
D A L E H O F F M A N

C O N T E M P O R A R Y
C A L C U L U S





Contents

0 Welcome to Calculus 1





0
Welcome to Calculus

Calculus was first developed more than 300 years ago by Sir Isaac Newton and Gottfried Leibniz to help
them describe and understand the rules governing the motion of planets and moons. Since then, thousands
of other men and women have refined the basic ideas of calculus, developed new techniques to make the
calculations easier, and found ways to apply calculus to a wide variety of problems besides planetary motion.
They have used calculus to help understand physical, biological, economic and social phenomena and to
describe and solve related problems.

The discovery, development and application of calculus is a great intellectual achievement—and now you
have the opportunity to share in that achievement. You should feel exhilarated. You may also be somewhat
concerned (a common reaction among students just beginning to study calculus). You need to be concerned
enough to work to master calculus, yet confident enough to keep going when you (at first) don’t understand
something.

Part of the beauty of calculus is that it relies upon a few very simple ideas. Part of the power of calculus is
that these simple ideas can help us understand, describe and solve problems in a variety of fields. This book
tries to emphasize both the beauty and the power.

In Section 0.1 (Preview) we will look at the main ideas that will continue throughout the book: the
problems of finding tangent lines and computing areas. We will also consider a process that underlies
both of those problems: the limiting process of approximating a solution and then getting better and better
approximations until we finally get an exact solution.

Sections 0.2 (Lines), 0.3 (Functions) and 0.4 (Combinations of Functions) contain review material. These
sections emphasize concepts and skills you will need in order to succeed in calculus. You should have worked
with most of these concepts in previous courses, but the emphasis and use of the material here may be
different than in those earlier classes.

Section 0.5 (Mathematical Language) discusses a few key mathematical phrases. It considers their use and
meaning and some of their equivalent forms. It will be difficult to understand the meaning and subtleties of
calculus if you don’t understand how these phrases are used and what they mean.

0.1 A Preview of Calculus

Calculus can be viewed as an attempt—a historically successful attempt—to solve two fundamental problems.
In this section we begin to examine geometric forms of those two problems and some fairly simple attempts
to solve them. At first, the problems themselves may not appear very interesting or useful—and the methods
for solving them may seem crude—but these simple problems and methods have led to one of the most
beautiful, powerful and useful creations in mathematics: Calculus.
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Finding the Slope of a Tangent Line

Figure 1: The graph of y = f (x) along
with its tangent line at point P.

Suppose we have the graph of a function y = f (x) and we want to find
the equation of a line that is tangent to the graph at a particular point P
on the graph. (We will offer a precise definition of “tangent” in Section
1.0; for now, think of the tangent line as a line that touches the curve at
the point P and stays close to the graph of y = f (x) near P.)

We know that P is on the tangent line, so if its x-coordinate is x = a,
then the y-coordinate of P must be y = f (a): P = (a, f (a)). The only
other information we need to find the equation of the tangent line is its
slope, mtan, but that is where the difficulty arises.

In algebra, we needed two points in order to determine a slope. So
far, we only have the point P. Let’s simply pick a second point, call
it Q, on the graph of y = f (x). If the x-coordinate of Q is b, then the
y-coordinate is f (b): Q = (b, f (b)). So the slope of the line through P
and Q is

mPQ =
rise
run

=
f (b)− f (a)

b− a

Figure 2: The graph of y = f (x) with a
secant line through points P and Q.

If we drew the graph of y = f (x) on a wall, put nails at the points P
and Q, and laid a straightedge on the nails, then the straightedge would
have slope mPQ. But the slope mPQ can be very different from the value
we want (the slope mtan of the tangent line). The key idea is that when
the point Q is close to the point P, then the slope mPQ should be close to
the slope we want, mtan. Physically, if we slide the nail at Q along the
graph toward the fixed point P, then the slope, mPQ = f (b)− f (a)

b−a , of the
straightedge gets closer and closer to the slope, mtan, of the tangent
line. If the value of b is very close to a, then the point Q is very close to
P, and the value of mPQ is very close to the value of mtan.

Rather than defacing walls with graphs and nails, we can instead
calculate mPQ = f (b)− f (a)

b−a and examine the values of mPQ as b gets
closer and closer to a. We say that mtan is the limiting value of mPQ

as b gets very close to a, and we write:

mtan = lim
b→a

f (b)− f (a)
b− a

Eventually we will call the slope mtan of the tangent line the deriva-
tive of the function f (x) at the point P, and call this part of calculus
differential calculus. Chapters 2 and 3 begin the study of differential
calculus.

The slope of the tangent line to the graph of a function will tell us
important information about the function and will allow us to solve
problems such as:

Figure 3: Sketch of a box satisfying USPS
regulations.

• The U.S. Postal Service requires that the length plus the girth of a
package not exceed 84 inches. What is the largest volume that can
be mailed in a rectangular box?
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• An oil tanker was leaking oil and a 4-inch-thick oil slick had formed.
When first measured, the slick had a radius of 200 feet, and the
radius was increasing at a rate of 3 feet per hour. At that time, how
fast was the oil leaking from the tanker?

Derivatives will even help us solve such “traditional” mathematical
problems as finding solutions of equations like x2 = 2 + sin(x) and
x9 + 5x5 + x3 + 3 = 0.

Problems

1. Sketch the lines tangent to the curve shown below
at x = 1, 2 and 3. Estimate the slope of each of
the tangent lines you drew.

2. A graph of the weight of a “typical” child from
age 0 to age 24 months appears below. (Each
of your answers should have the units “kg per
month.”)

(a) What was the average weight gain from
month 0 to month 24?

(b) What was the average weight gain from
month 9 to month 12? From month 12 to
month 15?

(c) Approximately how fast was the child gaining
weight at age 12 months? At age 3 months?

3. The graph below shows the temperature of a cup
of coffee during a 10-minute period. (Each of
your answers in (a)–(c) should have the units “de-
grees per minute.”)

(a) What was the average rate of cooling from
minute 0 to minute 10?

(b) What was the average rate of cooling from
minute 7 to minute 8? From minute 8 to
minute 9?

(c) What was the rate of cooling at minute 8? At
minute 2?

(d) When was cold milk added to the coffee?

4. Describe a method for determining the slope of a
steep hill at a point midway up the hill

(a) using a ruler, a long piece of string, a glass of
water and a loaf of bread.

(b) using a protractor, a piece of string and a
helium-filled balloon.
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Finding the Area of a Shape

Figure 4: A leaf.

Suppose we need to find the area of a leaf as part of a study of how
much energy a plant gets from sunlight. One method for finding the
area would be to trace the shape of the leaf onto a piece of paper
and then divide the region into “easy” shapes such as rectangles and
triangles (whose areas we can easily calculate). We could add all of
these “easy” areas together to approximate the area of the leaf.

A modification of this method would be to trace the shape onto a
piece of graph paper and then count the number of squares completely
inside the edge of the leaf to get a lower estimate of the area, and count
the number of squares that touch the leaf to get an upper estimate of
the area. If we repeat this process with smaller and smaller squares, we
will have to do more counting and adding, but our estimates should be
closer together—and closer to the actual area of the leaf.

Figure 5: Squares in the left image each
have area 1 cm2, while squares in the
right image each have area 1

4 cm2.

(We could also approximate the area of the leaf using a sheet of
paper, scissors and an accurate scale. How?)

Figure 6: What is the area of the shaded
region?

We can calculate the area A between the graph of a function y = f (x)
and the x-axis by using similar methods. We can divide the area into
strips of width w and determine the lower and upper values of y = f (x)
on each strip. Then we can approximate the area of each rectangle and
add all of the little areas together to get Aw, an approximation of the
exact area. The key idea is that if w is small, then the rectangles are
narrow, and the approximate area Aw should be very close to the actual
area A. If we take narrower and narrower rectangles, the approximate
areas get closer and closer to the actual area:

A = lim
w→0

Aw

Figure 7: Using graph paper to approxi-
mate the shaded area.

The process described above is the basis for a technique called
integration, and this part of calculus is called integral calculus. Integral
calculus and integration will begin in Chapter 4.
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The process of taking the limit of a sum of “little” quantities will
give us important information about a function and will also allow us
to solve problems such as:

• Find the length of the graph of y = sin(x) over one period (from
x = 0 to x = 2π).

• Find the volume of a torus (“doughnut”) of radius 1 inch that has a
hole of radius 2 inches.

Figure 8: A torus.

• A car starts at rest and has an acceleration of 5 + 3 sin(t) feet per
second per second in the northerly direction at time t seconds. Where
will the car be, relative to its starting position, after 100 seconds?

Problems

5. Approximate the area of the leaf in Fig. 4 using

(a) the grid on the left in Fig. 5.

(b) the grid on the right in Fig. 5.

6. A graph showing temperatures during the month of November
appears below.

(a) Approximate the shaded area between the temperature curve and
the 65◦ line from Nov. 15 to Nov. 25.

(b) The area of the “rectangle” is (base)(height) so what are the units
of your answer in part (a)?

(c) Approximate the shaded area between the temperature curve and
the 65◦ line from Nov. 5 to Nov. 30.

(d) Who might use or care about these results?

7. Describe a method for determining the volume of a compact flu-
orescent light bulb using a ruler, a large can, a scale and a jug of
water.
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A Unifying Process: Limits

We used similar processes to “solve” both the tangent line problem
and the area problem. First, we found a way to get an approximate
solution, and then we found a way to improve our approximation.
Finally, we asked what would happen if we continued improving our
approximations “forever”: that is, we “took a limit.”

For the tangent line problem, we let the point Q get closer and closer
and closer to P, the limit as b approached a.

In the area problem, we let the widths of the rectangles get smaller
and smaller, the limit as w approached 0. Limiting processes underlie
derivatives, integrals and several other fundamental topics in calculus,
and we will examine limits and their properties in detail in Chapter 1.

Two Sides of the Same Coin: Differentiation and Integration

Just as the set-up of each of the two basic problems involved a limiting
process, the solutions to the two problems are also related. The process
of differentiation used to solve the tangent line problem and the process
of integration used to solve the area problem turn out to be “opposites”
of each other: each process undoes the effect of the other process. The
Fundamental Theorem of Calculus in Chapter 4 will show how this
“opposite” effect works.

Extensions of the Main Problems

The first five chapters present the two key ideas of calculus, show “easy”
ways to calculate derivatives and integrals, and examine some of their
applications. And there is more.

Through the ensuing chapters, we will examine new functions and
find ways to calculate their derivatives and integrals. We will extend
the approximation ideas to use “easy” functions, such as polynomials,
to approximate the values of “hard” functions, such as sin(x) and ex.

In later chapters, we will extend the notions of “tangent lines” and
“areas” to 3-dimensional space as “tangent planes” and “volumes.”

Success in calculus will require time and effort on your part, but
such a beautiful and powerful field is worth that time and effort.
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0.2 Lines in the Plane

The first graphs and functions you encountered in algebra were straight
lines and their equations. These lines were easy to graph, and the
equations were easy to evaluate and to solve. They described a variety
of physical, biological and financial phenomena such as d = rt relating
the distance d traveled to the rate r and time t spent traveling, and
C = 5

9 (F− 32) for converting the temperature in degrees Fahrenheit
degrees (F) to degrees Celsius (C).

The first part of calculus—differential calculus—will deal with ideas,
techniques and applications of tangent lines to the graphs of functions,
so it is important that you understand the graphs, properties and
equations of straight lines.

The Real Number Line

Figure 9: A number line.

Figure 10: The increment ∆x = b− a.

The real numbers (consisting of all integers, fractions, rational and
irrational numbers) can be represented as a line, called the real number
line. Once we have selected a starting location, called the origin, a
positive direction (usually up or to the right), and unit of length, then
every number can be located as a point on the number line. If we
move from a point x = a to a point x = b on the line, then we will
have moved an increment of b− a. We denote this increment with the
symbol ∆x (read “delta x” ). The capital Greek letter delta (∆) appears

often in calculus to represent the
“change” in something.

Caution: ∆x does not mean ∆ times x,
but rather the difference between two x-
coordinates.

• If b is larger than a, then we will have moved in the positive direction,
and ∆x = b− a will be positive.

• If b is smaller than a, then ∆x = b− a will be negative and we will
have moved in the negative direction.

