. From there:

LA to Chicago: $100
Chicago to Atlanta: $75
Atlanta to Dallas: $85
Dallas to Seattle: $120
Total cost: $450

In this case, nearest neighbor did find the optimal circuit.

Going back to our first example, how could we improve the outcome? One option would be
to redo the nearest neighbor algorithm with a different starting point to see if the result
changed. Since nearest neighbor is so fast, doing it several times isn’t a big deal.

A

B C
D 4 2

1

9 8
13

Home (Seattle)

LA

Chicago

Dallas

Atlanta

$165
$150

$120

$85
$75

$100

$70

$145

$140
$170

 Graph Theory 137

Repeated Nearest Neighbor Algorithm (RNNA)
1. Do the Nearest Neighbor Algorithm starting at each vertex
2. Choose the circuit produced with minimal total weight

Example 19
We will revisit the graph from Example 17.

Starting at vertex A resulted in a circuit with weight 26.

Starting at vertex B, the nearest neighbor circuit is BADCB with a
weight of 4+1+8+13 = 26. This is the same circuit we found starting at
vertex A. No better.

Starting at vertex C, the nearest neighbor circuit is CADBC with a weight of 2+1+9+13 = 25.
Better!

Starting at vertex D, the nearest neighbor circuit is DACBA. Notice that this is actually the
same circuit we found starting at C, just written with a different starting vertex.

The RNNA was able to produce a slightly better circuit with a weight of 25, but still not the
optimal circuit in this case. Notice that even though we found the circuit by starting at vertex
C, we could still write the circuit starting at A: ADBCA or ACBDA.

Try it Now 5
The table below shows the time, in milliseconds, it takes to send a packet of data between
computers on a network. If data needed to be sent in sequence to each computer, then
notification needed to come back to the original computer, we would be solving the TSP. The
computers are labeled A-F for convenience.

a. Find the circuit generated by the NNA starting at vertex B.
b. Find the circuit generated by the RNNA.

 A B C D E F
A -- 44 34 12 40 41
B 44 -- 31 43 24 50
C 34 31 -- 20 39 27
D 12 43 20 -- 11 17
E 40 24 39 11 -- 42
F 41 50 27 17 42 --

A

B C
D 4 2

1

9 8
13

138

While certainly better than the basic NNA, unfortunately, the RNNA is still greedy and will
produce very bad results for some graphs. As an alternative, our next approach will step
back and look at the “big picture” – it will select first the edges that are shortest, and then fill
in the gaps.

Sorted Edges Algorithm (a.k.a. Cheapest Link Algorithm)

Example 20
Using the four vertex graph from earlier, we can use the Sorted Edges algorithm.

The cheapest edge is AD, with a cost of 1. We highlight that edge to mark it selected.
The next shortest edge is AC, with a weight of 2, so we highlight that edge.

For the third edge, we’d like to add AB, but that would give vertex A degree 3, which is not
allowed in a Hamiltonian circuit. The next shortest edge is CD, but that edge would create a
circuit ACDA that does not include vertex B, so we reject that edge. The next shortest edge
is BD, so we add that edge to the graph.

We then add the last edge to complete the circuit: ACBDA with
weight 25.

Notice that the algorithm did not produce the optimal circuit in this
case; the optimal circuit is ACDBA with weight 23.

While the Sorted Edge algorithm overcomes some of the shortcomings of NNA, it is still
only a heuristic algorithm, and does not guarantee the optimal circuit.

1. Select the cheapest unused edge in the graph.
2. Repeat step 1, adding the cheapest unused edge to the circuit, unless:

a. adding the edge would create a circuit that doesn’t contain all vertices, or
b. adding the edge would give a vertex degree 3.

3. Repeat until a circuit containing all vertices is formed.

A

B C
D 4 2

1

9 8
13

A

B C
D 4 2

1

9 8
13

A

B C
D 4 2

1

9 8
13

A

B C
D 4 2

1

9 8
13

A

B C
D 4 2

1

9 8
13

A

B C
D 4 2

1

9 8
13

BAD BAD OK

 Graph Theory 139

Example 21
Your teacher’s band, Derivative Work, is doing a bar tour in Oregon. The driving distances
are shown below. Plan an efficient route for your teacher to visit all the cities and return to
the starting location. Use NNA starting at Portland, and then use Sorted Edges.

