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Section 3.4:  Simplex Method 
 
The graphical approach to linear programming problems we learned in the last section 
works well for problems involving only two variables, but does not extend easily to 
problems involving three or more unknowns.  To tackle those more complex problems, 
we have two options: 
 

1. Use by-hand solution methods that have been developed to solve these types of 
problems in a compact, procedural way. 

2. Use technology that has automated those by-hand methods. 
 
In this section we will explore the traditional by-hand method for solving linear 
programming problems. 
 
To handle linear programming problems that contain upwards of two variables, 
mathematicians developed what is now known as the simplex method. It is an efficient 
algorithm (set of mechanical steps) that “toggles” through corner points until it has 
located the one that maximizes the objective function.  In order to be able to find a 
solution, we need problems in the form of a standard maximization problem. 
 
 
Standard maximization problem 

A standard maximization problem will include 
 an objective function, and 
 one or more constraints of the form, 

1 1 2 2 3 3 n na x a x a x a x V     

 
All of the numbera  represent real-numbered coefficients and  

the numberx  represent the corresponding variables.  

V  is a non-negative (0 or larger) real number. 
 
 
Having constraints that have upper limits should make sense, since when maximizing a 
quantity, we probably have caps on what we can do. If we had no caps, then we could 
continue to increase, say profit, infinitely! This contradicts what we know about the real 
world. 
 
In order to use the simplex method, either by technology or by hand, we must set up an 
initial simplex tableau, which is a matrix containing information about the linear 
programming problem we wish to solve. 
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Setting Up the Initial Simplex Tableau 
 
First off, matrices don’t do well with inequalities. For one, a matrix does not have a 
simple way of keeping track of the direction of an inequality. This alone discourages the 
use of inequalities in matrices. How, then, do we avoid this?  
 
Consider the following linear programming problem 
Maximize:  

7 12P x y   
 
Subject to: 
2 3 6x y   
3 7 12x y   
 
Because we know that the left sides of both inequalities will be quantities that are smaller 
than the corresponding values on the right, we can be sure that adding “something” to the 
left-hand side will make them exactly equal. That is: 

12 3 6x y s    

23 7 12x y s    

 
For instance, suppose that 1, 1x y  , Then 

   
1

2 1  3 1 1 6
yx s

    

   
2

3 1 7 1 2 12
yx s

    

 
It is important to note that these two variables, 1s  and 2s , are not necessarily the same. 

They simply act on the inequality by picking up the “slack” that keeps the left side from 
looking like the right side. Hence, we call them slack variables. This takes care of the 
inequalities for us. Since augmented matrices contain all variables on the left and 
constants on the right, we will rewrite the objective function to match this format: 
 

7 12 0x y P     
 
This will require us to have a matrix that can handle 1 2, , , , and x y s s P . We will put it in 

this order. Finally, the simplex method requires that the objective function be listed as the 
bottom line in the matrix so that we have: 
 
    1 2                         x y s s P  

 

2 3 1 0 0 6

3 7 0 1 0 12

7 12 0 0 1 0

 
 
 
   
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We have established the initial simplex tableau. Note that he horizontal and vertical lines 
are used simply to separate constraint coefficients from constants and objective function 
coefficients. Also notice that the slack variable columns, along with the objective 
function output, form the identity matrix. 
 
Solving the Linear Programming Problem by Using the Initial Tableau 
 
We will present the algorithm for solving, however, note that it is not entirely intuitive.  
 
1. Select a pivot column 
 
We first select a pivot column, which will be the column that contains the largest 
negative coefficient in the row containing the objective function. Note that the largest 
negative number belongs to the term that contributes most to the objective function. This 
is intentional since we want to focus on values that make the output as large as possible. 
 
Our pivot is thus the y  column. 

   1 2                         x y s s P  

2 3 1 0 0 6

3 7 0 1 0 12

7 12 0 0 1 0

 
 
 
   

 

2. Select a pivot row.  
 
Do this by computing the ratio of each constraint constant to its respective coefficient in 
the pivot column – this is called the test ratio. Select the row with the smallest test ratio. 
 
We first calculate the test ratios: 

   1 2                         x y s s P  

2 3 1 0 0 6

3 7 0 1 0 12

7 12 0 0 1 0

 
 
 
   

 

Since the test ratio is smaller for row 2, we select it as the pivot row. The boxed value is 
now called our pivot. To justify why we do this, observe that 2 and 1.7 are simply the 
vertical intercepts of the two inequalities. We select the smaller one to ensure we have a 
corner point that is in our feasible region. 
 
3. Using Gaussian elimination, we next eliminate rows 1 and 3. We want to take -3/7 
multiplied by row 2 and add it to row 1, so that we eliminate the 3 in the second column.  
We also want next to eliminate the -12 in row 3. To do this, we must multiply 7 by 12/7 

6/3 = 2 

12/7   1.7 
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and add it to row 3 (recall that placing the value you wish to cancel out in the 
denominator of a multiple and the value you wish to achieve in the numerator of the 
multiple, you obtain the new value). 
 