• Finally, if ∆x = b− a = 0, then a = b and we did not move at all.

We can also use the ∆ notation and absolute values to express the
distance that we have moved. On the number line, the distance from
x = a to x = b is

dist(a, b) =

{
b− a if b ≥ a
a− b if b < a

or:
dist(a, b) = |b− a| = |∆x| =

√
(∆x)2

The midpoint of the interval from x = a to x = b is the point M
such that dist(a, M) = dist(M, b), or |M− a| = |b−M|. If a < M < b,

M− a = b−M⇒ 2M = a + b⇒ M =
a + b

2

It’s not difficult to check that this formula also works when b < M < a.
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Example 1. Find the length and midpoint of the interval from x = −3
to x = 6.

Solution. dist(−3, 6) = |6− (−3)| = |9| = 9; M = (−3)+6
2 = 3

2 . J

Solutions to Practice problems are at the
end of each section. Practice 1. Find the length and midpoint of the interval from x = 7 to

x = 2.

The Cartesian Plane

Figure 11: The xy-plane.

Two perpendicular number lines, called coordinate axes, determine
a real number plane. The axes intersect at a point called the origin.
Each point P in the plane can be described by an ordered pair (x, y) of
numbers that specify how far, and in which directions, we must move
from the origin to reach the point P. We can locate the point P = (x, y)
in the plane by starting at the origin and moving x units horizontally
and then y units vertically. Similarly, we can label each point in the
plane with the ordered pair (x, y), which directs us how to reach that
point from the origin.

In this book, a point in the plane will be
labeled either with a name, say P, or with
an ordered pair, say (x, y), or with both:
P = (x, y).

Figure 12: The four quadrants.

This coordinate system is called the rectangular coordinate system
or the Cartesian coordinate system (after René Descartes), and the
resulting plane the Cartesian plane.

The coordinate axes divide the plane into four quadrants, labeled
quadrants I, I I, I I I and IV moving counterclockwise from the upper-
right quadrant.

We will often call the horizontal axis the x-axis and the vertical axis
the y-axis and then refer to the plane as the xy-plane. This choice of x
and y as labels for the axes is a common choice, but we will sometimes
prefer to use different labels—and even different units of measurement
on the two axes.

Increments and Distance Between Points In The Plane

If we move from a point P = (x1, y1) in the plane to another point
Q = (x2, y2), then we will need to consider two increments or changes.

• The increment in the x (horizontal) direction is x2 − x1, denoted by
∆x = x2 − x1.

• The increment in the y (vertical) direction is y2 − y1, denoted by
∆y = y2 − y1.

Figure 13: Increments between two
points in the plane.

Computing the distance between the points P = (x1, y1) and Q =

(x2, y2) involves a simple application of the Pythagorean Theorem:

dist(P, Q) =
√
(∆x)2 + (∆y)2 =

√
(x2 − x1)2 + (y2 − y1)2



welcome to calculus 9

The midpoint M of the line segment joining P and Q is:

M =

(
x1 + x2

2
,

y1 + y2

2

)
where we have just used the one-dimension midpoint formula for each
coordinate.

Example 2. Find an equation describing all the points P = (x, y)
equidistant from Q = (2, 3) and R = (5,−1).

Solution. The points P = (x, y) must satisfy dist(P, Q) = dist(P, R)
so: √

(x− 2)2 + (y− 3)2 =
√
(x− 5)2 + (y− (−1))2

Figure 14: Finding all points equidistant
from Q and R.

By squaring each side we get:

(x− 2)2 + (y− 3)2 = (x− 5)2 + (y + 1)2

Expanding we get:

x2 − 4x + 4 + y2 − 6y + 9 = x2 − 10x + 25 + y2 + 2y + 1

and canceling like terms yields:

−4x− 6y + 13 = −10x + 2y + 26

so y = 0.75x − 1.625, the equation of a line. Every point on the line
y = 0.75x− 1.625 is equally distant from both Q and R. J

Practice 2. Find an equation describing all points P = (x, y) equidistant
from Q = (1,−4) and R = (0,−3).

A circle with radius r and center at the point C = (a, b) consists of
all points P = (x, y) at a distance of r from the center C: the points P
that satisfy dist(P, C) = r.

Example 3. Find an equation of a circle with radius r = 4 and center
C = (5,−3).

Solution. A circle consists of the set of points P = (x, y) at a fixed
distance r from the center point C, so this circle will be the set of points
P = (x, y) at a distance of 4 units from the point C = (5,−3); P will be
on this circle if dist(P, C) = 4.

Figure 15: Finding the equation of a cir-
cle.

Using the distance formula and rewriting:√
(x− 5)2 + (y + 3)2 = 4⇒ (x− 5)2 + (y + 3)2 = 16

which we can also express as x2 − 10x + 25 + y2 + 6y + 9 = 16. J

Practice 3. Find the equation of a circle with radius r = 5 and center
C = (−2, 6).
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The Slope Between Points in the Plane

In one dimension (on the number line), our only choice was to move
in the positive direction (so the x-values were increasing) or in the
negative direction. In two dimensions (in the plane), we can move
in infinitely many directions, so we need a precise way to describe
direction.

The slope of the line segment joining P = (x1, y1) to Q = (x2, y2) is

m = slope from P to Q =
rise
run

=
y2 − y1

x2 − x1
=

∆y
∆x

The slope of a line measures how fast we rise or fall as we move
from left to right along the line. It measures the rate of change of the
y-coordinate with respect to changes in the x-coordinate. Most of our
work will occur in two dimensions, and slope will be a very useful
concept that will appear often.

Figure 16: Defining slope.

If P and Q have the same x-coordinate, then x1 = x2 ⇒ x = 0. The
line from P to Q is thus vertical and the slope m = ∆y

∆x is undefined
because ∆x = 0.

If P and Q have the same y-coordinate, then y1 = y2 ⇒ ∆y = 0, so
the line is horizontal and the slope is m = ∆y

∆x = 0
∆x = 0 (assuming

∆x 6= 0).

Practice 4. For P = (−3, 2) and Q = (5,−14), find ∆x, ∆y, and the
slope of the line segment from P to Q.

If the coordinates of P or Q contain variables, then the slope m is
still given by m = ∆y

∆x , but we will need to use algebra to evaluate and
simplify m.

Example 4. Find the slope of the line segment from P = (1, 3) to
Q = (1 + h, 3 + 2h).

Solution. y1 = 3 and y2 = 3 + 2h, so ∆y = (3 + 2h)− (3) = 2h; x1 = 1
and x2 = 1 + h, so ∆x = (1 + h)− (1) = h. The slope is:

m =
∆y
∆x

=
2h
h

= 2

Figure 17: Sketch for the example.

In this example, the value of m is constant (2) and does not depend
on the value of h. J

Practice 5. Find the slope and midpoint of the line segment from
P = (2,−3) to Q = (2 + h,−3 + 5h).

Example 5. Find the slope between the points P = (x, x2 + x) and
Q = (a, a2 + a) for a 6= x.
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Solution. y1 = x2 + x and y2 = a2 + a ⇒ ∆y = (a2 + a)− (x2 + x);
x1 = x and x2 = a, so ∆x = a− x and the slope is:

m =
∆y
∆x

=
(a2 + a)− (x2 + x)

a− x

=
a2 − x2 + a− x

a− x
=

(a− x)(a + x) + (a− x)
a− x

=
(a− x) ((a + x) + 1)

a− x
= (a + x) + 1

Here the value of m depends on the values of both a and x. J

Practice 6. Find the slope between the points P = (x, 3x2 + 5x) and
Q = (a, 3a2 + 5a) for a 6= x.

In application problems, it is important to read the information and
the questions very carefully—including the units of measurement of
the variables can help you avoid “silly” answers.

Example 6. In 1970, the population of Houston was 1, 233, 535 and in
1980 it was 1, 595, 138. Find the slope of the line through the points
(1970, 1233535) and (1980, 1595138).

Solution. m =
∆y
∆x

=
1595138− 1233535

1980− 1970
=

361603
10

= 36, 160.3 but

36, 160.3 is just a number that may or may not have any meaning to
you. If we include the units of measurement along with the numbers
we will get a more meaningful result:

1595138 people− 1233535 people
year 1980− year 1970

=
361603 people

10 years
= 36, 160.3

people
year

which says that during the decade from 1970 to 1980 the population of
Houston grew at an average rate of 36, 160 people per year. J

If the x-unit is time (in hours) and the y-unit is distance (in kilome-
ters), then

m =
∆y km

∆x hours

so the units for m are km
hour (“kilometers per hour”), a measure of

velocity, the rate of change of distance with respect to time.
If the x-unit is the number of employees at a bicycle factory and the

y-unit is the number of bicycles manufactured, then

m =
∆y bicycles

∆x employees

and the units for m are bicycles
employee (“bicycles per employee”), a measure

of the rate of production per employee.
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Equations of Lines

Every (non-vertical) line has the property that the slope of the segment
between any two points on the line is the same, and this constant slope
property of straight lines leads to ways of finding equations to represent
non-vertical lines.

Point-Slope Form

In calculus, we will usually know a point on a line and the slope of that
line, so the point-slope form will be the easiest to apply. Other forms
of equations for lines can be derived from the point-slope form.

Figure 18: Finding an equation for a line
from a point and a slope.

If L is a non-vertical line through a known point P = (x1, y1) with a
known slope m, then the equation of the line L is:

Point-Slope: y− y1 = m(x− x1)

Example 7. Find an equation of the line through (2,−3) with slope 5.

Solution. We can simply use the point-slope formula: m = 5, y1 = −3
and x1 = 2, so y− (−3) = 5(x− 2), which simplifies to y = 5x− 13 J

Figure 19: Sketch for the example.

An equation for a vertical line through a point P = (a, b) is x = a.
All points Q = (x, y) on the vertical line through the point P have the
same x-coordinate as P.

Two-Point Form

If two points P = (x1, y1) and Q = (x2, y2) are on the line L, then we
can calculate the slope between them and use the first point and the
point-slope equation to find an equation for L:

Two-Point: y− y1 = m(x− x1) where m =
y2 − y1

x2 − x1

Once we have the slope, m, it does not matter whether we use P or
Q as the point. Either choice will result in the same equation for the
line once we simplify it.

Slope-Intercept Form

It is common practice to rewrite an equation of a line into the form
y = mx + b, the slope-intercept form of the line. The line y = mx + b
has slope m and crosses the y-axis at the point (0, b).

Practice 7. Use the ∆y
∆x definition of slope to calculate the slope of the

line y = mx + b.
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The point-slope and the two-point forms are usually more useful for
finding an equation of a line, but the slope-intercept form is usually the
most useful form for an answer because it allows us to easily picture
the graph of the line and to quickly calculate y-values given x-values.

Angles Between Lines

Figure 20: Angle of inclination.

The angle of inclination of a line with the x-axis is the smallest angle θ

that the line makes with the positive x-axis as measured from the x-axis
counterclockwise to the line. Because the slope m = ∆y

∆x and because

tan(θ) = opposite
adjacent in a right triangle, m = tan(θ).

The slope of a line is the tangent of its angle of inclination.

Parallel Lines

Two parallel lines L1 and L2 make equal angles with the x-axis, so their
angles of inclination will be equal and hence so will their slopes.

Figure 21: Parallel lines.

Similarly, if the slopes, m1 and m2, of two lines are equal, then the
equations of the lines (in slope-intercept form) will always differ by a
constant:

y1 − y2 = (m1x + b1)− (m2x + b2) = (m1 −m2)x + (b1 − b2) = b1 − b2

which is a constant, so the lines will be parallel.
The two preceding ideas can be combined into a single statement:

Two non-vertical lines L1 and L2 with slopes m1 and m2

are parallel if and only if m1 = m2.

Practice 8. Find an equation of the line that contains the point (−2, 3)
and is parallel to the line 3x + 5y = 17.

Figure 22: Sketch for practice problem.

Perpendicular Lines

If two lines are perpendicular, the situation is a bit more complicated.

Figure 23: Perpendicular lines.

