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Chapter 3:  The Integral 
 
The previous chapters dealt with Differential Calculus.  We started with the "simple" 
geometrical idea of the slope of a tangent line to a curve, developed it into a combination of 
theory about derivatives and their properties, techniques for calculating derivatives, and 
applications of derivatives.  This chapter deals with Integral Calculus and starts with the 
"simple" geometric idea of area.  This idea will be developed into another combination of 
theory, techniques, and applications. 

PreCalculus Idea – The Area of a Rectangle 
If you look on the inside cover of nearly any traditional math book, you’ll find a bunch of area 
and volume formulas – the area of a square, the area of a trapezoid, the volume of a right circular 
cone, and so on.  Some of these formulas are pretty complicated.  But you still won’t find a 
formula for the area of a jigsaw puzzle piece or the volume of an egg.  There are lots of things 
for which there is no formula.  Yet we might still want to find their areas.  
 
One reason areas are so useful is that they can represent quantities other than simple geometric 
shapes.  If the units for each side of the rectangle are meters, then the area will have the units 
meters× meters = square meters = m2.    But if the units of the base of a rectangle are hours and 
the units of the height are miles/hour, then the units of the area of the rectangle are hours × 
miles/hour = miles, a measure of distance.  Similarly, if the base units are centimeters and the 
height units are grams, then the area units are gram-centimeters, a measure of work. 

 
The basic shape we will use is the rectangle; the area of a rectangle is base × height.  You should 

also know the area formulas for triangles, bhA
2
1

=  and for circles, 2rA π= .   
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Section 1: The Definite Integral 

Distance from Velocity 
 
Example 1 

Suppose a car travels on a straight road at a constant speed of 40 miles per hour for two hours.  
See the graph of its velocity below.  How far has it gone? 

 
 
We all remember distance = rate × time, so this one is easy.  The car has gone 40 miles per 
hour × 2 hours = 80 miles. 

 
 
Example 2 

Now suppose that a car travels so that its speed increases steadily from 0 to 40 miles per hour, 
for two hours.  (Just be grateful you weren’t stuck behind this car on the highway.)  See the 
graph of its velocity in below. How far has this car gone? 

 
 
The trouble with our old reliable distance = rate × time relationship is that it only works if the 
rate is constant.  If the rate is changing, there isn’t a good way to use this formula.   
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But look at graph from the last example again.  Notice that distance = rate × time also 
describes the area between the velocity graph and the t-axis, between t = 0 and t = 2 hours.  The 
rate is the height of the rectangle, the time is the length of the rectangle, and the distance is the 
area of the rectangle.  This is the way we can extend our simple formula to handle more 
complicated velocities:  And this is the way we can answer the second example. 
 
The distance the car travels is the area between its velocity graph, the t-axis, t = 0 and t = 2.  
This region is a triangle, so its area is ½bh = ½(2 hours)(40 miles per hour) = 40 miles.  So the 
car travels 40 miles during its annoying trip. 

 
 
In our distance/velocity examples, the function represented a rate of travel (miles per hour), and 
the area represented the total distance traveled.  This principle works more generally: 
 
For functions representing other rates such as the production of a factory (bicycles per day), or 
the flow of water in a river (gallons per minute) or traffic over a bridge (cars per minute), or the 
spread of a disease (newly sick people per week), the area will still represent the total amount of 
something. 

 
Example 3 

The graph below shows the flow rate (cubic feet per second) of water in the Skykomish river at 
the town of Goldbar in Washington state.     

 
 
The area of the shaded region represents the total volume (cubic feet) of water flowing past the 
town during the month of October.  We can approximate this area to approximate the total water 
by thinking of the shaded region as a rectangle with a triangle on top. 
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Total water  =  total area ≈ area of rectangle + area of the “triangle” 

 ≈ (2000 cubic feet/sec)(30 days) + 
1
2 (1500 cf/s)(30 days)   = (2750 cubic feet/sec)(30 days) 

Note that we need to convert the units to make sense of our result: 
Total water  ≈  (2750 cubic feet/sec)(30 days)  = (2750 cubic feet/sec)(2,592,000 sec)  
                     ≈ 7.128 x 109  cubic feet. 
 
About 7 billion cubic feet of water flowed past Goldbar in October. 

 

Approximating with Rectangles 
How do we approximate the area if the rate curve is, well, curvy?  We could use rectangles and 
triangles, like we did in the last example.  But it turns out to be more useful (and easier) to 
simply use rectangles.  The more rectangles we use, the better our approximation is. 

   
 
Suppose we want to calculate the area between the graph of a positive function  f  and the x–axis  
on the interval [a, b]  (graphed above).  The Riemann Sum method is to build several rectangles 
with bases on the interval [a, b] and sides that reach up to the graph of f  (see below).  Then the 
areas of the rectangles can be calculated and added together to get a number called a Riemann 
Sum of f on [a, b].  The area of the region formed by the rectangles is an approximation of the 
area we want. 
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Example 4 

Approximate the area in the graph on the 
left between the graph of  f and the x–
axis  on the interval  [2, 5] by summing 
the areas of the rectangles in  the graph 
on the right. 
 
The total area of rectangles is (2)(3) + 
(1)(5) = 11  square units. 

 
 

Example 5 
Let  A  be the region bounded by the graph of  f(x) = 1/x, the x–axis, and vertical lines  at  x = 1  
and  x = 5.  We can’t find the area exactly (with what we know now), but we can approximate it 
using rectangles. 
 
When we make our rectangles, we have a lot of choices.  We could pick any (non-overlapping) 
rectangles whose bottoms lie within the interval on the x-axis, and whose tops intersect with the 
curve somewhere.  But it’s easiest to choose rectangles that – (a) have all the same width, and 
(b) take their heights from the function at one edge.  Below you'll see two ways to use four 
rectangles to approximate this area.  In the first graph, we used left-endpoints; the height of 
each rectangle comes from the function value at its left edge.  In the second graph on the next 
page, we used right-hand endpoints.   
 
Left-hand endpoints:  The area is approximately the sum of the areas of the rectangles.  Each 

rectangle gets its height from the function ( )
x

xf 1
=  and each rectangle has width = 1.   

 
You can find the area of each rectangle using area = height × width.  So the total area of the 
rectangles, the left-hand estimate of the area under the curve, is 

( )( ) ( )( ) ( )( ) ( )( ) 08.2
12
25

4
1

3
1

2
1114131211 ≅=+++=+++ ffff   

Notice that because this function is decreasing, all the left endpoint rectangles stick out above 
the region we want – using left-hand endpoints will overestimate the area. 
 
Right-hand endpoints:  The right-hand estimate of the area is 

( )( ) ( )( ) ( )( ) ( )( ) 28.1
60
77

5
1

4
1

3
1

2
115141312 ≅=+++=+++ ffff   
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All the right-hand rectangles lie completely under the curve, so this estimate will be an 
underestimate. 
 
We can see that the true area is actually in between these two estimates.  So we could take their 
average:   

Average:  68.1
60

101
2

60/7712/25
≅=

+  

 
In general, the average of the left-hand and right-hand estimates will be closer to the real area 
than either individual estimate.   
 
My estimate of the area under the curve is about 1.68.  (The actual area is about 1.61.) 

 
If we wanted a better answer, we could use even more, even narrower rectangles.  But there’s a 
limit to how much work we want to do by hand.  In practice, it’s probably best to choose a 
manageable number of rectangles.  We’ll have better methods to get more accurate answers 
before long. 
 