Using NNA with a large number of cities, you might find it helpful to mark off the cities as
they’re visited to keep from accidently visiting them again. Looking in the row for Portland,
the smallest distance is 47, to Salem. Following that idea, our circuit will be:

Portland to Salem 47
Salem to Corvallis 40
Corvallis to Eugene 47
Eugene to Newport 91
Newport to Seaside 117
Seaside to Astoria 17
Astoria to Bend 255
Bend to Ashland 200
Ashland to Crater Lake 108
Crater Lake to Portland 344
Total trip length: 1266 miles

Using Sorted Edges, you might find it helpful to
draw an empty graph, perhaps by drawing
vertices in a circular pattern. Adding edges to
the graph as you select them will help you
visualize any circuits or vertices with degree 3.

A
sh

la
nd

A
st

or
ia

B
en

d

C
or

va
lli

s

C
ra

te
r

La
ke

Eu
ge

ne

N
ew

po
rt

Po
rtl

an
d

Sa
le

m

Se
as

id
e

Ashland - 374 200 223 108 178 252 285 240 356
Astoria 374 - 255 166 433 199 135 95 136 17
Bend 200 255 - 128 277 128 180 160 131 247
Corvallis 223 166 128 - 430 47 52 84 40 155
Crater Lake 108 433 277 430 - 453 478 344 389 423
Eugene 178 199 128 47 453 - 91 110 64 181
Newport 252 135 180 52 478 91 - 114 83 117
Portland 285 95 160 84 344 110 114 - 47 78
Salem 240 136 131 40 389 64 83 47 - 118
Seaside 356 17 247 155 423 181 117 78 118 -

Ashland Astoria
Bend

Corvallis

Crater Lk

Eugene Newport

Portland

Salem

Seaside

140

We start adding the shortest edges:

Seaside to Astoria 17 miles
Corvallis to Salem 40 miles
Portland to Salem 47 miles
Corvallis to Eugene 47 miles

The graph after adding these edges is shown to the
right. The next shortest edge is from Corvallis to
Newport at 52 miles, but adding that edge would give
Corvallis degree 3.

Continuing on, we can skip over any edge pair that
contains Salem or Corvallis, since they both already
have degree 2.

Portland to Seaside 78 miles
Eugene to Newport 91 miles
Portland to Astoria (reject – closes circuit)
Ashland to Crater Lk 108 miles

The graph after adding these edges is shown to the
right. At this point, we can skip over any edge pair
that contains Salem, Seaside, Eugene, Portland, or
Corvallis since they already have degree 2.

Newport to Astoria (reject – closes circuit)
Newport to Bend 180 miles
Bend to Ashland 200 miles

At this point the only way to complete the circuit is to
add:
Crater Lk to Astoria 433 miles

The final circuit, written to start at Portland, is:
Portland, Salem, Corvallis, Eugene, Newport, Bend,
Ashland, Crater Lake, Astoria, Seaside, Portland.

Total trip length: 1241 miles.

While better than the NNA route, neither algorithm produced the optimal route. The
following route can make the tour in 1069 miles:
Portland, Astoria, Seaside, Newport, Corvallis, Eugene, Ashland, Crater Lake, Bend, Salem,
Portland

Ashland Astoria
Bend

Corvallis

Crater Lk

Eugene Newport

Portland

Salem

Seaside

Ashland Astoria
Bend

Corvallis

Crater Lk

Eugene Newport

Portland

Salem

Seaside

Ashland Astoria
Bend

Corvallis

Crater Lk

Eugene Newport

Portland

Salem

Seaside

 Graph Theory 141

Try it Now 6
Find the circuit produced by the Sorted Edges algorithm using the graph below.