Assume L1 and L2 are two non-vertical lines that intersect at the
origin (for simplicity), with P = (x1, y1) and Q = (x2, y2) points away
from the origin on L1 and L2, respectively. Then the slopes of L1 and L2

will be m1 = y1
x1

and m2 = y2
x2

. The line connecting P and Q forms the
third side of triangle OPQ, which will be a right triangle if and only if
L1 and L2 are perpendicular. In particular, L1 and L2 are perpendicular
if and only if the triangle OPQ satisfies the Pythagorean Theorem:

(dist(O, P))2 + (dist(O, Q))2 = (dist(P, Q))2
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or:

(x1 − 0)2 + (y1 − 0)2 + (x2 − 0)2 + (y2 − 0)2

= (x1 − x2)
2 + (y1 − y2)

2

Squaring and simplifying, this reduces to 0 = −2x1x2 − 2y1y2, so:

y2

x2
= − x1

y1
⇒ m2 =

y2

x2
= − x1

y1
− 1

x1
y1

= − 1
m1

We have just proved the following result:

Two non-vertical lines L1 and L2 with slopes m1 and m2

are perpendicular if and only if their slopes are negative

reciprocals of each other: m2 = − 1
m1

.

Practice 9. Find an equation of the line that goes through the point
(2,−5) and is perpendicular to the line 3y− 7x = 2.

Example 8. Find the distance (that is, the shortest distance) from the
point (1, 8) to the line L : 3y− x = 3.

Solution. This is a sophisticated problem that requires several steps to
solve: First we need a picture of the problem. We will find an equation
for the line L∗ through the point (1, 8) and perpendicular to L. Then
we will find the point P where L and L∗ intersect. Finally, we will find
the distance from P to (1, 8).

Figure 24: Sketch for example.

Step 1: L has slope 1
3 so L∗ has slope m = − 1

1
3
= −3, and L∗ has

equation y− 8 = −3(x− 1), which simplifies to y = −3x + 11.
Step 2: We can find the point where L intersects L∗ by replacing the

y-value in the equation for L with the y-value from our equation for L∗:

3(−3x + 11)− x = 3⇒ x = 3⇒ y = −3x + 11 = −3(3) + 11 = 2

which tells us that L and L∗ intersect at P = (3, 2).
Step 3: Finally, the distance from L to (1, 8) is just the distance from

the point (1, 8) to the point P = (3, 2), which is√
(1− 3)2 + (8− 2)2 =

√
40 ≈ 6.325

The distance is (exactly)
√

40, or (approximately) 6.325. J

Angle Formed by Intersecting Lines

If two lines that are not perpendicular intersect at a point (and neither
line is vertical), then we can use some geometry and trigonometry to
determine the angles formed by the intersection of those lines.
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Because θ2 (see figure at right) is an exterior angle of the triangle
ABC, θ2 is equal to the sum of the two opposite interior angles, so
θ2 = θ1 + θ ⇒ θ = θ2 − θ1. From trigonometry, we then know that:

tan(θ) = tan(θ2 − θ1) =
tan(θ2)− tan(θ1)

1 + tan(θ2) tan(θ1)
=

m2 −m1

1 + m2m1

Figure 25: Lines L1 and L2 intersect at an
angle θ.

The range of the arctan function is
[
−π

2 , π
2
]
, so θ = arctan

(
m2−m1

1+m2m1

)
always gives the smaller of the angles. The larger angle is π − θ (or
180◦ − θ◦ if we measure the angles in degrees).

The smaller angle θ formed by two non-perpendicular lines

with slopes m1 and m2 is: θ = arctan
(

m2 −m1

1 + m2m1

)

Example 9. Find the point of intersection and the angle between the
lines y = x + 3 and y = 2x + 1.

Figure 26: Sketch for example.

Solution. Solving the first equation for y and then substituting into
the second equation:

(x + 3) = 2x + 1⇒ x = 2⇒ y = 2 + 3 = 5

The point of intersection is (2, 5). Because both lines are in slope-
intercept form, it is easy to see that m1 = 1 and m2 = 2:

θ = arctan
(

m2 −m1

1 + m2m1

)
= arctan

(
2− 1

1 + 2 · 1

)
= arctan

(
1
3

)
≈ 0.322 radians = 18.43◦

The lines intersect at an angle of (approximately) 18.43◦. J

Problems

1. Estimate the slope of each line shown below. 2. Estimate the slope of each line shown below.
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3. Compute the slope of the line that passes through:

(a) (2, 4) and (5, 8)

(b) (−2, 4) and (3,−5)

(c) (2, 4) and (x, x2)

(d) (2, 5) and (2 + h, 1 + (2 + h)2)

(e) (x, x2 + 3) and (a, a2 + 3)

4. Compute the slope of the line that passes through:

(a) (5,−2) and (3, 8)

(b) (−2,−4) and (5,−3)

(c) (x, 3x + 5) and (a, 3a + 5)

(d) (4, 5) and (4 + h, 5− 3h)

(e) (1, 2) and (x, 1 + x2)

(f) (2,−3) and (2 + h, 1− (1 + h)2)

(g) (x, x2) and (x + h, x2 + 2xh + h2)

(h) (x, x2) and (x− h, x2 − 2xh + h2)

5. A small airplane at an altitude of 5, 000 feet is
flying east at 300 feet per second (a bit over 200

miles per hour), and you are watching it with a
small telescope as it passes directly overhead.

(a) What is the slope of the telescope 5, 10 and 20
seconds after the plane passes overhead?

(b) What is the slope of the telescope t seconds
after the plane passes overhead?

(c) After the plane passes overhead, is the slope of
the telescope increasing, decreasing or staying
the same?

6. You are at the origin, (0, 0), and are watching a
small bug at the point (t, 1+ t2) at time t seconds.

(a) What is the slope of your line of vision when
t = 5, 10 and 15 seconds?

(b) What is the slope of your line of vision at an
arbitrary time t?

7. The blocks in a city are all perfect squares. A
friend gives you directions to a good restaurant:
“Go north 3 blocks, turn east and go 5 blocks, turn
south and go 7 blocks, turn west and go 3 blocks.”
How far away (straight-line distance) is it?

8. At the restaurant (see previous problem), a fellow
diner gives you directions to a hotel: “Go north 5

blocks, turn right and go 6 blocks, turn right and
go 3 blocks, turn left and go 2 blocks.” How far
away is the hotel from the restuarant?

9. The bottom of a 20-foot ladder is 4 feet from the
base of a wall.

(a) How far up the wall does the ladder reach?

(b) What is the slope of the ladder?

(c) What angle does it make with the ground?

10. Let P = (1,−2) and Q = (5, 4). Find:

(a) the midpoint R of the line segment PQ.

(b) the point T that is 1
3 of the way from P to Q:

dist(P, T) =
1
3

dist(P, Q)

(c) the point S that is 2
5 of the way from P to Q.

11. If P = (2, 3), Q = (8, 11) and R = (x, y), where:

x = 2a+ 8(1− a) and y = 3a+ 11(1− a) (0 ≤ a ≤ 1)

(a) Verify that R is on the line segment PQ.

(b) Verify that dist(P, R) = (1− a) · dist(P, Q).

12. A rectangular box is 24 inches long, 18 inches
wide and 12 inches high.

(a) Find the length of the longest (straight) stick
that will fit into the box.

(b) What angle (in degrees) does that stick make
with the base of the box?

13. The lines y = x and y = 4− x intersect at (2, 2).

(a) Show that the lines are perpendicular.

(b) Graph the lines together on your calculator
using the “window” [−10, 10]× [−10, 10].

(c) Why do the lines not appear to be perpendicu-
lar on the calculator display?

(d) Find a suitable window so that the lines do
appear perpendicular.
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14. Two lines both go through the point (1, 2), one
with slope 3 and one with slope − 1

3 .

(a) Find equations for the lines.

(b) Choose a suitable window so that the lines will
appear perpendicular, and then graph them to-
gether on your calculator..

15. Sketch the line with slope m that goes through
the point P, then find an equation for the line.

(a) m = 3, P = (2, 5)

(b) m = −2, P = (3, 2)

(c) m = − 1
2 , P = (1, 4)

16. Sketch the line with slope m that goes through
the point P, then find an equation for the line.

(a) m = 5, P = (2, 1)

(b) m = − 2
3 , P = (1, 3)

(c) m = π, P = (1,−3)

17. Find an equation for each line.

(a) L1 goes through the point (2, 5) and is parallel
to 3x− 2y = 9.

(b) L2 goes through the point (−1, 2) and is per-
pendicular to 2x = 7− 3y.

(c) L3 goes through the point (3,−2) and is per-
pendicular to y = 1.

18. Find a value for the constant (A, B or D) so that:

(a) the line y = 2x + A goes through (3, 10).

(b) the line y = Bx + 2 goes through (3, 10).

(c) the line y = Dx + 7 crosses the y-axis at the
point (0, 4).

(d) the line Ay = Bx + 1 goes through the points
(1, 3) and (5, 13).

19. Find the shortest distance between the circles with
centers C1 = (1, 2) and C2 = (7, 10) with radii r1

and r2 when:

(a) r1 = 2 and r2 = 4

(b) r1 = 2 and r2 = 7

(c) r1 = 5 and r2 = 8

(d) r1 = 3 and r2 = 15

(e) r1 = 12 and r2 = 1

20. Find an equation of the circle with center C and
radius r when

(a) C = (2, 7) and r = 4

(b) C = (3,−2) and r = 1

(c) C = (−5, 1) and r = 7

(d) C = (−3,−1) and r = 4

21. Explain how to show, without graphing, whether
a point P = (x, y) is inside, on, or outside the
circle with center C = (h, k) and radius r.

22. A box with a base of dimensions 2 cm and 8 cm
is definitely big enough to hold two semicircular
rods with radii of 2 cm (see below).

(a) Will these same two rods fit in a box 2 cm high
and 7.6 cm wide?

(b) Will they fit in a box 2 cm high and 7.2 cm
wide? (Suggestion: Turn one of the rods over.)

23. Show that an equation of the circle with center
C = (h, k) and radius r is (x− h)2 + (y− k)2 = r2.

24. Find an equation of the line tangent to the circle
x2 + y2 = 25 at the point P when:

(a) P = (3, 4)

(b) P = (−4, 3)

(c) P = (0, 5)

(d) P = (−5, 0)

25. Find an equation of the line tangent to the circle
with center C = (3, 1) at the point P when:

(a) P = (8, 13)

(b) P = (−10, 1)

(c) P = (−9, 6)

(d) P = (3, 14)

26. Find the center C = (h, k) and the radius r of the
circle that goes through the three points:

(a) (0, 1), (1, 0) and (0, 5)

(b) (1, 4), (2, 2) and (8, 2)

(c) (1, 3), (4, 12) and (8, 4)



18 contemporary calculus

27. How close does

(a) the line 3x− 2y = 4 come to the point (2, 5)?

(b) the line y = 5− 2x come to the point (1,−2)?

(c) the circle with radius 3 and center at (2, 3)
come to the point (8, 3)?

28. How close does

(a) the line 2x− 5y = 4 come to the point (1, 5)?

(b) the line y = 3− 2x come to the point (5,−2)?

(c) the circle with radius 4 and center at (4, 3)
come to the point (10, 3)?

29. Follow the steps below (and refer to the figure) to find a formula for
the distance from the origin to the line Ax + By = C.

(a) Show that the line L given by Ax + By = C has slope m = − A
B .

(b) Find the equation of the line L∗ that goes through (0, 0) and is
perpendicular to L.

(c) Show that L and L∗ intersect at the point:

(x, y) = (
AC

A2 + B2 ,
BC

A2 + B2 )

(d) Show that the distance from the origin to the point (x, y) is:

|C|√
A2 + B2

30. Show that a formula for the distance from the point (p, q) to the line
Ax + By = C is:

|Ap + Bq− C|√
A2 + B2

(The steps will be similar to those in the previous problem, but the
algebra will be more complicated.)
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0.2 Practice Answers

1. Length = dist(−7,−2) = |(−7)− (−2)| = | − 5| = 5.

The midpoint is at
(−7) + (−2)

2
=
−9
2

= −4.5.

2. dist(P, Q) = dist(P, R) ⇒ (x− 1)2 + (y + 4)2 = (x− 0)2 + (y + 3)2;
squaring each side and simplifying, eventually yields y = x− 4.