These sums of areas of rectangles are called Riemann sums.  You may see a shorthand notation 
used when people talk about sums.   We won’t use it much in this book, but you should know 
what it means. 
 
 Riemann sum:  A Riemann sum for a function f(x) over an interval [a, b] is a sum of areas 

of rectangles that approximates the area under the curve.  Start by dividing the interval [a, 
b] into n subintervals; each subinterval will be the base of one rectangle. We usually 
make all the rectangles the same width Δx.  The height of each rectangle comes from the 
function evaluated at some point in its sub interval.  Then the Riemann sum is: 

   ( ) ( ) ( ) ( ) xxfxxfxxfxxf n ∆+⋅⋅⋅+∆+∆+∆ 321  
 Sigma Notation:  The upper-case Greek letter Sigma Σ is used to stand for Sum.  Sigma 

notation is a way to compactly represent a sum of many similar terms, such as a Riemann 
sum. 

 Using the Sigma notation, the Riemann sum can be written ( )∑
=

∆
n

i
i xxf

1

. 

 This is read aloud as “the sum as i = 1 to n of f of x sub i Delta x.”  The “i” is a counter, 
like you might have seen in a programming class.   
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Definition of the Definite Integral 
 
Because the area under the curve is so important, it has a special vocabulary and notation. 
 
 The Definite Integral: 
   
 The definite integral of a positive function f(x) over an interval [a, b] is the area  
  between f, the x-axis, x = a and x = b.    
 The definite integral of a positive function f(x) from a to b is the area under the curve 

between a and b. 
 
 If f(t) represents a positive rate (in y-units per t-units), then the definite integral of f from a 

to b is the total y-units that accumulate between t = a and t = b.  
   
 Notation for the Definite Integral:   
 The definite integral of f from a to b is written 

   ( )∫
b

a
dxxf  

 The ∫ symbol is called an integral sign; it’s an elongated letter S, standing for sum.  

  (The ∫ corresponds to the Σ from the Riemann sum) 
 The dx on the end must be included;  The dx tells what the variable is – in this example, the 

variable is x.  (The dx corresponds to the x∆ from the Riemann sum)  
 The function f is called the integrand. 
 The a and b are called the limits of integration. 
 
 Verb forms: 
 We integrate, or find the definite integral of a function.  This process is called 

integration. 

 Formal Algebraic Definition: ( ) ( )∑∫
=

∞→
∆=

n

i
in

b

a
xxfdxxf

1
lim .   

 Practical Definition: 
  The definite integral can be approximated with a Riemann sum (dividing the area into 

rectangles where the height of each rectangle comes from the function, computing the 
area of each rectangle, and adding them up).  The more rectangles you use, the narrower 
the rectangles are, the better your approximation will be. 

  
 Looking Ahead: 
  We will have methods for computing exact values of some definite integrals from 

formulas soon.  In many cases, including when the function is given to you as a table or 
graph, you will still need to approximate the definite integral with rectangles. 
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Example 6 
The graph shows y = r(t), the number of telephone calls made per hours on a Tuesday.  
Approximately how many calls were made between 9 pm and 11 pm?  Express this as a definite 
integral and approximate with a Riemann sum. 

  
 
We know that the accumulated calls will be the area under this rate graph over that two-hour 
period, the definite integral of this rate from t = 9 to t = 11.   
The total number of calls will be ( )∫

11

9
dttr . 

The top here is a curve, so we can’t get an exact answer.  But we can approximate the area 
using rectangles.  I’ll choose to use 4 rectangles, and I’ll choose left-endpoints: 
 

 
 

( ) ( ) ( ) ( ) ( ) .5.3125.1955.1805.1505.100
11

9
=+++≅∫ dttr  

 
The units are calls per hour × hours = calls.   My estimate is that about 312 calls were made 
between 9 pm and 11 pm.  Is this an under-estimate or an over-estimate? 

 
Example 7 

Describe the area between the graph of  f(x) = 1/x, the x–axis, and the vertical lines at  x = 1  
and  x = 5  as a definite integral. 
 
This is the same area we estimated to be about 1.68 before.  Now we can use the notation of the 

definite integral to describe it.  Our estimate of  ∫
5

1

1 dx
x

 was 1.68.  The true value of ∫
5

1

1 dx
x

 is 

about 1.61. 
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Example 8 

Using the idea of area, determine the value of ( )∫ +
3

1
1 dxx .  

 
( )∫ +

3

1
1 dxx represents the area between the graph of  f(x) = 1+x, the x–

axis, and the vertical lines at  1  and  3.   
   
Since this area can be broken into a rectangle and a triangle, we can 
find the area exactly.  The area equals  
4 + ½ (2)(2) = 6 square units. 
 

 
Example 9 

The table shows rates of population growth for Berrytown for several years.  Use this table to 
estimate the total population growth from 1970 to 2000: 
 

 
The definite integral of this rate will give the total change in population over the thirty-year 
period.  We only have a few pieces of information, so we can only estimate.  Even though I 
haven’t made a graph, we’re still approximating the area under the rate curve, using rectangles.  
How wide are the rectangles?  I have information every 10 years, so the rectangles have a width 
of 10 years.  How many rectangles?  Be careful here – this is a thirty-year span, so there are 
three rectangles.   
 
Using left-hand endpoints:  (1.5)(10) + (1.9)(10) + (2.2)(10) = 56  
Using right-hand endpoints: (1.9)(10) + (2.2)(10) + (2.4)(10) = 65  

Taking the average of these two: 5.60
2

6556
=

+  

Our best estimate of the total population growth from 1970 to 2000 is 60.5 thousand people. 
 

Year (t) 1970 1980 1990 2000 
Rate of population growth R(t) 
(thousands of people per year) 

1.5 1.9 2.2 2.4 
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Signed Area 
 
You may have noticed that until this point, we’ve insisted that the integrand (the function we’re 
integrating) be positive.  That’s because we’ve been talking about area, which is always positive.  
If the “height” (from the function) is a negative number, then multiplying it by the width doesn’t 
give us actual area, it gives us the area with a negative sign.   
 
But it turns out to be useful to think about the possibility of negative area.  We’ll expand our idea 
of a definite integral now to include integrands that might not always be positive.  The “heights” 
of the rectangles, the values from the function, now might not always be positive. 
 
The Definite Integral and Signed Area: 
   
 The definite integral of a function f(x) over an interval [a, b] is the signed area  
  between f, the x-axis, x = a and x = b.    
 
 The definite integral of a function f(x) from a to b is the signed area under the curve 

between a and b. 
 
 If the function is positive, the signed area is positive, as before (and we can call it area.) 
 If the function dips below the x-axis, the areas of the regions below the x-axis come in with 

a negative sign.  In this case, we cannot call it simply “area.”  These negative areas take 
away from the definite integral. 

 ( )∫
b

a
dxxf = (Area above x-axis) – (Area below x-axis). 

 
 If f(t) represents a positive rate (in y-units per t-units), then the definite integral of f from a 

to b is the total y-units that accumulate between t = a and t = b.  
 If f(t) represents any rate (in y-units per t-units), then the definite integral of f from a to b 

is the net y-units that accumulate between t = a and t = b. 
 