Spanning Trees
A company requires reliable internet and phone
connectivity between their five offices (named A, B,
C, D, and E for simplicity) in New York, so they
decide to lease dedicated lines from the phone
company. The phone company will charge for each
link made. The costs, in thousands of dollars per
year, are shown in the graph.

In this case, we don’t need to find a circuit, or even a specific path; all we need to do is make
sure we can make a call from any office to any other. In other words, we need to be sure
there is a path from any vertex to any other vertex.

Spanning Tree
A spanning tree is a connected graph using all vertices in which there are no circuits.
In other words, there is a path from any vertex to any other vertex, but no circuits.

Some examples of spanning trees are shown below. Notice there are no circuits in the trees,
and it is fine to have vertices with degree higher than two.

Usually we have a starting graph to work from, like in the phone example above. In this
case, we form our spanning tree by finding a subgraph – a new graph formed using all the
vertices but only some of the edges from the original graph. No edges will be created where
they didn’t already exist.

Of course, any random spanning tree isn’t really what we want. We want the minimum cost
spanning tree (MCST).

A

B

G

F C

E
43

45

19

15
14 13

25 11

33
36 41

37

27
23 17

A

E

D

B

C

$14
$6

$4

$10
$7

$13

$5

$9

$8
$11

142

Minimum Cost Spanning Tree (MCST)
The minimum cost spanning tree is the spanning tree with the smallest total edge
weight.

A nearest neighbor style approach doesn’t make as much sense here since we don’t need a
circuit, so instead we will take an approach similar to sorted edges.

Kruskal’s Algorithm

Example 22
Using our phone line graph from above, begin adding edges:
AB $4 OK
AE $5 OK
BE $6 reject – closes circuit ABEA
DC $7 OK
AC $8 OK

At this point we stop – every vertex is now
connected, so we have formed a spanning tree with
cost $24 thousand a year.

Remarkably, Kruskal’s algorithm is both optimal and efficient; we are guaranteed to always
produce the optimal MCST.

1. Select the cheapest unused edge in the graph.
2. Repeat step 1, adding the cheapest unused edge, unless:

a. adding the edge would create a circuit
3. Repeat until a spanning tree is formed

A

E

D

B

C

$14
$6

$4

$10
$7

$13

$5

$9

$8
$11

 Graph Theory 143

Example 23
The power company needs to lay updated distribution lines connecting the ten Oregon cities
below to the power grid. How can they minimize the amount of new line to lay?

Using Kruskal’s algorithm, we add edges from cheapest to most expensive, rejecting any that
close a circuit. We stop when the graph is connected.

Seaside to Astoria 17 miles
Corvallis to Salem 40 miles
Portland to Salem 47 miles
Corvallis to Eugene 47 miles
Corvallis to Newport 52 miles
Salem to Eugene reject – closes circuit
Portland to Seaside 78 miles

The graph up to this point is shown to the right.
Continuing,

Newport to Salem reject
Corvallis to Portland reject
Eugene to Newport reject
Portland to Astoria reject
Ashland to Crater Lk 108 miles
Eugene to Portland reject
Newport to Portland reject
Newport to Seaside reject
Salem to Seaside reject
Bend to Eugene 128 miles
Bend to Salem reject

A
sh

la
nd

A
st

or
ia

B
en

d

C
or

va
lli

s

C
ra

te
r

La
ke

Eu
ge

ne

N
ew

po
rt

Po
rtl

an
d

Sa
le

m

Se
as

id
e

Ashland - 374 200 223 108 178 252 285 240 356
Astoria 374 - 255 166 433 199 135 95 136 17
Bend 200 255 - 128 277 128 180 160 131 247
Corvallis 223 166 128 - 430 47 52 84 40 155
Crater Lake 108 433 277 430 - 453 478 344 389 423
Eugene 178 199 128 47 453 - 91 110 64 181
Newport 252 135 180 52 478 91 - 114 83 117
Portland 285 95 160 84 344 110 114 - 47 78
Salem 240 136 131 40 389 64 83 47 - 118
Seaside 356 17 247 155 423 181 117 78 118 -

Ashland Astoria
Bend

Corvallis

Crater Lk

Eugene Newport

Portland

Salem

Seaside

144

Astoria to Newport reject
Salem to Astoria reject
Corvallis to Seaside reject
Portland to Bend reject
Astoria to Corvallis reject
Eugene to Ashland 178 miles

This connects the graph. The total length of cable
to lay would be 695 miles.