3. The point P = (x, y) is on the circle when it is 5 units from the center
C = (−2, 6), so dist(P, C) = 5. Then dist ((x, y), (−2, 6)) = 5, so
(x + 2)2 + (y− 6)2 = 5⇒ (x + 2)2 + (y− 6)2 = 25.

4. ∆x = 5− (−3) = 8 and ∆y = −14− 2 = −16, so:

slope =
∆y
∆x

=
−16

8
= −2

5. slope =
∆y
∆x

=
(−3 + 5h)− (−3)

(2 + h)− 2
=

5h
h

= 5. The midpoint is at(
(2) + (2 + h)

2
,
(−3 + 5h) + (−3)

2

)
=

(
2 +

h
2

,−3 +
5h
2

)
.

6. slope =
∆y
∆x

=
(3a2 + 5a)− (3x2 + 5x)

a− x
=

3(a2 − x2) + 5(a− x)
a− x

=

3(a + x)(a− x) + 5(a− x)
a− x

= 3(a + x) + 5

7. Let y1 = mx1 + b and y2 = mx2 + b. Then:

slope =
∆y
∆x

=
(mx2 + b)− (mx1 + b)

x2 − x1
=

m(x2 − x1)

x2 − x1
= m

8. The line 3x + 5y = 17 has slope − 3
5 , so the slope of the parallel line

is m = − 3
5 . Using the form y = − 3

5 x + b and the point (−2, 3) on
the line, we have 3 = − 3

5 (−2) + b ⇒ b = 9
5 ⇒ y = − 3

5 x + 9
5 , or

5y + 3x = 9.

9. The line 3y− 7x = 2 has slope 7
3 , so the slope of the perpendicular

line is m = − 3
7 . Using the form y = − 3

7 x + b and the point (2,−5)
on the line, we have −5 = − 3

7 (2) + b ⇒ b = − 29
7 ⇒ y = − 3

7 x− 29
7 ,

or 7y + 3x = −29.
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0.3 Functions and Their Graphs

When you prepared for calculus, you learned to manipulate functions
by adding, subtracting, multiplying and dividing them, as well as
evaluating functions of functions (composition). In calculus, we will
continue to work with functions and their applications. We will create
new functions by operating on old ones. We will gather information
from the graphs of functions and from derived functions. We will find
ways to describe the point-by-point behavior of functions as well as
their behavior “close to” certain points and also over entire intervals.
We will find tangent lines to graphs of functions and areas between
graphs of functions. And, of course, we will see how these ideas can be
used in a variety of fields.

This section and the next one review information and procedures
you should already know about functions before we begin calculus.

What is a function?

Let’s begin with a (very) general definition of a function:

A function from a set X to a set Y is a rule for assigning to each
element of the set X a single element of the set Y. A function

assigns a unique (exactly one) output element from the set Y to
each input element from the set X.

The rule that defines a function is often given in the form of an
equation, but it could also be given in words or graphically or by a
table of values. In practice, functions are given in all of these ways, and
we will use all of them in this book.

In the definition of a function, the set X of all inputs is called the
domain of the function. The set Y of all outputs produced from these
inputs is called the range of the function. Two different inputs (elements
in the domain) can be assigned to the same output (an element in the
range) but one input cannot lead to two different outputs.

Most of the time we will work with functions whose domains and
ranges are real numbers, but there are other types of functions all
around us. Final grades for this course provide an example of a function.
For each student, the instructor will assign a final grade based on some
rule for evaluating that student’s performance. The domain of this
function consists of all students registered for the course, and the range
consists of grades (either letters like A, B, C, D, F, or numbers like 4.0,
3.7, 2.0, 1.7, 0.0). Two students can receive the same final grade, but
only one grade can be assigned to each student.



welcome to calculus 21

Function Machines

Figure 27: A function machine.

Functions are abstract structures, but sometimes it is easier to think of
them in a more concrete way. One such way is to imagine that a function
is a special-purpose computer, a machine that accepts inputs, does
something to those inputs according to a defining rule, and produces
an output. The output is the value of the function associated with the
given input value. If the defining rule for a function f is “multiply the
input by itself,” f (input) = (input)(input), then the figure and table in
the margin show the results of putting the inputs x, 5, 2.5, a c + 3 and
x + h into the machine f . input output

x x2

a a2

2.5 6.25
x + h (x + h)2

Practice 1. If we have a function machine g whose rule is “divide 3 by
the input and add 1,” g(x) = 3

x + 1, what outputs do we get from the
inputs x, 5, a, c + 3 and x + h? What happens if the input is 0?

You expect your calculator to behave as a function: each time you
press the same sequence of keys (input) you expect to see the same
display (output). In fact, if your calculator did not produce the same
output each time, you would need a new calculator. On many calculators there is a feature

that does not produce the same output
each time you use it. What is it?

Functions Defined by Equations

If the domain of a function consists of a collection of real numbers
(perhaps all real numbers) and the range is also a collection of real
numbers, then the function is called a numerical function. We can give
the rule for a numerical function in several ways, but usually write it
as a formula. If the rule for a numerical function, f , is “the output is
the input number multiplied by itself,” then we could write the rule as

f (x) = x · x = x2

The use of an “x” to represent the input is simply a matter of conve-
nience and custom. We could also represent the same function by:

• f (a) = a2

• f (#) = #2 or

• f (input) = (input)2.

For the function f defined by f (x) = x2 − x, we can see that:

• f (3) = 32 − 3 = 6

• f (0.5) = (0.5)2 − (0.5) = −0.25

• f (−2) = (−2)2 − (−2) = 6

Notice that the two different inputs 3 and −2 both lead to the output
of 6. That is allowable for a function.
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We can also evaluate f if the input contains variables. If we replace
the “x” with something else in the notation “ f (x),” then we must
replace the “x” with the same thing everywhere in the formula:

• f (c) = c2 − c

• f (a + 1) = (a + 1)2 − (a + 1) = (a2 + 2a + 1)− (a + 1) = a2 + a

• f (x + h) = (x + h)2 − (x + h) = (x2 + 2xh + h2)− (x + h)

and, in general: f (input) = (input)2 − (input)
For more complicated expressions, we can just proceed step-by-step:

f (x + h)− f (x)
h

=

(
(x + h)2 − (x + h)

)
−
(

x2 − x
)

h

=

(
(x2 + 2xh + h2)− (x + h)

)
− (x2 − x)

h

=
2xh + h2 − h

h
=

h(2x + h− 1)
h

= 2x + h− 1

Practice 2. For the function g defined by g(t) = t2 − 5t, evaluate g(1),
g(−2), g(w + 3), g(x + h), g(x + h)− g(x), and g(x+h)−g(x)

h .

Functions Defined by Graphs and Tables of Values

The graph of a numerical function f consists of a plot of ordered pairs
(x, y) where x is in the domain of f and y = f (x), such as the graph
of f (x) = sin(x) for −4 ≤ x ≤ 9 in the margin. A table of values of a
numerical function consists of a list of (some of) the ordered pairs (x, y)
where y = f (x).

Figure 28: y = sin(x), −4 ≤ x ≤ 9

Figure 29: Graph and table showing
deflections obtained when weights are
loaded at the end of a wooden stick.

A function can be defined by a graph or by a table of values, and
these types of definitions are common in applied fields. The outcome
of an experiment will depend on the input, but the experimenter may
not know the “rule” for predicting the outcome. In that case, the
experimenter usually represents the function of interest as a table of
measured outcome values versus input values, or as a graph of the
outcomes versus the inputs. The table and graph in the margin show
the deflections obtained when weights were loaded at the end of a
wooden stick. The next graph shows the temperature of a hot cup of tea
as a function of the time as it sits in a 68◦F room. In these experiments,
the “rule” for the function is that f (input) = actual outcome of the
experiment.

Figure 30: Graph showing temperature
of a cup of tea over time.

Tables have the advantage of presenting the data explicitly, but it is
often difficult to detect patterns simply from lists of numbers.

Graphs usually obscure some of the precision of the data, but more
easily allow us to detect patterns visually—we can actually see what is
happening with the numbers
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Creating Graphs of Functions

Most people understand and can interpret pictures more quickly than
tables of data or equations, so if we have a function defined by a table
of values or by an equation, it is often useful (and necessary) to create
a picture of the function: a graph.

A Graph from a Table of Values
length (in.) weight (lbs.)

13.5 0.4
14.5 0.9
15.0 0.7
16.0 0.9
18.0 1.2
18.5 1.6
19.5 1.5
20.5 1.7
20.5 2.1

If we have a table of values for a function, perhaps consisting of mea-
surements obtained from an experiment, then we can plot the ordered
pairs in the xy-plane to get a graph consisting of a collection of points.

The table in the margin shows the lengths and weights of trout
caught (and released) during several days of fishing. The graph plots
those values along with a line that comes “close” to the plotted points.
From the graph, you could estimate that a 17-inch trout should weigh
slightly more than one pound.

Figure 31: Lengths and weights of trout.

A Graph from an Equation

Creating the graph of a function given by an equation is similar to
creating one from a table of values: we need to plot enough points
(x, y) where y = f (x) so we can be confident of the shape and location
of the graph of the entire function. We can find a point (x, y) that
satisfies y = f (x) by picking a value for x and then calculating the
value for y by evaluating f (x). Then we can enter the (x, y) value in a
table or simply plot the point (x, y).

If you recognize the form of the equation and know something about
the shape of graphs of that form, you may not have to plot many points.
If you do not recognize the form of the equation, then you will need to
plot more points, maybe 10 or 20 or 234: it depends on how complicated
the graph appears and on how important it is to you (or your boss) to
have an accurate graph. Evaluating y = f (x) at many different values
for x and then plotting the points (x, y) is usually not very difficult, but
it can be very time-consuming. Fortunately, calculators and computers
can often do the evaluation and plotting for you.

Is Every Graph the Graph of a Function?

The definition of “function” requires that each element of the domain
(each input value) be sent by the function to exactly one element of
the range (to exactly one output value), so for each input x-value there
will be exactly one output y-value, y = f (x). The points (x, y1) and
(x, y2) cannot both be on the graph of f unless y1 = y2. The graphical
interpretation of this result is called the Vertical Line Test.
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Vertical Line Test for a Function: A graph is the graph of a
function if and only if a vertical line drawn through any point
in the domain intersects the graph at exactly one point.

The figure in the margin shows the graph of a function, followed by
two graphs that are not graphs of functions, along with vertical lines
that intersect those graphs at more than one point. Non-functions are
not “bad,” and are often necessary to describe complicated phenomena.

Figure 32: The vertical line test in action.

Reading Graphs Carefully

Calculators and computers can help students, reporters, financial an-
alysts and scientists create graphs quickly and easily. Because of this,
graphs are being used more often than ever to present information and
justify arguments. This text takes a distinctly graphical approach to the
ideas and meaning of calculus. Calculators and computers can help us
create graphs, but we need to be able to read them carefully. The next
examples illustrate some types of information that can be obtained by
carefully reading and understanding graphs.

Figure 33: Graph for the example.

Example 1. A boat starts from St. Thomas and sails due west with the
velocity shown in the figure.

(a) When is the boat traveling the fastest?

(b) What does a negative velocity away from St. Thomas mean?

(c) When is the boat the farthest away from St. Thomas?

Solution. (a) The greatest speed is 10 mph at t = 3 hours. (b) It means
that the boat is heading back toward St. Thomas. (c) The boat is farthest
from St. Thomas at t = 6 hours. For t < 6 the boat’s velocity is positive,
and the distance from the boat to St. Thomas is increasing. For t > 6
the boat’s velocity is negative, and the distance from the boat to St.
Thomas is decreasing. J

Figure 34: Graph for practice problem.

Practice 3. You and a friend start out together and hike along the same
trail but walk at different speeds, as shown in the figure.

(a) Who is walking faster at t = 20?

(b) Who is ahead at t = 20?

(c) When are you and your friend farthest apart?

(d) Who is ahead when t = 50?

Figure 35: Graph for the example.

Example 2. Which has the largest slope: the line through the points A
and P, the line through B and P, or the line through C and P?

Solution. The line through C and P: mPC > mPB > mPA. J
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Practice 4. In the figure, the point Q on the curve is fixed, and the
point P is moving to the right along the curve toward the point Q.
As P moves toward Q, is the indicated value increasing, decreasing,
remaining constant, or doing something else?