 
Example 10 

Find the definite integral of of  f(x) = –2  on the interval  [1,4]. 
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⌡⌠
1

4
  –2 dx   is the signed area of the region shown to the right.  The region lies below the x-axis, 

so the area, 6, comes in with a negative sign.  So the definite integral is  ⌡⌠
1

4
  –2 dx  = –6. 

 
 
Negative rates indicate that the amount is decreasing.  For example, if f(t)  is the velocity of a car 
in the positive direction along a straight line at time  t  (miles/hour) , then negative values of  f  
indicate that the car is traveling in the negative direction, backwards.  The definite integral of f is 
the change in position of the car during the time interval.  If the velocity is positive, positive 
distance accumulates.  If the velocity is negative, distance in the negative direction accumulates. 
 
This is true of any rate.  For example, if  f(t)  is the rate of population change (people/year) for a 
town, then negative values of  f  would indicate that the population of the town was getting 
smaller, and the definite integral (now a negative number) would be the change in the 
population, a decrease,  during the time interval.   
 
Example 11 

In 1980 there were 12,000 ducks nesting around a lake, and the rate of population change (in 
ducks per year) is shown in Fig. 15.  Write a definite integral to represent the total change in the 
duck population from 1980 to 1990, and estimate the population in 1990. 

 
 
The change in population  

=  ⌡⌠
1980

1990
 f(t) dt  = – (area between  f  and axis) 

 
 ≈  – (200 ducks/year).(10 years) = – 2000 ducks. 
 
Then (1990 duck population) = (1980 population) + (change from 1980 to 1990)  
  = (12,000) + ( –2000) =  10,000 ducks. 

 
 

Example 12 
A bug starts at the location  x = 12  on the x–axis at  1 pm walks along the axis with the velocity 
v(x) shown in the graph.  How far does the bug travel between 1 pm and 3 pm, and where is the 
bug at 3 pm? 
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Note that the velocity is positive from 1 until 2:30, then becomes negative.  So the bug moves in 
the positive direction from 1 until 2:30, then turns around and moves back toward where it 
started.  The area under the velocity curve from 1 to 2:30 shows the total distance traveled by 
the bug in the positive direction; the bug moved 12.5 feet in the positive direction.  The area 
between the velocity curve and the x-axis, between 2:30 and 3, shows the total distance traveled 
by the bug in the negative direction, back toward home; the bug traveled 2.5 feet in the negative 
direction.  The definite integral of the velocity curve, ( )∫

3

1
dttv , shows the net change in 

distance:  
( ) 105.25.12

3

1
=−=∫ dttv  

 
The bug ended up 10 feet further in the positive direction than he started.  At 3 pm, the bug is at 
x = 22. 

 
 
Example 13 

Use the graph to calculate  ⌡⌠
0

2
 f(x) dx  ,  ⌡⌠

2

4
 f(x) dx ,  ⌡⌠

4

5
 f(x) dx  , and  ⌡⌠

0

5
 f(x) dx . 

     
 

Using the given areas, ⌡⌠
0

2
 f(x) dx  = 2,   ⌡⌠

2

4
 f(x) dx = – 5 ,   ⌡⌠

4

5
 f(x) dx  = 2,  and 

  ⌡⌠
0

5
 f(x) dx  = (area above) – (area below) = (2+2) – (5) = –1. 
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Approximating with Technology 
If your function is given as a graph or table, you will still have to approximate definite integrals 
using areas, usually of rectangles.  But if your function is given as a formula, you can turn to 
technology to get a better approximate answer.  For example, most graphing calculators have 
some kind of numerical integration tool built in.  You can also find many online tools that can do 
this; type numerical integration into any search engine to see a selection of these.   
 
Most numerical integration tools use rectangles to estimate the signed area, just as you would do 
by hand.  But they use many more rectangles than you would have the patience for, so they get a 
better answer.  Some of them use computer algebra systems to find exact answers; we will learn 
how to do this ourselves later in this chapter. 
 
When you turn to technology to find the value of a definite integral, be careful.  Not every tool 
will be able to give you a correct answer for every integral.  I have had good luck with my TI 84.  
You should make an estimate of the answer yourself first so you can judge whether the answer 
you get makes sense. 
 
Example 14 

Use technology to approximate the definite integral ∫
5

1

1 dx
x

.  (This is the same definite integral 

we approximated with rectangles before.) 
 
I used my TI-84; the answer it gave me was 1.609437912.  This agrees with the exact answer 
for all the decimal digits displayed.  WebMath said the answer was 1.60944, which is accurate 
for all the decimal digits displayed.  Microsoft Math said the answer was ln(5); that’s exactly 
correct.  Wolfram|Alpha says the answer is log(5); that’s not how everyone writes the natural 
log, so that might trick you into writing the wrong answer.   

 
Example 15 

Use technology to approximate the definite integral dxe xx∫ +2

1

2
 

I asked WebMath, and it said the answer was zero – I know this is not correct, because the 
function here is positive, so there must be some area under the curve here.  I asked Microsoft 
Math, and it simply repeated the definite integral; that’s because there isn’t an algebraic way to 
find the exact answer.  I asked my TI-84, and it said the answer was 86.83404047; that makes 
sense with what I expected.  Wolfram|Alpha also says the answer is about 86.834.  So I believe:  

.834.86
2

1

2

≅∫ + dxe xx  

Accumulation in Real Life 
 
We have already seen that the "area" under a graph can represent quantities whose units are not the 
usual geometric units of square meters or square feet.  For example, if  t  is a measure of time in 
seconds  and  f(t) is a velocity with units  feet/second, then  the definite integral has units 
(feet/second) ∙ (seconds) = feet. 
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In general, the units for the definite integral  ⌡⌠
a

b
 f(x) dx   are   (y-units ) . (x-units).  A quick check 

of the units can help avoid errors in setting up an applied problem. 
 
In previous examples, we looked at a function represented a rate of travel (miles per hour); in 
that case, the area represented the total distance traveled.  For functions representing other rates 
such as the production of a factory (bicycles per day), or the flow of water in a river (gallons per 
minute) or traffic over a bridge (cars per minute), or the spread of a disease (newly sick people 
per week), the area will still represent the total amount of something. 
 
Example 16 

Suppose MR(q) is the marginal revenue in dollars/item for selling q items.  What does 
( )∫

150

0
dqqMR represent? 

 
( )∫

150

0
dqqMR  has units (dollars/item) ∙ (items) = dollars, and represents the accumulated dollars 

for selling from 0 to 150 items.  That is, ( ) ( )150
150

0
TRdqqMR =∫ , the total revenue from selling 

150 items. 
 
 

Example 17 
Suppose r(t), in centimeters per year, represents how the diameter of a tree changes with time.  
What does ( )∫

2

1

T

T
dttr  represent? 

 
( )∫

2

1

T

T
dttr has units of (centimeters per year) ∙ (years) = centimeters, and represents the 

accumulated growth of the tree’s diameter from T1 to T2.  That is, ( )∫
2

1

T

T
dttr is the change in the 

diameter of the tree over this period of time. 
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3.1 Exercises 
 
1. Let  A(x) represent the area bounded by the graph and the 

horizontal axis and vertical lines at t=0 and t=x  for the graph 
shown.  Evaluate  A(x)  for  x = 1, 2, 3, 4, and 5. 

 
 
 
    
2. Let  B(x) represent the area bounded by the graph and the 

horizontal axis and vertical lines at t=0 and  t=x  for the 
graph shown.  Evaluate  B(x)  for  x = 1, 2, 3, 4, and 5. 