Try it Now 7
Find a minimum cost spanning tree on the graph below using Kruskal’s algorithm.

Try it Now Answers
1. a. 5 vertices, 10 edges
b. Yes, it is connected
c. The vertex is degree 4
d. A path
e. A circuit

2. The shortest path is ABDEG, with length 13

3. Yes, all vertices have even degree so this graph has an Euler Circuit. There are several
possibilities. One is: ABEGFCDFEDBCA

4. This graph can be eulerized by duplicating the edge BC, as
shown. One possible Euler circuit on the eulerized graph is
ACDBCBA

A

B

G

F C

E
43

45

19

16
14 13

25 11

33
36 41

37

15
23 17

Ashland Astoria
Bend

Corvallis

Crater Lk

Eugene Newport

Portland

Salem

Seaside

A

B C

D

 Graph Theory 145

Try it Now Answers Continued
5. At each step, we look for the nearest location we haven’t already visited.
From B the nearest computer is E with time 24.
From E, the nearest computer is D with time 11.
From D the nearest is A with time 12.
From A the nearest is C with time 34.
From C, the only computer we haven’t visited is F with time 27
From F, we return back to B with time 50.

The NNA circuit from B is BEDACFB with time 158 milliseconds.

Using NNA again from other starting vertices:
Starting at A: ADEBCFA: time 146
Starting at C: CDEBAFC: time 167
Starting at D: DEBCFAD: time 146
Starting at E: EDACFBE: time 158
Starting at F: FDEBCAF: time 158

The RNNA found a circuit with time 146 milliseconds: ADEBCFA. We could also write
this same circuit starting at B if we wanted: BCFADEB or BEDAFCB.

6.
AB: Add, cost 11
BG: Add, cost 13
AE: Add, cost 14
EF: Add, cost 15
EC: Skip (degree 3 at E)
FG: Skip (would create a circuit not
including C)
BF, BC, AG, AC: Skip (would cause a
vertex to have degree 3)
GC: Add, cost 36
CF: Add, cost 37, completes the circuit

Final circuit: ABGCFEA

7.
AB: Add, cost 11
BG: Add, cost 13
AE: Add, cost 14
AG: Skip, would create circuit ABGA
EF: Add, cost 16
EC: Add, cost 17

This completes the spanning tree

A

B

G

F C

E
43

45

19

15
14 13

25 11

33
36 41

37

27
23 17

A

B

G

F C

E
43

45

19

16
14 13

25 11

33
36 41

37

15
23 17

146

Exercises

Skills
1. To deliver mail in a particular neighborhood, the postal carrier needs to walk along

each of the streets with houses (the dots). Create a graph with edges showing where
the carrier must walk to deliver the mail.

2. Suppose that a town has 7 bridges as pictured below. Create a graph that could be
used to determine if there is a path that crosses all bridges once.

3. The table below shows approximate driving times (in minutes, without traffic)
between five cities in the Dallas area. Create a weighted graph representing this data.

 Plano Mesquite Arlington Denton
Fort Worth 54 52 19 42
Plano 38 53 41
Mesquite 43 56
Arlington 50

4. Shown in the table below are the one-way airfares between 5 cities5. Create a graph

showing this data.

 Honolulu London Moscow Cairo
Seattle $159 $370 $654 $684
Honolulu $830 $854 $801
London $245 $323
Moscow $329

5. Find the degree of each vertex in the graph below.

5 Cheapest fares found when retrieved Sept 1, 2009 for travel Sept 22, 2009

 Graph Theory 147

6. Find the degree of each vertex in the graph below.

7. Which of these graphs are connected?

8. Which of these graphs are connected?

9. Travel times by rail for a segment of the Eurail system is shown below with travel

times in hours and minutes6. Find path with shortest travel time from Bern to Berlin
by applying Dijkstra’s algorithm.