(a) x-coordinate of P

(b) x-increment from P to Q

(c) slope from P to Q
Figure 36: Graph for practice problem.

Figure 37: Graph for the example.

Example 3. The graph of y = f (x) appears in the margin. Let g(x) be
the slope of the line tangent to the graph of f (x) at the point (x, f (x)).

(a) Estimate the values g(1), g(2) and g(3).

(b) For what value(s) of x is g(x) = 0?

(c) At what value(s) of x is g(x) largest?

(d) Sketch the graph of y = g(x).

Solution. (a) The figure in the margin shows the graph of y = f (x)
with several tangent lines to the graph of f . From this graph, we can
estimate that g(1) (the slope of the line tangent to the graph of f at
(1, 0)) is approximately equal to 1. Similarly, g(2) ≈ 0 and g(3) ≈ −1.

(b) The slope of the tangent line appears to be horizontal (slope = 0)
at x = 2 and at x = 5.

(c) The tangent line to the graph of f appears to have greatest slope
(be steepest) near x = 1.5.

(d) We can build a table of values of g(x) and then sketch the graph
of these values. A graph of y = g(x) appears below. J

x f (x) g(x)

0 −1.0 0.5
1 0.0 1.0
2 2.0 0.0
3 1.0 −1.0
4 0.0 −1.0
5 −1.0 0.0
6 −0.5 0.5

Figure 38: Water flows into a container.

Practice 5. Water flows into a container (see figure) at a constant rate
of 3 gallons per minute. Starting with an empty container, sketch the
graph of the height of the water in the container as a function of time.
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Problems

In problems 1–4, match the numerical triples to
the graphs. For example, in Problem 1, A: 3, 3, 6
is “over and up” so it matches graph (a); B is
“down and over” so it matches graph (c).

1. A: 3, 3, 6; B: 12, 6, 6; C: 7, 7, 3 D: 2, 4, 4

2. A: 7, 10, 7; B: 17, 17, 25; C: 4, 4, 8 D: 12, 8, 16

3. A: 7, 14, 10; B: 23, 45, 22; C: 8, 12, 8 D: 6, 9, 3

4. A: 6, 3, 9; B: 8, 1, 1; C: 12, 6, 9 D: 3.7, 1.9, 3.6

5. Water is flowing at a steady rate into each of the
bottles shown below. Match each bottle shape
with the graph of the height of the water as a
function of time

6. Sketch shapes of bottles that will have the water
height versus time graphs shown below.

7. If f (x) = x2 + 3, g(x) =
√

x− 5 and h(x) = x
x−2 :

(a) evaulate f (1), g(1) and h(1).

(b) graph f (x), g(x) and h(x) for −5 ≤ x ≤ 10.

(c) evaluate f (3x), g(3x) and h(3x).

(d) evaluate f (x + h), g(x + h) and h(x + h).

8. Find the slope of the line through the points P
and Q when:

(a) P = (1, 3), Q = (2, 7)

(b) P = (x, x2 + 2), Q = (x + h, (x + h)2 + 2)

(c) P = (1, 3), Q = (x, x2 + 2)

(d) P, Q as in (c) with x = 2, x = 1.1, x = 1.002

9. Find the slope of the line through the points P
and Q when:

(a) P = (1, 5), Q = (2, 7)

(b) P = (x, x2 + 3x− 1),
Q = (x + h, (x + h)2 + 3(x + h)− 1)

(c) P, Q as in (c) with x = 1.3, x = 1.1, x = 1.002

10. If f (x) = x2 + x and g(x) = 3
x , evaluate and sim-

plify
f (a + h)− f (a)

h
and

g(a + h)− g(a)
h

when
a = 1, a = 2, a = −1, a = x.

11. If f (x) = x2 − 2x and g(x) =
√

x, evaluate and

simplify
f (a + h)− f (a)

h
and

g(a + h)− g(a)
h

when a = 1, a = 2, a = 3, a = x.

12. The temperatures shown below were recorded
during a 12-hour period in Chicago.

(a) At what time was the temperature the highest?
Lowest?

(b) How fast was the temperature rising at 10 a.m.?
At 1 p.m.?

(c) What could have caused the drop in tempera-
ture between 1 p.m. and 3 p.m.?
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13. The graph below shows the distance of an air-
plane from an airport during a long flight.

(a) How far was the airplane from the airport at 1

p.m.? At 2 p.m.?

(b) How fast was the distance changing at 1 p.m.?

(c) How could the distance from the plane to the
airport remain unchanged from 1:45 p.m. until
2:30 p.m. without the airplane falling?

14. The graph below shows the height of a diver
above the water level at time t seconds.

(a) What was the height of the diving board?

(b) When did the diver hit the water?

(c) How deep did the diver get?

(d) When did the diver return to the surface?

15. Refer to the curve shown below.

(a) Sketch the lines tangent to the curve at x = 1,
2, 3, 4 and 5.

(b) For what value(s) of x is the value of the func-
tion largest? Smallest?

(c) For what value(s) of x is the slope of the tan-
gent line largest? Smallest?

16. The figure below shows the height of the wa-
ter (above and below mean sea level) at a Maine
beach.

(a) At which time(s) was the most beach exposed?
The least?

(b) At which time(s) was the current the strongest?

17. Imagine that you are ice skating, from left to right,
along the path shown below. Sketch the path you
will follow if you fall at points A, B and C.
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18. Define s(x) to be the slope of the line through
the points (0, 0) and (x, f (x)) where f (x) is the
function graphed below. For example, s(3) =

slope of the line through (0, 0) and (3, f (3)) = 4
3 .

(a) Evaluate s(1), s(2) and s(4).
(b) For which integer value of x between 1 and 7

is s(x) smallest?

19. Let f (x) = x + 1 and define s(x) to be the slope
of the line through the points (0, 0) and (x, f (x)),
as shown below. For example, s(2) = slope of the
line through (0, 0) and (2, 3) = 3

2 .

(a) Evaluate s(1), s(3) and s(4).
(b) Find a formula for s(x).

20. Define A(x) to be the area of the rectangle
bounded by the coordinate axes, the line y = 2
and a vertical line at x, as shown below. For
example, A(3) = area of a 2× 3 rectangle = 6.

(a) Evaluate A(1), A(2) and A(5).
(b) Find a formula for A(x).

21. Using the graph of y = f (x) below, let g(x) be
the slope of the line tangent to the graph of f (x)
at the point (x, f (x)). Complete the table, esti-
mating values of the slopes as best you can.

x f (x) g(x)

0 1 1
1
2
3
4

22. Sketch the graphs of water height versus time for
water pouring into a bottle shaped like:

(a) a milk carton

(b) a spherical glass vase

(c) an oil drum (cylinder) lying on its side

(d) a giraffe

(e) you

23. Design bottles whose graphs of (highest) water
height versus time will look like those shown
below.
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0.3 Practice Answers

1. Create an input-output table using the function rule:

input output

x 3
x + 1

5 3
5 + 1 = 1.6

a 3
a + 1

c + 3 3
c+3 + 1

x + h 3
x+h + 1

If x = 0, then g(0) = 3
0 + 1 is not defined (because of division by 0).

2. g(t) = t2 − 5t
g(1) = 12 − 5(1) = −4
g(−2) = (−2)2 − 5(−2) = 14
g(w + 3) = (w + 3)2 − 5(w + 3) = w2 + 6w + 9− 5w− 15 = w2 + w− 6
g(x + h) = (x + h)2 − 5(x + h) = x2 + 2xh + h2 − 5x− 5h
g(x + h)− g(x) = (x2 + 2xh + h2 − 5x− 5h)− (x2 − 5x) = 2xh + h2 − 5h
g(x + h)− g(x)

h
=

2xh + h2 − 5h
h

= 2x + h− 5

3. (a) Friend (b) Friend (c) At t = 40. Before that, your friend is walking
faster and increasing the distance between you. Then you start to
walk faster than your friend and start to catch up. (d) Friend. You
are walking faster than your friend at t = 50, but you still have not
caught up.

4. (a) The x-coordinate is increasing. (b) The x-increment ∆x is decreas-
ing. (c) The slope of the line through P and Q is decreasing.

5. See the figure:
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0.4 Combinations of Functions

Sometimes a physical or economic situation behaves differently depend-
ing on various circumstances. In these situations, a more complicated
formula may be needed to describe the situation.

Multiline Definitions of Functions: Putting Pieces Together

Sales Tax: Some states have different rates of sales tax depending
on the type of item purchased. As an example, for many years food
purchased at restaurants in Seattle was taxed at a rate of 10%, while
most other items were taxed at a rate of 9.5% and food purchased at
grocery stores had no tax assessed. We can describe this situation by
using a multiline function: a function whose defining rule consists of
several pieces. Which piece of the rule we need to use will depend on
what we buy. In this example, we could define the tax T on an item
that costs x to be:

T(x) =


0 if x is the cost of a food at a grocery store

0.10x if x is the cost of food at a restaurant
0.095x if x is the cost of any other item

To find the tax on a $2 can of stew, we would use the first piece of
the rule and find that the tax is $0. To find the tax on a $30 restaurant
bill, we would use the second piece of the rule and find that the tax is
$3.00. The tax on a $150 textbook requires using the third rule: the tax
would be $14.25.

Wind Chill Index: The rate at which a person’s body loses heat
depends on the temperature of the surrounding air and on the speed
of the air. You lose heat more quickly on a windy day than you do on a
day with little or no wind. Scientists have experimentally determined
this rate of heat loss as a function of temperature and wind speed, and
the resulting function is called the Wind Chill Index, WCI. The WCI
is the temperature on a still day (no wind) at which your body would
lose heat at the same rate as on the windy day. For example, the WCI
value for 30

◦F air moving at 15 miles per hour is 9
◦F: your body loses

heat as quickly on a 30
◦F day with a 15 mph wind as it does on a 9

◦F
day with no wind.

If T is the Fahrenheit temperature of the air and v is the speed of the
wind in miles per hour, then the WCI can be expressed as a multiline
function of the wind speed v (and of the temperature T):

WCI =


T if 0 ≤ v ≤ 4

91.4− 10.45+6.69
√

v−0.447v
22 (91.5− T) if 4 < v ≤ 45

1.60T − 55 if v > 45
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The WCI value for a still day (0 ≤ v ≤ 4 mph) is just the air
temperature. The WCI for wind speeds above 45 mph are the same
as the WCI for a wind speed of 45 mph. The WCI for wind speeds
between 4 mph and 45 mph decrease as the wind speeds increase.

This WCI function depends on two variables: the temperature and
the wind speed. However, if the temperature is constant, then the
resulting formula for the WCI will only depend on the speed of the
wind. If the air temperature is 30

◦F (T = 30), then the formula for the
Wind Chill Index is

WCI30 =


30◦ if 0 ≤ v ≤ 4 mph

62.19− 18.70
√

v + 1.25v if 4 mph < v ≤ 45 mph
−7◦ if v > 45 mph

The graphs of the the Wind Chill Indices for temperatures of 40
◦F,

30
◦F and 20

◦F appear below: From UMAP Module 658, “Windchill,”
by William Bosch and L.G. Cobb, 1984.

Practice 1. A Hawaiian condo rents for $380 per night during the tourist
season (from December 15 through April 30), and for $295 per night
otherwise. Define a multiline function that describes these rates.

Example 1. Define f (x) by:

f (x) =


2 if x < 0

2x if 0 ≤ x < 2
1 if 2 < x

Evaluate f (−3), f (0), f (1), f (4) and f (2). Graph y = f (x) on the
interval −1 ≤ x ≤ 4.

Solution. To evaluate the function at different values of x, we must
first decide which line of the rule applies. If x = −3 < 0, then we
need to use the first line, so f (−3) = 2. When x = 0 or x = 1, we
need the second line of the function definition, so f (0) = 2(0) = 0 and
f (1) = 2(1) = 2. At x = 4 we need the third line, so f (4) = 1. Finally,
at x = 2, none of the lines apply: the second line requires x < 2 and
the third line requires 2 < x, so f (2) is undefined. The graph of f (x)
appears in the margin. Note the “hole” above x = 2, which indicates
f (2) is not defined by the rule for f . J
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Practice 2. Define g(x) by:

g(x) =


x if x < −1
2 if − 1 ≤ x < 1
−x if 1 < x ≤ 3

1 if 4 < x

Graph y = g(x) for −3 ≤ x ≤ 6 and evaluate g(−3), g(−1), g(0), g( 1
2 ),

g(1), g(π
3 ), g(2), g(3), g(4) and g(5).