 
 
 
 
3. Let C(x) represent the area bounded by the graph and the 

horizontal axis and vertical lines at t=0 and t=x for the graph 
shown.  Evaluate C(x) for  x = 1, 2, and 3 and find a formula for  
C(x). 

 
 
 
 
 
4. Let A(x) represent the area bounded by the graph and the 

horizontal axis and vertical lines at t=0 and  t=x  for the graph 
shown.  Evaluate A(x)  for  x = 1, 2, and 3   and find a formula for  
A(x). 

 
 
 
 
 
5. A car had the velocity shown in the graph to the right.  How far 

did the car travel from t= 0 to t = 30 seconds? 
 
 
 
6. A car had the velocity shown below.  How afar did the car travel 

from t = 0 to t = 30 seconds? 
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7. The velocities of two cars are shown in the graph.   

(a)  From the time the brakes were applied, how many 
seconds did it take each car to stop?   
(b)  From the time the brakes were applied, which car 
traveled farther until it came to a complete stop? 

 
 
 
 
8.   You and a friend start off at noon and walk in the same direction 

along the same path at the rates shown. 
 (a) Who is walking faster at 2 pm?  Who is ahead at 2 pm? 
 (b) Who is walking faster at 3 pm?  Who is ahead at 3 pm? 
 (c) When will you and your friend be together?  (Answer in words.) 
 
 
 
 

9. Police chase:  A speeder traveling 45 miles per hour (in a 25 
mph zone) passes a stopped police car which immediately 
takes off after the speeder.  If the police car speeds up 
steadily to 60 miles/hour in 20 seconds and then travels at a 
steady 60 miles/hour, how long and how far before the 
police car catches the speeder who continued traveling at 45 
miles/hour?   

 
 
 
10.  Water is flowing into a tub.  The table shows the rate at which the water flows, in gallons per 

minute.  The tub is initially empty.   
 

t, in 
minutes 

0 1 2 3 4 5 6 7 8 9 10 

Flow rate, 
in gal/min 

0.5 1.0 1.2 1.4 1.7 2.0 2.3 1.8 0.7 0.5 0.2 

 
 

Use the table to estimate how much water is in the tub after  
a. five minutes 
b. ten minutes 
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11.  The table shows the speedometer readings for a short car trip.   
 

t , in minutes 0 5 10 15 20 
Speed, in mph 0 30 40 65 40 

 
a. Use the table to estimate how far the car traveled over the twenty minutes shown. 
b. How accurate would you expect your estimate to be? 
 

12.  The table shows values of ( )tf .  Use the table to estimate ( )∫
40

0
dttf . 

t 0 10 20 30 40 
( )tf  17 22 18 11 35 

 
 
13. The table shows values of ( )xg .   

x 0 1 2 3 4 5 6 
( )xg  140 142 144 152 154 165 200 

 
 

Use the table to estimate  
a. ( )∫

3

0
dxxg   b. ( )∫

6

3
dxxg   c. ( )∫

6

0
dxxg  

 
14. What are the units for the "area" of a rectangle  with the given  
 base and height units? 
  Base units Height units "Area" units 
  miles per second seconds 
  hours dollars per hour 
  square feet feet 
  kilowatts hours 
  houses people per house 
  meals meals 
 
In problems  15 – 17 , represent the area of each bounded region as a definite integral, and use 
geometry to  
determine the value of the definite integral. 
 
15. The region bounded by  y = 2x , the x–axis, the line x = 1, and  x = 3. 
 
16. The region bounded by  y = 4 – 2x , the x–axis, and the y–axis. 
 
17. The shaded region in the graph to the right. 
 
 
 



Chapter 3    The Integral Business Calculus 178 
  

18.  Using the graph of f shown and the given areas of 
several regions, evaluate: 

 (a) ⌡⌠
0

3
 f(x) dx  (b)  ⌡⌠

3

5
 f(x) dx  (c) ⌡⌠

5

7
 f(x) dx  

 
19. Using the graph of f shown and the given areas of several regions, evaluate: 

(a) ⌡⌠
1

3
 g(x) dx  (b)   ⌡⌠

3

4
 g(x) dx

 (c) ⌡⌠
4

8
 g(x) dx   (d)   ⌡⌠

1

8
 g(x) dx

 
 
20. Use the graph to evaluate: 

(a) ⌡⌠
–2

1
 h(x) dx  (b)  ⌡⌠

4

6
 h(x) dx   

(c) ⌡⌠
–2

6
 h(x) dx  (d)  ⌡⌠

–2

4
 h(x) dx   

 
 
21. Your velocity along a straight road is shown to the right. 

How far did you travel in 8 minutes? 
  
 
22. Your velocity along a straight road is shown below. How 

many feet did you walk in 8 minutes? 
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In problems 23 - 26, the units are given for x and for  f(x) .  Give the units of ⌡⌠
a

b
 f(x) dx  . 

23. x is time in "seconds",  and  f(x)  is velocity in  "meters per second." 
 
24. x is time in "hours",  and  f(x)  is a flow rate in  "gallons per hour." 
 
25. x is a position in "feet",  and  f(x)  is an area in "square feet." 
 
26. x is a position in "inches", and f(x)  is a density in "pounds per inch." 
 
In problems 27 – 31, represent the area with a definite integral and use technology to find the 

approximate answer.  
 
27. The region bounded by  y = x 3, the x–axis, the line x = 1, and  x = 5. 
 
28. The region bounded by  y = x   , the x–axis, and  the line x = 9. 
 
29. The shaded region shown to the right. 
 
30. The shaded region below. 

 
 
31. Consider the definite integral ( )∫ +

3

0
3 dxx .   

 (a)   Using six rectangles, find the left-hand Riemann sum for this definite integral. 
 (b) Using six rectangles, find the right-hand Riemann sum for this definite integral. 
 (c)   Using geometry, find the exact value of this definite integral.  
 
32. Consider the definite integral ∫

2

0

3 dxx . 

 (a)  Using four rectangles, find the left-hand Riemann sum for this definite integral. 
 (b) Using four rectangles, find the right-hand Riemann sum for this definite integral. 
 
33. Write the total distance traveled by the car in the graph 

between 1 pm and 4 pm as a definite integral and 
estimate the value of the integral. 
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Problems  34 – 41  refer to the graph of  f  shown.  Use the 
graph to determine the values of the definite integrals.  
(The bold numbers represent the area of each region.) 
 

34. ⌡⌠
0

3
 f(x) dx    35.  ⌡⌠

3

5
 f(x) dx   36. ⌡⌠

2

2
 f(x) dx     

37. ⌡⌠
6

7
 f(w) dw    38.  ⌡⌠

0

5
 f(x) dx   39. ⌡⌠

0

7
 f(x) dx    40.  ⌡⌠

3

6
 f(t) dt   41. ⌡⌠

5

7
 f(x) dx     

 
Problems  42 – 47  refer to the graph of  g  shown.  Use the 
graph to evaluate the integrals. 
   