We can see that we have effectively zeroed out the second column non-pivot values. We 
get the following matrix: 
 

.71 0 1 .43 0 .86

3 7 0 1 0 12

1.86 0 0 1.71 1 20.57

 
 
 
  

 

 
What have we done? For one, we have maxed out the contribution of the 2-2 entry 

valuey   coefficient to the objective function. Have we optimized the function? Not 
quite, as we still see that there is a negative value in the first column. This tells us that x  
can still contribute to the objective function. To eliminate this, we first find the pivot row 
by obtaining test ratios: 
 

.71 0 1 .43 0 .86

3 7 0 1 0 12

1.86 0 0 1.71 1 20.57

 
 
 
  

 

 
We proceed to eliminate all non-pivot values by multiplying the top row by -3/0.71 and 
adding it to the second row, and adding 1.86/0.71 times the first row to the third row. 
 
There remain no additional negative entries in the objective function row. We thus have 
the following matrix: 
 

.71 0 1 .43 0 .86

0 7 4.23 2.81 0 8.38

0 0 2.62 .59 1 22.82

 
 

 
 
   

 
We are thus prepared to read the solutions.  
 
4. To identify the solution set, focus we focus only on the columns with exactly one non-
zero entry – these are called active variables (columns with more than one non-zero 
entry are thus called inactive variables).  
 
We notice that both the x  and y  columns are active variables. We really don’t care 
about the slack variables, much like we ignore inequalities when we are finding 
intersections. We now see that, 
 

.86/.71   1.2 
12/3 4 
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1 2.71 .43 .86x s s    

1 27 4.23 2.81 8.38y s s    

1 22.62 .59 22.82s s P    

Setting the slack variables to 0, gives: 
.71 .86 1.21x x    
7 8.38 1.20y y    

22.82P   
 
Thus, the triplet,    , , ~ 1.21,1.20, 22.82x y z  is the solution to the linear programming 

problem. That is, inputs of 1.21 and 1.20 will yield a maximum objective function value 
of 22.82. 
 
The entire process of solving using simplex method is: 
 
 
Simplex Method 

1. Set up the problem. That is, write the objective function and the constraints. 
2. Convert the inequalities into equations. This is done by adding one slack variable 

for each inequality. 
3. Construct the initial simplex tableau. Write the objective function as the bottom 

row. 
4. The most negative entry in the bottom row identifies a column. 
5. Calculate the quotients. The smallest quotient identifies a row. The element in the 

intersection of the column identified in step 4 and the row identified in this step is 
identified as the pivot element. The quotients are computed by dividing the far right 
column by the identified column in step 4. A quotient that is a zero, or a negative 
number, or that has a zero in the denominator, is ignored. 

6. Perform pivoting to make all other entries in this column zero. This is done the 
same way as we did with the Gauss-Jordan method for matrices. 

7. When there are no more negative entries in the bottom row, we are finished; 
otherwise, we start again from step 4. 

8. Read off your answers. Get the variables using the columns with 1 and 0s. All other 
variables are zero. The maximum value you are looking for appears in the bottom 
right hand corner. 

 
 
Try it Now 

1.  Use simplex method to solve: 
Maximize 5 7 9P x y z     
subject to: 

 

4 2 8

3 5 6

0, 0, 0

x y z

x y z

x y z

  
  
  
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Important Topics of this Section 
Initial tableau 
Pivot row and column 
Simplex method 
Reading the answer from a reduced tableau 

  
 
Try it Now Answers 

1.  We set up the initial tableau.  The most negative entry in the bottom row is in the 
third column, so we select that column.  Calculating the quotients we have 8/2 = 4 in 
the first row, and 6/1 = 6 in the second row.  The smaller value is in row one, so we 
choose that row.  Our pivot is in row 1 column 3. 

 
 
Now we perform the pivot.  We might start by scaling the top row by ½ to get a 1 in the 
pivot position.  Then we can add -1 times the top row to the second row, and 9 times 
the top row to the third row. 
 
Now we are prepared to pivot again.  The most negative entry in the bottom row is in 

column 1, so we select that column.  Looking at the ratios, 
4

8
1

2

  and 
2

0.8
5

2

 .  

Choosing the smaller, we have our pivot in row 2 column 1. 

 
 
We can multiply the second row by 2/5 to get a 1 in the pivot position, then add -½ 
times the second row to the first row and ½ times the second row to the third row to 
reduce. 
 

 
 
Only the first and third columns contain only one non-zero value and are active 
variables.  We set the remaining variables equal to zero and find our solution: 

4 18
, 0,

5 5
x y z    

  0 7/5 1 3/5 -1/5 0   18/5  

  1 6/5 0 -1/5 2/5 0   4/5  

  0 58/5 0 22/5 1/5 1   182/5  

  1/2 2 1 1/2 0 0    4  

 5/2 3 0 -1/2 1 0    2  

  -1/2 11 0 9/2 0 1    36  

x y z s1 s2 P   

 1 4 2 1 0 0    8  

 3 5 1 0 1 0    6  

 -5 -7 -9 0 0 1    0  