Practice 3. Write a multiline definition for the function whose graph
appears in the margin.

Figure 39: Graph for Practice problem.

We can think of a multiline function definition as a machine that
first examines the input value to decide which line of the function rule
to apply:

Composition of Functions: Functions of Functions

Basic functions are often combined with each other to describe more
complicated situations. Here we will consider the composition of
functions—functions of functions.

The composite of two functions f and g, written f ◦ g, is:

f ◦ g(x) = f (g(x))

The domain of the composite function f ◦ g(x) = f (g(x)) consists
of those x-values for which g(x) and f (g(x)) are both defined: we can
evaluate the composition of two functions at a point x only if each step
in the composition is defined.

If we think of our functions as machines, then composition is simply
a new machine consisting of an arrangement of the original machines.
The composition f ◦ g of the function machines f and g shown in the
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margin is an arrangement of the machines so that the original input
x goes into machine g, the output from machine g becomes the input
into machine f , and the output from machine f is our final output. The
composition of the function machines f ◦ g(x) = f (g(x)) is only valid
if x is an allowable input into g (that is, x is in the domain of g) and if
g(x) is then an allowable input into f .

The composition g ◦ f involves arranging the machines so the original
input goes into f , and the output from f then becomes the input for g
(see right side of margin figure).

Example 2. For f (x) =
√

x− 2, g(x) = x2 and

h(x) =

{
3x if x < 2

x− 1 if 2 ≤ x

evaluate f ◦ g(3), g ◦ f (6), f ◦ h(2) and h ◦ g(−3). Find the formulas
and domains of f ◦ g(x) and g ◦ f (x).

Solution. f ◦ g(3) = f (g(3)) = f (32) = f (9) =
√

9− 2 =
√

7 ≈ 2.646;
g ◦ f (6) = g ( f (6)) = g(

√
6− 2) = g(

√
4) = g(2) = 22 = 4; f ◦ h(2) =

f (h(2)) = f (2− 1) = f (1) =
√

1− 2 =
√
−1, which is undefined;

h ◦ g(−3) = h (g(−3)) = h(9) = 9 − 1 = 8; f ◦ g(x) = f (g(x)) =

f (x2) =
√

x2 − 2, and the domain of f ◦ g consists of those x-values for
which x2 − 2 ≥ 0, so the domain of f ◦ g is all x such that x ≥

√
2 or

x ≤ −
√

2; g ◦ f (x) = g ( f (x)) = g(
√

x− 2) =
(√

x− 2
)2

= x− 2, but
this last equality is true only when x− 2 ≥ 0⇒ x ≥ 2, so the domain
of g ◦ f is all x ≥ 2. J

Practice 4. For f (x) = x
x−3 , g(x) =

√
1 + x and

h(x) =

{
2x if x ≤ 1

5− x if 1 < x

evaluate f ◦ g(3), f ◦ g(8), g ◦ f (4), f ◦ h(1), f ◦ h(3), f ◦ h(2) and
h◦g(−1). Find formulas for f ◦ g(x) and g ◦ f (x).

Shifting and Stretching Graphs

Some relatively common compositions are fairly straightforward, and
you should recognize the effect of these compositions on the graphs of
the functions.

Example 3. The margin figure shows the graph of y = f (x). Graph

(a) 2 + f (x)

(b) 3 · f (x)

(c) f (x− 1)
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Solution. All of the new graphs appear in the margin.

(a) Adding 2 to all of the values of f (x) rigidly shifts the graph of
f (x) upward 2 units.

(b) Multiplying all of the values of f (x) by 3 leaves all of the roots
(zeros) of f fixed: if x is a root of f then f (x) = 0⇒ 3 · f (x) =
3(0) = 0 so x is also a root of 3 · f (x). If x is not a root of f ,
then the graph of 3 f (x) looks like the graph of f (x) stretched
vertically by a factor of 3.

(c) The graph of f (x− 1) is the graph of f (x) rigidly shifted 1 unit
to the right. We could also get these results by examining the
graph of y = f (x), creating a table of values for f (x) and the
new functions:

x f (x) 2 + f (x) 3 f (x) x− 1 f (x− 1)

−1 −1 1 −3 −2 f (−2) not defined
0 0 2 0 −1 f (0− 1) = −1
1 1 3 3 0 f (1− 1) = 0
2 1 3 3 1 f (2− 1) = 1
3 2 4 6 2 f (3− 1) = 1
4 0 2 0 3 f (4− 1) = 2
5 −1 1 −3 4 f (5− 1) = 0

and then graphing those new functions. J

If k is a positive constant, then

• the graph of y = k + f (x) will be the graph of y = f (x) rigidly
shifted up by k units

• the graph of y = k f (x) will have the same roots as the graph of f (x)
and will be the graph of y = f (x) vertically stretched by a factor of k

• the graph of y = f (x − k) will be the graph of y = f (x) rigidly
shifted right by k units

• the graph of y = f (x + k) will be the graph of y = f (x) rigidly
shifted left by k units

Practice 5. The figure in the margin shows the graph of g(x). Graph:

(a) 1 + g(x)

(b) 2g(x)

(c) g(x− 1)

(d) −3g(x)
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Iteration of Functions

Certain applications feed the output from a function machine back into
the same machine as the new input. Each time through the machine is
called an iteration of the function.

Example 4. Suppose f (x) =
5
x + x

2
and we start with the input x = 4

and repeatedly feed the output from f back into f . What happens?

Solution. Creating a table:

iteration input output

1 4 f (4) =
5
4+4

2 = 2.625000000

2 2.625000000 f ( f (4)) =
5

2.625+2.625
2 = 2.264880952

3 2.264880952 f ( f ( f (4))) = 2.236251251
4 2.236251251 2.236067985
5 2.236067985 2.236067977
6 2.236067977 2.236067977

Once we have obtained the output 2.236067977, we will just keep getting
the same output (to 9 decimal places). You might recognize this output
value as an approximation of

√
5.

This algorithm always finds ±
√

5. If we start with any positive input,
the values will eventually get as close to

√
5 as we want. Starting with

any negative value for the input will eventually get us close to −
√

5.
We cannot start with x = 0, as 5

0 is undefined. J

Practice 6. What happens if we start with the input value x = 1 and

iterate the function f (x) =
9
x + x

2
several times? Do you recognize the

resulting number? What do you think will happen to the iterates of

g(x) =
A
x + x

2
? (Try several positive values of A.)

Two Useful Functions: Absolute Value and Greatest Integer

Two functions (one of which should be familiar to you, the other
perhaps not) possess useful properties that let us describe situations in
which an object abruptly changes direction or jumps from one value to
another value. Their graphs will have corners and breaks, respectively.

The absolute value function evaluated at a number x, y = f (x) =
|x|, is the distance between the number x and 0. Some calculators and computer program-

ming languages represent the absolute
value function by abs(x) or ABS(x).

If x is greater than or equal to 0, then |x| is simply x− 0 = x. If x is
negative, then |x| is 0− x = −x = −1 · x, which is positive because:

−1 · (negative number) = a positive number
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Definition of |x|:

|x| =
{

x if x ≥ 0
−x if x < 0

We can also write: |x| =
√

x2.
The domain of y = f (x) = |x| consists of all real numbers. The

range of f (x) = |x| consists of all numbers larger than or equal to zero
(all non-negative numbers). The graph of y = f (x) = |x| (see margin)
has no holes or breaks, but it does have a sharp corner at x = 0.

The absolute value will be useful for describing phenomena such
as reflected light and bouncing balls that change direction abruptly or
whose graphs have corners. The absolute value function has a number
of properties we will use later.

Properties of |x|: For all real numbers a and b,

• |a| = 0 · |a| = 0 if and only if a = 0

• |ab| = |a| · |b|

• |a + b| ≤ |a|+ |b|

Taking the absolute value of a function has an interesting effect on
the graph of the function: for any function f (x), we have

| f (x)| =
{

f (x) if f (x) ≥ 0
− f (x) if f (x) < 0

In other words, if f (x) ≥ 0, then | f (x)| = f (x), so the graph of | f (x)|
is the same as the graph of f (x). If f (x) < 0, then | f (x)| = − f (x), so
the graph of | f (x)| is just the graph of f (x) “flipped” about the x-axis,
and it lies above the x-axis. The graph of | f (x)| will always be on or
above the x-axis.

Example 5. The figure in the margin shows the graph of f (x). Graph:

(a) | f (x)|
(b) |1 + f (x)|
(c) 1 + | f (x)|

Solution. The graphs appear below:
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In (b), we rigidly shift the graph of f up 1 unit before taking the
absolute value. In (c), we take the absolute value before rigidly shifting
the graph up 1 unit. J

Practice 7. The figure in the margin shows the graph of g(x). Graph:

(a) |g(x)|
(b) |g(x− 1)|
(c) g (|x|)

The greatest integer function evaluated at a number x , y = f (x) =
bxc, is the largest integer less than or equal to x.

The value of bxc is always an integer and bxc is always less than
or equal to x. For example, b3.2c = 3, b3.9c = 3 and b3c = 3. If x is
positive, then bxc truncates x (drops the fractional part of x). If x is
negative, the situation is different: b−4.2c 6= −4 because −4 is not less
than or equal to −4.2: b−4.2c = −5, b−4.7c = −5 and b−4c = −4.

Historically, many textbooks have used the square brackets [ ] to
represent the greatest integer function, while calculators and many
programming languages use INT(x).

Definition of bxc:

bxc =
{

x if x is an integer
largest integer strictly less than x if x is not an integer

The domain of f (x) = bxc is all real numbers. The range of f (x) =
bxc is only the integers. The graph of y = f (x) = bxc appears in the
margin. It has a jump break—a “step”—at each integer value of x, so
f (x) = bxc is called a step function. Between any two consecutive
integers, the graph is horizontal with no breaks or holes.

The greatest integer function is useful for describing phenomena that
change values abruptly, such as postage rates as a function of weight.
As of January 27, 2013, the cost to mail a first-class retail “flat” (such as
a manila envelope) was $0.92 for the first ounce and another $0.20 for
each additional ounce.

The bxc function can also be used for functions whose graphs are
“square waves,” such as the on and off of a flashing light.

Example 6. Graph y = b1 + 0.5 sin(x)c.

Solution. One way to create this graph is to first graph y = 1 +

0.5 sin(x), the thin curve in margin figure, and then apply the greatest
integer function to y to get the thicker “square wave” pattern. J

Practice 8. Sketch the graph of y =
⌊

x2⌋ for −2 ≤ x ≤ 2.



38 contemporary calculus

A Really “Holey” Function

The graph of bxc has a break or jump at each integer value, but how
many breaks can a function have? The next function illustrates just how
broken or “holey” the graph of a function can be.

Define a function h(x) as:

h(x) =

{
2 if x is a rational number
1 if x is an irrational number

Then h(3) = 2, h( 5
3 ) = 2 and h(− 2

5 ) = 2, because 3, 5
3 and − 2

5 are all
rational numbers. Meanwhile, h(π) = 1, h(

√
7) = 1, and h(

√
2) = 1,

because π,
√

7 and
√

2 are all irrational numbers. These and some
other points are plotted in margin figure.

In order to analyze the behavior of h(x) the following fact about
rational and irrational numbers is useful.

Fact: Every interval contains both rational and irrational numbers.

Equivalently: If a and b are real numbers and a < b, then there is

• a rational number R between a and b (a < R < b)

• an irrational number I between a and b (a < I < b).

The above fact tells us that between any two places where y =

h(x) = 1 (because x is rational) there is a place where y = h(x) is 2,
because there is an irrational number between any two distinct rational
numbers. Similarly, between any two places where y = h(x) = 2
(because x is irrational) there is a place where y = h(x) = 1, because
there is a rational number between any two distinct irrational numbers.