42. ⌡⌠
0

2
 g(x) dx    43.  ⌡⌠

1

3
 g(t) dt   44. ⌡⌠

0

5
 g(x) dx     

 

45. ⌡⌠
0

8
 g(s) ds   46.  ⌡⌠

0

3
 2g(t) dt   47. ⌡⌠

5

8
 1+g(x) dx   
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Section 2: The Fundamental Theorem and Antidifferentiation 

The Fundamental Theorem of Calculus 
This section contains the most important and most used theorem of calculus, the Fundamental 
Theorem of Calculus. Discovered independently by Newton and Leibniz in the late 1600s, it 
establishes the connection between derivatives and integrals, provides a way of easily calculating 
many integrals, and was a key step in the development of modern mathematics to support the rise 
of science and technology.  Calculus is one of the most significant intellectual structures in the 
history of human thought, and the Fundamental Theorem of Calculus is a most important brick in 
that beautiful structure.  
 
The Fundamental Theorem of Calculus: 
 
   ( ) ( ) ( )aFbFdxxF

b

a
−=∫ '  

 
 
This is actually not new for us; we’ve been using this relationship for some time; we just haven’t 
written it this way.   This says what we’ve said before:  the definite integral of a rate from a to b 
is the net y-units, the change in y, that accumulate between t = a and t = b.  Here we’ve just made 
it plain that that the rate is a derivative. 
 
Thinking about the relationship this way gives us the key to finding exact answers for some 
definite integrals. If the integrand is the derivative of some F, then maybe we could simply find F 
and subtract – that would be easier than approximating with rectangles.  Going backwards 
through the differentiation process will help us evaluate definite integrals. 
 
Example 1 

Find f(x) if f ‘(x) = 2x. 
 
Oooh, I know this one.  It’s ( ) 32 += xxf .  Oh, wait, you were thinking something else?  Yes, I 
guess you’re right -- ( ) 2xxf = works too.  So does ( ) π−= 2xxf , and ( ) 2.589,1042 += xxf .  
In fact, there are lots of answers. 

 
In fact, there are infinitely many functions that all have the same derivative.  And that makes 
sense – the derivative tells us about the shape of the function, but it doesn’t tell about the 
location.  We could shift the graph up or down and the shape wouldn’t be affected, so the 
derivative would be the same. 
 
This leads to one of the trickier definitions – pay careful attention to the articles, because they’re 
important. 
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Antiderivatives 
 
 An antiderivative of a function f(x) is any function F(x) where F ‘(x) = f(x). 
 
 The antiderivative of a function f(x) is a whole family of functions, written F(x) + C,  
 where F ‘(x) = f(x) and  
 C represents any constant.   
 The antiderivative is also called the indefinite integral. 
    
 Notation for the antiderivative:   
 The antiderivative of f is written 
   ( )∫ dxxf  

 This notation resembles the definite integral, because the Fundamental Theorem of 
Calculus says antiderivatives and definite integrals are intimately related.  But in this 
notation, there are no limits of integration. 

 
 The ∫ symbol is still called an integral sign; the dx on the end still must be included; you 

can still think of ∫ and dx as  left and  right parentheses.  The function f is still called 
the integrand. 

  
 Verb forms: 
 We antidifferentiate, or integrate, or find the indefinite integral of a function.  This 

process is called antidifferentiation or integration. 
 
 
There are no small families in the world of antiderivatives:  if  f  has one antiderivative  F, then  f  
has an infinite number of antiderivatives and every one of them has the form  F(x) + C.   
 
Example 2 

Find an antiderivative of 2x. 
 
I can choose any function I like as long as its derivative is 2x, so I’ll pick ( ) 2.52 −= xxF . 
 
 

Example 3 
Find the antiderivative of 2x. 
 
Now I need to write the entire family of functions whose derivatives are 2x.  I can use the 
notation: 

Cxdxx +=∫ 22  
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Example 4 
Find ∫ dxe x . 
 
This is likely one you remember -- xe is its own derivative, so it is also its own antiderivative.  
The integral sign tells me that I need to include the entire family of functions, so I need that + C 
on the end: 

Cedxe xx +=∫  
 

Antiderivatives Graphically or Numerically 
Another way to think about the Fundamental Theorem of Calculus is to solve the expression for 
F(b): 
 
The Fundamental Theorem of Calculus (restated) 
 
   ( ) ( ) ( )aFbFdxxF

b

a
−=∫ '  

The definite integral of a derivative from a to b gives the net change in the original function. 
 

   ( ) ( ) ( )∫+=
b

a
dxxFaFbF '  

The amount we end up is the amount we start with plus the net change in the function. 
 
 
This lets us get values for the antiderivative – as long as we have a starting point, and we know 
something about the area. 
 
Example 5 

Suppose F(t) has the derivative f(t) shown below, and suppose that we know F(0) = 5.  Find 
values for F(1), F(2), F(3), and F(4). 

 
 
Using the second way to think about the Fundamental Theorem of Calculus, 

( ) ( ) ( )∫+=
b

a
dxxFaFbF ' -- we can see that 

( ) ( ) ( )∫+=
1

0
01 dxxfFF .  We know the value of F(0), and we can easily find ( )∫

1

0
dxxf  from the 

graph – it’s just the area of a triangle.   
So ( ) ( ) ( ) 5.55.501

1

0
=+=+= ∫ dxxfFF  
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( ) ( ) ( ) 61502
2

0
=+=+= ∫ dxxfFF  

Note that we can start from any place we know the value of – now that we know F(2), we can 
use that: 
( ) ( ) ( ) 5.55.623

3

2
=−=+= ∫ dxxfFF  

( ) ( ) ( ) 5.415.534
4

3
=−=+= ∫ dxxfFF  

  
Example 6 

F ‘(t) = f(t) is shown below.  Where does F(t) have maximum and minimum values on the 
interval [0, 4]? 

 
 

Since ( ) ( ) ( )∫+=
b

a
dttfaFbF , we know that F is increasing as long as the area accumulating 

under F ’ = f is positive (until t = 3), and then decreases when the curve dips below the x-axis so 
that negative area starts accumulating.  The area between t = 3 and t = 4 is much smaller than 
the positive area that accumulates between 0 and 3, so we know that F(4) must be larger than 
F(0).  The maximum value is when t = 3; the minimum value is when t = 0. 

 
Note that this is a different way to look at a problem we already knew how to solve – in Chapter 
2, we would have found critical points of F, where f = 0 – there’s only one, when t = 3.  f = F’ 
goes from positive to negative there, so F has a local max at that point.  It’s the only critical 
point, so it must be a global max.  Then we would look at the values of F at the endpoints to find 
which was the global min. 
 
We can also attempt to sketch a function based on the graph of the derivative. 
 
Example 7 

The graph to the right shows f'(x) - the rate of change of f(x).  
Use it sketch a graph of f(x) that satisfies f(0) = 0 
 
Recall from the last chapter the relationships between the 
function graph and the derivative graph: 

 
 
In the graph shown, we can see the derivative is positive on the interval (0, 1) and (3, ∞), so the 
graph of f should be increasing on those intervals.  Likewise, f should be decreasing on the 
interval (1,3). 

f(x) increasing Decreasing Concave up Concave down 
f '(x) + - Increasing decreasing 
f ''(x)   + - 
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In the graph, f' is decreasing on the interval (0, 2), so f should be concave down on that interval.  
Likewise, f should be concave up on the interval (2, ∞). 
 
The derivative itself is not enough information to know where the function f starts, since there 
are a family of antiderivatives, but in this case we are given a specific point to start at. 
 
To start the sketch, we might note first the shapes we need 
 

 
then sketch the basic shapes. 
 

 
Now we can attempt to sketch the graph, starting at the point (0, 0).  Notice we are very roughly 
sketching this, as we don't have much information to work with.  We can tell, though, from the 
graph that the area from x = 0 to x = 1 is about the same as the area from x = 1 to x = 3, so we 
would expect the net area from x = 0 to x = 3 to be close to 0. 