10. Using the graph from the previous problem, find the path with shortest travel time
from Paris to München.

11. Does each of these graphs have an Euler circuit? If so, find it.

6 From http://www.eurail.com/eurail-railway-map

Lyon

Paris

Amsterdam Berlin

Frankfurt

München
1:55

1:25
6:10

4:00 5:45

3:10
3:55

Bern
3:50

148

12. Does each of these graphs have an Euler circuit? If so, find it.

13. Eulerize this graph using as few edge duplications as possible. Then, find an Euler

circuit.

14. Eulerize this graph using as few edge duplications as possible. Then, find an Euler

circuit.

15. The maintenance staff at an amusement park need to patrol the major walkways,
shown in the graph below, collecting litter. Find an efficient patrol route by finding
an Euler circuit. If necessary, eulerize the graph in an efficient way.

 Graph Theory 149

16. After a storm, the city crew inspects for trees or brush blocking the road. Find an
efficient route for the neighborhood below by finding an Euler circuit. If necessary,
eulerize the graph in an efficient way.

17. Does each of these graphs have at least one Hamiltonian circuit? If so, find one.

18. Does each of these graphs have at least one Hamiltonian circuit? If so, find one.

19. A company needs to deliver product to each of their 5 stores around the Dallas, TX

area. Driving distances between the stores are shown below. Find a route for the
driver to follow, returning to the distribution center in Fort Worth:

a. Using Nearest Neighbor starting in Fort Worth
b. Using Repeated Nearest Neighbor
c. Using Sorted Edges

 Plano Mesquite Arlington Denton
Fort Worth 54 52 19 42
Plano 38 53 41
Mesquite 43 56
Arlington 50

20. A salesperson needs to travel from Seattle to Honolulu, London, Moscow, and Cairo.

Use the table of flight costs from problem #4 to find a route for this person to follow:
a. Using Nearest Neighbor starting in Seattle
b. Using Repeated Nearest Neighbor
c. Using Sorted Edges

150

21. When installing fiber optics, some companies will install a sonet ring; a full loop of
cable connecting multiple locations. This is used so that if any part of the cable is
damaged it does not interrupt service, since there is a second connection to the hub.
A company has 5 buildings. Costs (in thousands of dollars) to lay cables between
pairs of buildings are shown below. Find the circuit that will minimize cost:

a. Using Nearest Neighbor starting at building A
b. Using Repeated Nearest Neighbor
c. Using Sorted Edges

22. A tourist wants to visit 7 cities in Israel. Driving distances, in kilometers, between
the cities are shown below7. Find a route for the person to follow, returning to the
starting city:

a. Using Nearest Neighbor starting in Jerusalem
b. Using Repeated Nearest Neighbor
c. Using Sorted Edges

Je
ru

sa
le

m

Te
l A

vi
v

H
ai

fa

Ti
be

ria
s

B
ee

r
Sh

eb
a

Ei
la

t

Jerusalem --
Tel Aviv 58 --
Haifa 151 95 --
Tiberias 152 134 69 --
Beer Sheba 81 105 197 233 --
Eilat 309 346 438 405 241 --
Nazareth 131 102 35 29 207 488

23. Find a minimum cost spanning tree for the graph you created in problem #3

24. Find a minimum cost spanning tree for the graph you created in problem #22

25. Find a minimum cost spanning tree for the graph from problem #21

7 From http://www.ddtravel-acc.com/Israel-cities-distance.htm

A

B

C D

$4.0
$5.2

$4.4

$5.8

$5.6

$6.0

$5.9

$5.1 $4.7
$4.3

E

 Graph Theory 151

Concepts
26. Can a graph have one vertex with odd degree? If not, are there other values that are

not possible? Why?

27. A complete graph is one in which there is an edge connecting every vertex to every
other vertex. For what values of n does complete graph with n vertices have an Euler
circuit? A Hamiltonian circuit?