The graph of y = h(x) is impossible to actually draw, because every
two points on the graph are separated by a hole. This is also an example
of a function that your computer or calculator cannot graph, because in
general it can not determine whether an input value of x is irrational.

Example 7. Sketch the graph of

h(x) =

{
2 if x is a rational number
x if x is an irrational number

Solution. A sketch of the graph of y = g(x) appears in the margin.
When x is rational, the graph of y = g(x) looks like the “holey” hori-
zontal line y = 2. When x is irrational, the graph of y = g(x) looks like
the “holey” line y = x. J

Practice 9. Sketch the graph of

h(x) =

{
sin(x) if x is a rational number

x if x is an irrational number
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Problems

1. If T is the Celsius temperature of the air and v is the speed of the
wind in kilometers per hour, then

WCI =


T if 0 ≤ v ≤ 6.5

33− 10.45+5.29
√

v−0.279v
22 (33− T) if 6.5 < v ≤ 72

1.6T − 19.8 if v > 72

(a) Determine the Wind Chill Index for

i. a temperature of 0◦C and a wind speed of 49 km/hr

ii. a temperature of 11◦C and a wind speed of 80 km/hr.

(b) Write a multiline function definition for the WCI if the tempera-
ture is 11◦C.

2. Use the graph of y = f (x) in the margin to evaluate f (0), f (1), f (2),
f (3), f (4) and f (5). Write a multiline function definition for f .

3. Use the graph of y = g(x) in the margin to evaluate g(0), g(1), g(2),
g(3), g(4) and g(5). Write a multiline function definition for g.

4. Use the values given in the table below, along with h(x) = 2x + 1, to
determine the missing values of f ◦ g, g ◦ f and h ◦ g.

x f (x) g(x) f ◦ g(x) g ◦ f (x) h ◦ g(x)

−1 2 0
0 1 2
1 −1 1
2 0 2

5. Use the graphs shown below and the function
h(x) = x− 2 to determine the values of

(a) f ( f (1)), f (g(2)), f (g(0)), f (g(1))

(b) g ( f (2)), g ( f (3)), g (g(0)), g ( f (0))

(c) f (h(3)), f (h(4)), h (g(0)), h (g(1))

6. Use the graphs shown below and the function
h(x) = 5− 2x to determine the values of

(a) h ( f (0)), f (h(1)), f (g(2)), f ( f (3))

(b) g ( f (0)), g ( f (1)), g (h(2)), h ( f (3))

(c) f (g(0)), f (g(1)), f (h(2)), h (g(3))
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7. Defining h(x) = x− 2, f (x) as:

f (x) =


3 if x < 1

x− 2 if 1 ≤ x < 3
1 if 3 ≤ x

and g(x) as:

g(x) =

{
x2 − 3 if x < 0
bxc if 0 ≤ x

(a) evaluate f (x), g(x) and h(x) for x = −1, 0, 1,
2, 3 and 4.

(b) evaluate f (g(1)), f (h(1)), h ( f (1)), f ( f (2)),
g (g(3.5)).

(c) graph f (x), g(x) and h(x) for −5 ≤ x ≤ 5.

8. Defining h(x) = 3, f (x) as:

f (x) =


x + 1 if x < 1

1 if 1 ≤ x < 3
2− x if 3 ≤ x

and g(x) as:

g(x) =

{
|x + 1| if x < 0

2x if 0 ≤ x

(a) evaluate f (x), g(x) and h(x) for x = −1, 0, 1,
2, 3 and 4.

(b) evaluate f (g(1)), f (h(1)), h ( f (1)), f ( f (2)),
g (g(3.5)).

(c) graph f (x), g(x) and h(x) for −5 ≤ x ≤ 5.

9. You are planning to take a one-week vacation in
Europe, and the tour brochure says that Monday
and Tuesday will be spent in England, Wednes-
day in France, Thursday and Friday in Germany,
and Saturday and Sunday in Italy. Let L(d) be
the location of the tour group on day d and write
a multiline function definition for L(d).

10. A state has just adopted the following state in-
come tax system: no tax on the first $10,000

earned, 1% of the next $10,000 earned, 2% of
the next $20,000 earned, and 3% of all additional
earnings. Write a multiline function definition for
T(x), the state income tax due on earnings of x
dollars.

11. Write a multiline function definition for the curve
y = f (x) shown below.

12. Define B(x) to be the area of the rectangle whose
lower left corner is at the origin and whose up-
per right corner is at the point (x, f (x)) for the
function f shown below. For example, B(3) = 6.
Evaluate B(1), B(2), B(4) and B(5).

13. Define B(x) to be the area of the rectangle whose
lower left corner is at the origin and whose upper
right corner is at the point

(
x, 1

x

)
.

(a) Evaluate B(1), B(2) and B(3).

(b) Show that B(x) = 1 for all x > 0.

14. For f (x) = |9− x| and g(x) = x− 1:

(a) evaluate f ◦ g(1), f ◦ g(3), f ◦ g(5), f ◦ g(7),
f ◦ g(0).

(b) evaluate f ◦ f (2), f ◦ f (5), f ◦ f (−2).

(c) Does f ◦ f (x) = |x| for all values of x?
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15. The function g(x) is graphed below. Graph

(a) g(x)− 1

(b) g(x− 1)

(c) |g(x)|
(d) bg(x)c

16. The function f (x) is graphed below. Graph

(a) f (x)− 2

(b) f (x− 2)

(c) | f (x)|
(d) b f (x)c

17. Find A and B so that f (g(x)) = g ( f (x)) when:

(a) f (x) = 3x + 2 and g(x) = 2x + A
(b) f (x) = 3x + 2 and g(x) = Bx− 1

18. Find C and D so that f (g(x)) = g ( f (x)) when:

(a) f (x) = Cx + 3 and g(x) = Cx− 1

(b) f (x) = 2x + D and g(x) = 3x + D

19. Graph y = f (x) = x− bxc for −1 ≤ x ≤ 3. This
function is called the “fractional part of x” and
its graph an example of a “sawtooth” graph.

20. The function f (x) = bx + 0.5c rounds off x to the

nearest integer, while g(x) =
b10x + 0.5c

10
rounds

off x to the nearest tenth (the first decimal place).
What function will round off x to:

(a) the nearest hundredth (two decimal places)?

(b) the nearest thousandth (three decimal places)?

21. Modify the function in Example 6 to produce a
“square wave” graph with a “long on, short off,
long on, short off” pattern.

22. Many computer languages contain a “signum” or
“sign” function defined by

sgn(x) =


1 if x > 0
0 if x = 0
−1 if x < 0

(a) Graph sgn(x).

(b) Graph sgn(x− 2).

(c) Graph sgn(x− 4).

(d) Graph sgn(x− 2) · sgn(x− 4).

(e) Graph 1− sgn(x− 2) · sgn(x− 4).

(f) For real numbers a and b with a < b, describe
the graph of 1− sgn(x− a) · sgn(x− b).

23. Define g(x) to be the slope of the line tangent to
the graph of y = f (x) (shown below) at (x, y).

(a) Estimate g(1), g(2), g(3) and g(4).

(b) Graph y = g(x) for 0 ≤ x ≤ 4.
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24. Define h(x) to be the slope of the line tangent to
the graph of y = f (x) (see figure below) at (x, y).

(a) Estimate h(1), h(2), h(3) and h(4).
(b) Graph y = h(x) for 0 ≤ x ≤ 4.

25. Using the cos (cosine) button on your calculator
several times produces iterates of f (x) = cos(x).
What number will the iterates approach if you
use the cos button 20 or 30 times starting with

(a) x = 1?

(b) x = 2?

(c) x = 10?

(Be sure your calculator is in radian mode.)

26. Let f (x) = 1 + sin(x).

(a) What happens if you start with x = 1 and
repeatedly feed the output from f back into f ?

(b) What happens if you start with x = 2 and
examine the iterates of f ?

(Be sure your calculator is in radian mode.)

27. Starting with x = 1, do the iterates of f (x) = x2+1
2x

approach a number? What happens if you start
with x = 0.5 or x = 4?

28. Let f (x) = x
2 + 3.

(a) What are the iterates of f if you start with
x = 2? x = 4? x = 6?

(b) Find a number c so that f (c) = c. This value
of c is called a fixed point of f .

(c) Find a fixed point of g(x) = x
2 + A.

29. Let f (x) = x
3 + 4.

(a) What are the iterates of f if you start with
x = 2? x = 4? x = 6?

(b) Find a number c so that f (c) = c.

(c) Find a fixed point of g(x) = x
3 + A.

30. Some iterative procedures are geometric rather than numerical. Start with an equilateral triangle with sides
of length 1, as shown at left in the figure below.

• Remove the middle third of each line segment.
• Replace the removed portion with two segments with the same length as the removed segment.

The first two iterations of this procedure are shown at center and right in the figure below. Repeat these
steps several more times, each time removing the middle third of each line segment and replacing it with
two new segments. What happens to the length of the shape with each iteration? (The result of iterating
over and over with this procedure is called Koch’s Snowflake, named for Helga von Koch.)
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31. Sketch the graph of

p(x) =

{
3− x if x is a rational number

1 if x is an irrational number

32. Sketch the graph of

q(x) =

{
x2 if x is a rational number

x + 11 if x is an irrational number

0.4 Practice Answers

1. C(x) is the cost for one night on date x:

C(x) =

{
$380 if x is between December 15 and April 30

$295 if x is any other date

2. For the graph, see the figure in the margin.

x g(x) x g(x)

−3 −3 π
3 −π

3
−1 2 2 −2

0 2 3 −3
1
2 2 4 undefined
1 undefined 5 1

3. Define f (x) as:

f (x) =


1 if x ≤ −1

1− x if − 1 < x ≤ 1
2 if 1 < x

4. f ◦ g(3) = f (2) = 2
−1 = −2; f ◦ g(8) = f (3) is undefined; g ◦ f (4) =

g(4) = 5; f ◦ h(1) = f (2) = 2
−1 = −2; f ◦ h(3) = f (2) = −2;

f ◦ h(2) = f (3) is undefined; h ◦ g(−1) = h(0) = 0; f ◦ g(x) =

f (
√

1 + x) = 1+x√
1+x−3

, g ◦ f (x) = g
( x

x−3
)
=
√

1 + x
x−3

5. See the figure below:
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6. Using f (x) =
9
x + x

2
, f (1) =

9
1+1

2 = 5, f (5) =
9
5+5

2 = 3.4, f (3.4) ≈
3.023529412 and f (3.023529412) ≈ 3.000091554. The next iteration
gives f (3.000091554) ≈ 3.000000001: these values are approaching 3,
the square root of 9.

With A = 6, f (x) =
6
x + x

2
, so f (1) =

6
1+1

2 = 3.5, f (3.5) =
6

3.5+3.5
2 = 2.607142857, and the next iteration gives f (2.607142857) ≈

2.45425636. Then f (2.45425636) ≈ 2.449494372, f (2.449494372) ≈
2.449489743 and f (2.449489743) ≈ 2.449489743 (the output is the
same as the input to 9 decimal places): these values are approaching
2.449489743, an approximation of

√
6.

For any positive value A, the iterates of f (x) =
A
x + x

2
(starting with

any positive x) will approach
√

A.

7. The figure below shows some intermediate steps and final graphs:

8. The figure in the margin shows the graph of y = x2 and the (thicker)
graph of y =

⌊
x2⌋.

9. The figure below shows the “holey” graph of y = x with a hole at
each rational value of x and the “‘holey” graph of y = sin(x) with a
hole at each irrational value of x. Together they form the graph of
r(x).

(This is a very crude image, since we can’t really see the individual
holes, which have zero width.)
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0.5 Mathematical Language

The calculus concepts we will explore in this book are simple and
powerful, but sometimes subtle. To succeed in calculus you will need
to master some techniques, but (more importantly) you will need to
understand ideas and be able to work with the ideas in words and
pictures—very clear words and pictures.

You also need to understand some of the common linguistic con-
structions used in mathematics. In this section, we will discuss a few of
the most common mathematical phrases, the meanings of these phrases,
and some of their equivalent forms.

Your calculus instructor is going to use these types of statements, and
it is very important that you understand exactly what your instructor
means. You have reached a level in mathematics where the precise use
of language is important.