 
 
It turns out this graph isn't horribly bad.  Smoothing it out would give a graph closer to the 
actual antiderivative graph, shown below. 
 

 
 

0 1 2 3 4 

0 1 2 3 4 

0 1 2 3 4 

increasing 
conc down 

decreasing 
conc down 

decreasing 
conc up 

increasing 
conc up 

increasing 
conc up 
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Derivative of the Integral 
There is another important connection between the integral and derivative. 
 
 The Fundamental Theorem of Calculus (part 2): 
 

 If ∫=
x

a

dttfxA )()( , then )()()( xfdttf
dx
dxA

x

a

==′ ∫  

 
 The derivative of the accumulation function is the original function. 
 
 
 
Example 8 

Let ∫=
x

dttfxF
0

)()( , where f is graphed below.  Estimate )3(F ′ . 

 
 
The function F measures the area from t = 0 to some t = x.  To estimate )3(F ′ , we want to 
estimate how much the area is increasing when t = 3.  Since the value of the function f  is 0 at t 
= 3, the area will not be increasing or decreasing, so we can estimate 0)3( =′F  
 
Directly using the fundamental theorem of calculus part 2,  
 

)()()(
0

xfdttf
dx
dxF

x

==′ ∫ , so 

0)3()3( ==′ fF  
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3.2 Exercises 
 
In problems 1 – 5, verify that  F(x)  is an antiderivative of the integrand  f(x)  and use Part 2 of the  
Fundamental Theorem to evaluate the definite integrals. 
 

1. ⌡⌠
0

1
 2x dx  ,  F(x) =  x2 + 5 2.  ⌡⌠

1

4
 3x2 dx ,  F(x) =  x3 + 2 3. ⌡⌠

1

3
 x2 dx  ,  F(x) =   

1
3 x3  

4. ⌡⌠
0

3
 (x2 + 4x – 3 )  dx ,  F(x) =   

1
3 x3 + 2x2 – 3x 5. 

⌡
⌠

1

5

 
1
x dx  ,  F(x) = ln( x  ) 

 

6.  Given A(x) = ⌡⌠
0

x
 2t  dt,  find A'(x) 

7.  Given A(x) = ⌡⌠
0

x
 ( 3 – t 2)  dt, find A'(x) 

 

8.  Let A(x) = ⌡⌠
0

x
 f(t)  dt  for the function graphed here.  Evaluate  

A'(1), A'(2), A'(3).    
 
 
 
For problems 9-10, the graph provided shows g'(x).  Use it sketch a graph of g(x) that satisfies 
g(0) = 0. 
 

9.   10.   
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Section 3: Antiderivatives of Formulas 
 
Now we can put the ideas of areas and antiderivatives together to get a way of evaluating definite 

integrals that is exact and often easy.   To evaluate a definite integral  ⌡⌠
a

b
 f(t) dt  , we can find any 

antiderivative  F of  f and evaluate F(b) – F(a).  The problem of finding the exact value of a 
definite integral reduces to finding some (any) antiderivative  F  of the integrand and then 
evaluating  F(b) – F(a).  Even finding one antiderivative can be difficult, and  we will stick to 
functions that have easy antiderivatives.   

Building Blocks 
 
Antidifferentiation is going backwards through the derivative process.  So the easiest 
antiderivative rules are simply backwards versions of the easiest derivative rules.  Recall from 
Chapter 2: 
 Derivative Rules:  Building Blocks 
  In what follows, f and g are differentiable functions of x and k and n are constants.  
 

  (a) Constant Multiple Rule: ( ) 'kfkf
dx
d

=  

 

  (b) Sum (or Difference) Rule: ( ) '' gfgf
dx
d

+=+  (or ( ) '' gfgf
dx
d

−=− ) 

 

  (c)  Power Rule: ( ) 1−= nn nxx
dx
d  

   Special cases:   ( ) 0=k
dx
d (because 0kxk = ) 

    ( ) 1=x
dx
d (because 1xx = ) 

 

  (d)  Exponential Functions: ( ) xx ee
dx
d

=  

    ( ) xx aaa
dx
d

⋅= ln  

 
 

  (e) Natural Logarithm: ( )
x

x
dx
d 1ln =   

  
Thinking about these basic rules was how we came up with the antiderivatives of 2x and xe
before.   
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The corresponding rules for antiderivatives are next – each of the antiderivative rules is simply 
rewriting the derivative rule.  All of these antiderivatives can be verified by differentiating.   
 
There is one surprise – the antiderivative of 1/x is actually not simply ln(x), it’s ln|x|.  This is a 
good thing – the antiderivative has a domain that matches the domain of 1/x, which is bigger 
than the domain of ln(x), so we don’t have to worry about whether our x’s are positive or 
negative.  But you must be careful to include those absolute values – otherwise, you could end 
up with domain problems. 
 
 Antiderivative Rules:  Building Blocks 
  In what follows, f and g are differentiable functions of x and k, n, and C are constants.  
 
  (a) Constant Multiple Rule: ( )∫ ∫= dxxfkdxxkf )(  
 
  (b) Sum (or Difference) Rule: ( ) ( ) ( )∫∫ ∫ ±=± dxxfdxxfdxxgxf )(   
 

  (c)  Power Rule: C
n
xdxx

n
n +

+
=

+

∫ 1

1

, provided that n = −1 

   Special case:   ∫ += Ckxdxk (because 0kxk = ) 
     
 
  (d)  Exponential Functions: ∫ += Cedxe xx  

    C
a

adxa
x

x +=∫ ln
 

 
 

  (e) Natural Logarithm: ∫ ∫ +==− Cxdx
x

dxx ln11  
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Example 1 

Find the antiderivative of 2
7 14153

x
xx +−  

 

( ) Cxxxdxxxxdx
x

xx +
−

+−=+−=





 +−

−
−∫ ∫ 1

14
2/3

15
8

31415314153
12/38

22/17
2

7  

 
That’s a little hard to look at, so you might want to simplify a little: 

.1410
8

314153 12/3
8

2
7 Cxxxdx

x
xx +−−=






 +− −∫  

 
 

Example 2 

Find dx
x

ex∫ 





 −+

1612  

 

Cxxedx
x

e xx +−+=





 −+∫ ln16121612  

 
 
 

Example 3 
Find F(x) so that ( ) xexF =' and ( ) 100 =F . 
 
This time we are looking for a particular antiderivative; we need to find exactly the right 
constant.  Let’s start by finding the antiderivative: 

∫ += Cedxe xx  

So we know that ( ) += xexF some constant; we just need to find which one.  For that, we’ll use 
the other piece of information (the initial condition): 
( )
( )

9
1010 0

=
=+=+=

+=

C
CCeF

CexF x

 

The particular constant we need is 9; ( ) .9+= xexF  
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The reason we are looking at antiderivatives right now is so we can evaluate definite integrals 
exactly.  Recall the Fundamental Theorem of Calculus: 
 

   ( ) ( ) ( )aFbFdxxF
b

a
−=∫ '  

 
If we can find an antiderivative for the integrand, we can use that to evaluate the definite integral.  

The evaluation  F(b) – F(a)  is represented by the symbol  ( )]b

a
xF or ( )|b

a
xF . 