28. Create a graph by drawing n vertices in a row, then another n vertices below those.

Draw an edge from each vertex in the top row to every vertex in the bottom row. An
example when n=3 is shown below. For what values of n will a graph created this
way have an Euler circuit? A Hamiltonian circuit?

29. Eulerize this graph in the most efficient way possible, considering the weights of the
edges.

30. Eulerize this graph in the most efficient way possible, considering the weights of the
edges.

31. Eulerize this graph in the most efficient way possible, considering the weights of the
edges.

1

1

2

2

2

1

1

1

1

1

1

2

2

2

3

3

3

1

1

2

2

2

1

1

1

1

1

1

2

2

2

4

4

4

1
2

1 1 1
2 4

A

B

C

E

D

26

30

28

26

44

22

24 60
46

152

32. Eulerize this graph in the most efficient way possible, considering the weights of the
edges.

Explorations
33. Social networks such as Facebook and LinkedIn can be represented using graphs in

which vertices represent people and edges are drawn between two vertices when
those people are “friends.” The table below shows a friendship table, where an X
shows that two people are friends.

 A B C D E F G H I
A X X X X
B X X
C X
D X X
E X X
F X X
G X
H X

a. Create a graph of this friendship table
b. Find the shortest path from A to D. The length of this path is often called the

“degrees of separation” of the two people.
c. Extension: Split into groups. Each group will pick 10 or more movies, and

look up their major actors (www.imdb.com is a good source). Create a graph
with each actor as a vertex, and edges connecting two actors in the same
movie (note the movie name on the edge). Find interesting paths between
actors, and quiz the other groups to see if they can guess the connections.

A

E

D

B

C

4
6

10

12

13

5

9

8
11

 Graph Theory 153

34. A spell checker in a word processing program makes suggestions when it finds a
word not in the dictionary. To determine what words to suggest, it tries to find
similar words. One measure of word similarity is the Levenshtein distance, which
measures the number of substitutions, additions, or deletions that are required to
change one word into another. For example, the words spit and spot are a distance of
1 apart; changing spit to spot requires one substitution (i for o). Likewise, spit is
distance 1 from pit since the change requires one deletion (the s). The word spite is
also distance 1 from spit since it requires one addition (the e). The word soot is
distance 2 from spit since two substitutions would be required.

a. Create a graph using words as vertices, and edges connecting words with a
Levenshtein distance of 1. Use the misspelled word “moke” as the center, and
try to find at least 10 connected dictionary words. How might a spell checker
use this graph?

b. Improve the method from above by assigning a weight to each edge based on
the likelihood of making the substitution, addition, or deletion. You can base
the weights on any reasonable approach: proximity of keys on a keyboard,
common language errors, etc. Use Dijkstra’s algorithm to find the length of
the shortest path from each word to “moke”. How might a spell checker use
these values?

35. The graph below contains two vertices of odd degree. To eulerize this graph, it is
necessary to duplicate edges connecting those two vertices.

a. Use Dijkstra’s algorithm to find the shortest path between the two vertices
with odd degree. Does this produce the most efficient eulerization and solve
the Chinese Postman Problem for this graph?

b. Suppose a graph has n odd vertices. Using the approach from part a, how
many shortest paths would need to be considered? Is this approach going to
be efficient?

2

3

4

7

5

1

1

3

2

3

1

5

2

7

7

5

6

2

3

154

	Graph Theory and Network Flows
	Graphs
	Drawing Graphs
	Definitions

	Shortest Path
	Euler Circuits and the Chinese Postman Problem
	Eulerization and the Chinese Postman Problem

	Hamiltonian Circuits and the Traveling Salesman Problem
	Spanning Trees
	Exercises
	Skills
	Concepts
	Explorations

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (GRACoL2006_Coated1v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /RelativeColorimetric
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (GRACoL2006_Coated1v2)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Lulu'] Use these settings to create Adobe PDF documents best suited for Lulu's printing. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (GRACoL2006_Coated1v2)
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