Equivalent Statements

Two statements are equivalent if they always have the same logical
value (a logical value is either “true” or “false”): that is, they are both
true or are both false.

The statements “x = 3” and “x + 2 = 5” are equivalent statements,
because if one of them is true then so is the other—and if one of them
is false then so is the other.

The statements “x = 3” and “x2 − 4x + 3 = 0” are not equivalent,
because x = 1 makes the second statement true but the first one false.

AND and OR

In everyday language, we use the words “and” and “or” all the time,
but in mathematics we must use them very carefully.

The compound statement “A and B are true” is equivalent to
“both of A and B are true.”

If A or if B or if both are false, then the statement “A and B are true”
is false. The statement “x2 = 4 and x > 0” is true when x = 2 and is
false for every other value of x.

The compound statement “A or B is true” is equivalent to
“at least one of A or B is true.”

If both A and B are false, then the statement “A or B is true” is false.
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The statement “x2 = 4 or x > 0” is true if x = −2 or x is any positive
number. The statement is false when x = −3 (and for lots of other
values of x).

Practice 1. Which values of x make each statement true?

(a) x < 5

(b) x + 2 = 6

(c) x2 − 10x + 24 = 0

(d) “(a) and (b)”

(e) “(a) or (c)”

Negation of a Statement

For some simple statements, we can construct the negation just by
adding the word “not.”

statement negation of the statement

x is equal to 3 (x = 3) x is not equal to 3 (x 6= 3)

x is less than 5 (x < 5) x is not less than 5 (x 6< 5)
x is greater than or equal to 5 (x ≥ 5)

When the statement contains words such as “all,” “no” or “some,” then
the negation becomes more complicated.

statement negation of the statement

All x satisfy A. At least one x does not satisfy A.
Every x satisfies A. There is an x that does not satisfy A.

Some x does not satisfy A.

No x satisfies A. At least one x satisfies A.
Every x does not satisfy A. Some x satisfies A.

There is an x that satisfies A. No x satisfies A.
At least one x satisfies A. Every x does not satisfy A.
Some x satisfies A.

We can also negate compound statements containing “and” and “or.”

statement negation of the statement

A and B are both true. At least one of A or B is not true.

A and B and C are all true. At least one of A or B or C is not true.

A or B is true. Both A and B are not true.
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Practice 2. Write the negation of each statement.

(a) x + 5 = 3

(b) All prime numbers are odd.

(c) x2 < 4

(d) x divides 2 and x divides 3.

(e) No mathematician can sing well.

If. . . Then. . . : A Very Common Structure in Mathematics

The most common and basic structure used in mathematical language is
the “If {some hypothesis} then {some conclusion}” sentence. Almost ev-
ery result in mathematics can be stated using one or more “If. . . then. . . ”
sentences.

“If A then B’’ means that when the hypothesis A is true,
the conclusion B must also be true.

When the hypothesis is false, the “If. . . then. . . ” sentence makes no
claim about the truth or falsity of the conclusion—the conclusion may
be either true or false.

Even in everyday life you have probably encountered “If. . . then. . . ”
statements for a long time. A parent might try to encourage a child
with a statement like “If you clean your room then I will buy you an
ice cream cone.”

To show that an “If. . . then. . . ” statement is not valid (not true), all
we need to do is find a single example where the hypothesis is true
and the conclusion is false. Such an example with a true hypothesis
and false conclusion is called a counterexample for the “If. . . then. . . ”
statement. A valid “If. . . then. . . ” statement has no counterexample.

A counterexample to the statement “If A then B”
is an example in which A is true and B is false.

The only way for the statement “If you clean your room then I will
buy you an ice cream cone” to be false is if the child cleaned the room
and the parent did not buy the ice cream cone. If the child did not
clean the room but the parent bought the ice cream cone anyway, we
would say that the statement was true.

The statement “If n is a positive integer, then n2 + 5n + 5 is a prime
number” has hypothesis “n is a positive integer” and conclusion “n2 +

5n + 5 is a prime number.” This “If. . . then. . . ” statement is false,
because replacing n with the number 5 will make the hypothesis true
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and the conclusion false. The number 5 is a counterexample for the
statement.

Every invalid “If. . . then. . . ” statement has at least one counterexam-
ple, and the most convincing way to show that a statement is not valid
is to find a counterexample to the statement.

Several other language structures are equivalent to the “If. . . then. . . ”
form. The statements below all mean the same as “If {A} then {B}”:

• “All A are B.”

• “Every A is B.”

• “Each A is B.”

• “Whenever A, then B.”

• “B whenever A.”

• “A only if B.”

• “A implies B.”

• “A⇒ B” (the symbol “⇒” means “implies”)

Practice 3. Restate “If {a shape is a square} then {the shape is a rectan-
gle}” as many ways as you can.

“If. . . then. . . ” statements occur hundreds of times in every math-
ematics book, including this one. It is important that you are able to
recognize the various forms of “If. . . then. . . ” statements and that you
are able to distinguish the hypotheses from the conclusions.

Contrapositive Form of an “If. . . Then. . . ” Statement

The statement “If A then B” means that if the hypothesis A is true, then
the conclusion B is guaranteed to be true.

Suppose we know that in a certain town the statement “If {a building
is a church} then {the building is green}” is a true statement. What can
we validly conclude about a red building? Based on the information we
have, we can validly conclude that the red building is “not a church.”
because every church is green. We can also conclude that a blue
building is not a church. In fact, we can conclude that every “not
green” building is “not a church.” That is, if the conclusion of a valid
“If. . . then. . . ” statement is false, then the hypothesis must also be false.

The contrapositive form of “If A then B” is
“If {negation of B} then {negation of A}”

or “If {B is false} then {A is false}.”
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The statement “If A then B” and its contrapositive
“If {not B} then {not A}” are equivalent.

What about a green building in the aforementioned town? The green
building may or may not be a church—perhaps every post office is also
painted green. Or perhaps every building in town is green, in which
case the statement “If {a building is a church} then {the building is
green}" is certainly true.

Practice 4. Write the contrapositive form of each statement.

(a) If a function is differentiable then it is continuous.

(b) All men are mortal.

(c) If x = 3 then x2 − 5x + 6 = 0

(d) If {2 divides x and 3 divides x} then {6 divides x}.

Converse of an “If. . . then. . . ” Statement

If we switch the hypothesis and the conclusion of an “If A then B”
statement, we get the converse “If B then A.” For example, the converse
of “If {a building is a church} then {the building is green}” is “If {a
building is green} then {the building is a church}.”

The converse of an “If. . . then. . . ” statement is not equivalent to the
original “If. . . then. . . ” statement. For example, the statement “If x = 2
then x2 = 4” is true, but the converse statement “If x2 = 4 then x = 2”
is not true because x = −2 makes the hypothesis of the converse true
and the conclusion false

The converse of “If A then B” is “If B then A.”

The statement “If A then B” and its converse “If B then A.”
are not equivalent.

Wrap-up

The precise use of language by mathematicians (and mathematics
books) is an attempt to clearly communicate ideas from one person to
another, but this requires that both people understand the use and rules
of the language. If you don’t understand this usage, the communication
of the ideas will almost certainly fail.
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Problems

In problems 1 and 2, define the sets A, B and
C as A = {1, 2, 3, 4, 5}, B = {0, 2, 4, 6} and
C = {−2,−1, 0, 1, 2, 3}. List all values of x that
satisfy each statement.

1. (a) x is in A and x is in B
(b) x is in A or x is in C
(c) x is not in B and x is in C

2. (a) x is not in B or C
(b) x is in B and C but not in A
(c) x is not in A but is in B or C

In problems 3–5, list or describe all the values of
x that make each statement true.

3. (a) x2 + 3 > 1
(b) x3 + 3 > 1
(c) bxc = |x|

4. (a) x2+3x
x = x + 3

(b) x > 4 and x < 9
(c) |x| = 3 and x < 0

5. (a) x + 5 = 3 or x2 = 9
(b) x + 5 = 3 and x2 = 9
(c) |x + 3| = |x|+ 3

In problems 6–8, write the contrapositive of each
statement. If the statement is false, give a coun-
terexample.

6. (a) If x > 3 then x2 > 9.
(b) Every solution of x2 − 6x + 8 = 0 is even.

7. (a) If x2 + x− 6 = 0 then x = 2 or x = −3.
(b) All triangles have 3 sides.

8. (a) Every polynomial has at least one zero.
(b) If I exercise and eat right then I will be healthy.

In problems 9–11, write the contrapositive of each
statement.

9. (a) If your car is properly tuned, it will get at least
24 miles per gallon.

(b) You can have pie if you eat your vegetables.

10. (a) A well-prepared student will miss less than
15 points on the final exam.

(b) I feel good when I jog.

11. (a) If you love your country, you will vote for me.
(b) If guns are outlawed then only outlaws will

have guns.

In 12–15, write the negation of each statement.

12. (a) It is raining.
(b) Some equations have solutions.
(c) f (x) and g(x) are polynomials.

13. (a) f (x) or g(x) is positive.
(b) x is positive.
(c) 8 is a prime number.

14. (a) Some months have six Mondays.
(b) All quadratic equations have solutions.
(c) The absolute value of a number is positive.

15. (a) For all numbers a and b, |a + b| = |a|+ |b|.
(b) All snakes are poisonous.
(c) No dog can climb trees.

16. Write an “If. . . then. . . ” statement that is true but
whose converse is false.

17. Write an “If. . . then. . . ” statement that is true and
whose converse is true.

18. Write an “If. . . then. . . ” statement that is false
and whose converse is false.

In 19–22, determine whether each statement is
true or false. If the statement is false, give a coun-
terexample.

19. (a) If a and b are real numbers then:

(a + b)2 = a2 + b2

(b) If a > b then a2 > b2.
(c) If a > b then a3 > b3.

20. (a) For all real numbers a and b, |a + b| = |a|+ |b|
(b) For all real numbers a and b, bac+ bbc = ba + bc.
(c) If f (x) and g(x) are linear functions, then

f (g(x)) is a linear function.

21. (a) If f (x) and g(x) are linear functions then
f (x) + g(x) is a linear function.

(b) If f (x) and g(x) are linear functions then
f (x) · g(x) is a linear function.

(c) If x divides 6 then x divides 30.
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22. (a) If x divides 50 then x divides 10.

(b) If x divides yz then x divides y or z.

(c) If x divides a2 then x divides a.

In 23–26, rewrite each statement in the form of an
“If. . . then. . . ” statement and determine whether
it is true or false. If the statement is false, give a
counterexample.

23. (a) The sum of two prime numbers is a prime.

(b) The sum of two prime numbers is never a
prime number.

(c) Every prime number is odd.

(d) Every prime number is even.

24. (a) Every square has 4 sides.

(b) All 4-sided polygons are squares.

(c) Every triangle has 2 equal sides.

(d) Every 4-sided polygon with equal sides is a square.

25. (a) Every solution of x + 5 = 9 is odd.

(b) Every 3-sided polygon with equal sides is a
triangle.

(c) Every calculus student studies hard.

(d) All (real) solutions of x2− 5x + 6 = 0 are even.

26. (a) Every line in the plane intersects the x-axis.

(b) Every (real) solution of x2 + 3 = 0 is even.

(c) All birds can fly.

(d) No mammal can fly.

0.5 Practice Answers

1. (a) All values of x less than 5. (b) x = 4 (c) Both x = 4 and x = 6.
(d) x = 4 (e) x = 6 and all x less than 5.

2. (a) x + 5 < 3 (b) At least one prime number is even. (There is an
even prime number.) (c) x2 = 4 (d) x does not divide 2 or x does not
divide 3. (e) At least one mathematician can sing well. (There is a
mathematician who can sing well.)

3. Here are several ways:

• All squares are rectangles.

• Every square is a rectangle.

• Each square is a rectangle.

• Whenever a shape is a square, then it is a rectangle.

• A shape is a rectangle whenever it is a square.

• A shape is a square only if it is a rectangle.

• A shape is a square implies that it is a rectangle.

• Being a square implies being a rectangle.

4.(a) If a function is not continuous then it is not differentiable.

(b) All immortals are not men.

(c) x2 − 5x + 6 6= 0⇒ x 6= 3

(d) If {6 does not divide x} then {2 does not divide x or 3 does not divide x}.
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