 
 
Example 4 

Evaluate  ∫
3

1

dxx in two ways:   

 (i) By sketching the graph of  y = x  and geometrically finding the area.   
 (ii)  By finding an antiderivative of  F(x)  of  the integrand  and  evaluating  F(3)–F(1). 
    
 (i)  The graph of  y = x is shown to the right, and the shaded region 
corresponding to the integral has area  4. 
     

(ii)  One antiderivative of  x  is  2

2
1)( xxF = , and   

 

( ) ( ) .4
2
1

2
91

2
13

2
1

2
1 223

1

2
3

1
] =−=



−



==∫ xdxx   

 
Note that this answer agrees with the answer we got geometrically. 
 

If we had used another antiderivative of  x,  say  7
2
1)( 2 += xxF ,  

then   ( ) ( ) .47
2
17

2
971

2
173

2
17

2
1 223

1

2
3

1
] =−−+=



 +−



 +=






 +=∫ xdxx  

Whatever constant you choose, it gets subtracted away during the evaluation; we might as well 
always choose the easiest one, where the constant = 0. 

 
 
Example 5 

Find the area between the graph of  y = 3x2  and the horizontal axis for  x  between  1  and  2. 
 
This is ( ) ( ) .7123 332

1

32

1

2 ] =−==∫ xdxx  
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Example 6 

A robot has been programmed so that when it starts to move, its velocity after  t  seconds will be  
23t feet/second.   

 (a)  How far will the robot travel during its first 4 seconds of movement?   
 (b)  How far will the robot travel during its next  4  seconds of movement?  
 
 (a) The distance during the first 4 seconds will be the area under 
the graph of velocity, from t = 0  to  t = 4. 
    

That area is the definite integral ∫
4

0

23 dtt .  An antiderivative of  

23t   is 3t  , so ] 64043 334
0

34

0

2 =−==∫ tdtt feet. 

 

(b)  ] 44864512483 338
4

38

4

2 =−=−==∫ tdtt  feet. 

 
 
Example 7 

Suppose that  t  minutes after putting 1000 bacteria on a Petri plate the rate of growth of the 
population is  6t  bacteria per minute.   
(a)  How many new bacteria are added to the population during the first 7 minutes?    
(b)  What is the total population after  7  minutes?    
 
(a)  The number of new bacteria is the area under the rate of 
growth graph, and one antiderivative of  6t  is  3t2 .   
   

So new bacteria = ⌡⌠
0

7
 6t dt    =  3t2 |  

7

0
 = 3(7)2 – 3(0)2  = 147  

(b) The new population = (old population) + (new bacteria) 
= 1000 + 147 = 1147 bacteria. 
 

 
 
Example 8 

A company determines their marginal cost for production, in dollars per item, is 

24)( +=
x

xMC  when producing x thousand items.  Find the cost of increasing production 

from 4 thousand items to 5 thousand items. 
 
Remember that marginal cost is the rate of change of cost, and so the fundamental theorem tells 

us that )()()()( aCbCdxxCdxxMC
b

a

b

a

−=′= ∫∫ .  In other words, the integral of marginal cost will 
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give us a net change in cost.  To find the cost of increasing production from 4 thousand items to 

5 thousand items, we need to integrate ∫
5

4

)( dxxMC . 

 
We can write the marginal cost as 24)( 2/1 += −xxMC .  We can then use the basic rules to find 
an antiderivative: 

xxxxxC 282
2/1

4)(
2/1

+=+= .  Using this, 

Net change in cost = ( )] ( ) ( ) 889.3424852582824
5

4

5

4

≈⋅+−⋅+=+=







+∫ xxdx

x
 

It will cost 3.889 thousand dollars to increase production from 4 thousand items to 5 thousand 
items. 
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3.3 Exercises 
 
For problems  1-10, find the indicated antiderivative. 
 
1. ( )∫ +− dxxx 5143  2. ( )dxxx∫ −− 25.15.2 5  

3. ∫ dy3.12  4. ∫ dw2π  

5. ∫ dPeP  6. dx
x

ex x∫ 





 −+ 34

1  

7. ∫ dx
x
1  8. ∫ dx

x 2

1  

9. ( )( )∫ +− dxxx 22  10. ∫
− dt
t

tt 25

 

 
For problems 11-18, find an antiderivative of the integrand and use the Fundamental Theorem to 
evaluate the definite integral. 

11. ⌡⌠
2

5
 3x2 dx   12.  ⌡⌠

–1

2
 x2 dx  13. ⌡⌠

1

3
 (x2 + 4x – 3 )  dx  14.   

⌡
⌠

1

e

 
1
x dx 

 

15. ∫
100

25

dxx  16. ∫
5

3

dxx  17. ∫
10

1
2

1 dx
x

               18. ∫
1000

1
2

1 dx
x

  

  
For problems 19 - 21 find the area shown in the figure. 
 

19.     20.     21.  
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Section 4: Substitution 
 
We don’t have many integration rules.  For quite a few of the problems we see, the rules won’t 
directly apply; we’ll have to do some algebraic manipulation first.  In practice, it is much harder 
to write down the antiderivative of a function than it is to find a derivative.  (In fact, it’s really 
easy to write a function that doesn’t have any antiderivative you can find with algebra.) 
 
The Substitution Method is one way of algebraically manipulating an integrand so that the rules 
apply.  This is a way to unwind the Chain Rule for derivatives.  When you find the derivative of 
a function using the Chain Rule, you end up with a product of something like the original 
function TIMES a derivative.  We can reverse this to write an integral: 
 

( ) ( ) dxxgxgfxgf
dx
d )()()( ′′= ,      so    ( ) ( )∫ ′′= dxxgxgfxgf )()()(  

 

With substitution, we will substitute )(xgu = .   This means )(xg
dx
du ′= , so dxxgdu )(′= .  

Making this substitutions, ( )∫ ′′ dxxgxgf )()(  becomes ( )∫ ′ duuf , which will probably be easier 
to ingegrate. 
 
Try Substitution when you see a product in your integral, especially if you recognize one factor 
as the derivative of some part of the other factor. 
 
The Substitution Method for Antiderivatives: 
 
The goal is to turn ( )∫ dxxgf )( into ( )∫ duuf , where f(u) is much less messy than f(g(x)).   
 1. Let u be some part of the integrand.  A good first choice is “one step inside the messiest 

bit.” 

 2.  Compute dx
dx
dudu =  

 3. Translate all your x’s into u’s everywhere in the integral, including the dx.  When you’re 
done, you should have a new integral that is entirely in u.  If you have any x’s left, then 
that’s an indication that the substitution didn’t work or isn't complete; you may need to 
go back to step 1 and try a different choice for u. 

 4. Integrate the new u-integral, if possible.  If you still can’t integrate it, go back to step 1 
and try a different choice for u. 

 5. Finally, substitute back x’s for u’s everywhere in your answer. 
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Example 1 

Evaluate 
∫

−
dx

x
x

24 . 
 
This integrand is more complicated than anything in our list of basic integral formulas, so we’ll 
have to try something else.  The only tool we have is substitution, so let’s try that! 
 
1. Let u be some part of the integrand.  A good first choice is “one step inside the messiest bit.” 
In this case, the square root in the denominator is the messiest part, so let’s let u be one step 
inside: 
Let 24 xu −=  

2.  Compute dx
dx
dudu =  

xdxdu 2−=   
There is x dx in the integrand, so that’s a good sign; that will be −½du.   
 
3. Translate all your x’s into u’s everywhere in the integral, including the dx.   
 

( ) ∫∫∫∫∫ −−=−=





−=

−
=

−
duudu

u
du

u
xdx

x
dx

x
x 2/1

22 2
11

2
1

2
11

4
1

4  
 
Alternatively, we could have solved xdxdu 2−=  for dx and substituted that and simplified: 

x
dudx
2−

= , so 

 ∫∫∫∫∫ −−=−=





−=







−−

=
−

duudu
u

du
ux

du
x

xdx
x

x 2/1

22 2
11

2
1

2
11

244
 

 
4. Integrate the new u-integral, if possible. 

CuCuduu +−=+−=− ∫ − 2/1
2/1

2/1

2/12
1

2
1

 

 
5. Finally, undo our 24 xu −=  substitution, putting back x’s for u’s everywhere in your answer. 

CxCu +−−=+− 22/1 4 .  So we have found 
 

Cxdx
x

x
+−−=

−
∫ 2

2
4

4
. 

 
How would we check this?  By differentiating:  

( ) ( )( ) ( ) ( ) ( )
2

2/122/122/122

4
424

2
144

x
xxxxxCx

dx
dCx

dx
d

−
=−=−−−=+−−=+−−

−− . 
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Example 2 

Evaluate ( )∫
+

315x

x

e
dxe  

 
This integral is not in our list of building blocks.  But notice that the derivative of 15+xe (that 
we see in the denominator) is just xe (which I see in the numerator), so substitution will be a 
good choice for this. 
 

Let 15+= xeu .  Then dxedu x= , and this integral becomes ∫ ∫ −= duu
u
du 3

3 .   

Luckily, that is on our list of building block formulas:  ∫ +−=+
−

=
−

− .1
2 2

2
3 C

u
Cuduu    

Finally, translating back: 

( ) ( )
C

ee
dxe

xx

x

+
+

−=
+

∫ 23 15
1

15  
 
 
Example 3 

Evaluate  a) ∫ +
dx

x
x

53

2

 b) ∫
+ dx

x
x

2

3 5  

 
a) This is not a basic integral, but the composition is less obvious.  Here, we can treat the 
denominator as the inside of the 1/x function. 
 

Let 53 += xu .  Then dxxdu 23= .  Solving for dx, 23x
dudx = .   Substituting, 

∫∫∫∫ ===
+

du
u

du
ux

du
u
xdx

x
x 1

3
1

3
1

35 2

2

3

2

. 

 
Using our basic formulas, 

∫ = udu
u

ln
3
11

3
1  

 
Undoing the substitution, 

Cxdx
x

x
++=

+∫ 5ln
3
1

5
3

3

2

 

 
b)  It is tempting to start this problem the same way we did the last, but if we try it will not 
work, since the numerator of this fraction is not the derivative of the denominator.  Instead, we 
need to try a different approach.  For this problem, we can use some basic algebra. 
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( )∫∫∫ −+=







+=

+ dxxxdx
xx

xdx
x

x 2
22

3

2

3

555  

 
We can integrate this using our basic rules, without needing substitution. 

( ) C
x

xxxdxxx +−=
−

+=+
−

−∫
5

2
1

1
5

2
5 2

12
2  

 

Substitution and Definite Integrals 
 
When you use substitution to help evaluate a definite integrals, you have a choice for how to 
handle the limits of integration.  You can do either of these, whichever seems better to you.  The 
important thing to remember is – the original limits of integration were values of the original 
variable (say, x), not values of the new variable (say, u). 

(a) You can solve the antiderivative as a side problem, translating back to x’s, and then use 
the antiderivative with the original limits of integration.  Or 

(b) You can substitute for the limits of integration at the same time as you’re substituting for 
everything inside the integral, and then skip the “translate back into x” step.  If the 
original integral had endpoints  x =a  and   
x =b,  and we make the substitution  u = g(x ) and  du = g'(x )dx,  then the new integral 
will have endpoints  
u= g(a) and  u=g(b)  and  

 

   ⌡⌠
x=a

x=b
 (original integrand) dx     becomes    

u=g(b)
   (new integrand) du ⌡⌠

u=g(a)
 . 

 
Method (a) seems more straightforward for most students.  But it can involve some messy 
algebra.  Method (b) is often neater and usually involves fewer steps. 
 
 
Example 4 

Evaluate ⌡⌠
0

1
 (3x –1)4 dx   

 
We’ll need substitution to find an antiderivative, so we’ll need to handle the limits of 
integration carefully.  Let's solve this example both ways. 
 
(a) Doing the antiderivative as a side problem: 
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Step One – find the antiderivative, using substitution: 
 ( )∫ − dxx 413  

 Let 13 −= xu .  Then dxdu 3= and ( ) Cuduudxx +=





=− ∫∫ 53

1
3
113

5
44  

 Translating back to x: ( ) ( ) Cxdxx +
−

=−∫ 15
1313

5
4  

Step Two – evaluate the definite integral: 

 ( ) ( ) ( )( ) ( )( )
15
33

15
1

15
32

15
103

15
113

15
1313

551

0

5
1

0

4 =
−

−=
−

−
−

=


−
=−∫

xdxx . 

 
(b)  Substituting for the limits of integration: 
( )∫ −

1

0

413 dxx  

Let 13 −= xu .  Then dxdu 3= , and (substituting for the limits of integration) when x = 0,  
u = -1, when x = 1, u = 2. 

( ) ( ) ( )
15
33

15
1

15
32

15
1

15
2

153
113

55
2

1

52

1

41

0

4 ] =
−

−=
−

−==





=−

=

−=

=

−=

=

= ∫∫
u

u

u

u

x

x

uduudxx . 

 
 

Example 5 

Evaluate ( )
∫
10

2

6ln dx
x
x  

 
I can see the derivative of xln in the integrand, so I can tell that substitution is a good choice.  

Let xu ln= .  Then dx
x

du 1
= .  When 2=x , 2ln=u .  When 10=x , 10ln=u .  So the new 

definite integral is 
( ) ( ) ( )( ) .01.492ln10ln

7
1

7
ln 77

10ln

2ln

710ln

2ln

6
10

2

6

≅−=



==

=

=

=

=

=

=
∫∫

u

u

u

u

x

x

uduudx
x
x  
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3.4 Exercises 
 
For problems  1-8, find the indicated antiderivative. 
 

1. 
( )∫ +

dx
x 314

1  2. ∫ dxe x100  

3. ( )∫ dtt120003.1  4. ∫ dx
x

e x

2

/10

 

5. ∫ + dww 5  6. dxxx∫ −136 32  

7. ∫ xx
dx
ln

 8. ∫ +−
− dx

xx
x

56
3

2  

 
 
For problems 9-12, find an antiderivative of the integrand and use the Fundamental Theorem to 
evaluate the definite integral. 
 

9. ∫
− +

2

2
21

2 dx
x
x  10. ∫

1

0

2 dxe x  11. ⌡⌠
2

4
 (x – 2)3 dx    12.  ⌡⌠

0

1
  x 1 – x2  dx 
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Section 5: Additional Integration Techniques 

Integration By Parts 
Integration by parts is an integration method which enables us to find antiderivatives of some 
new functions such as )ln(x  as well as antiderivatives of products of functions such as )ln(2 xx
and xxe .   
 
If the function we're trying to integrate can be written as a product of two functions, u, and dv, 
then integration by parts lets us trade out a complicated integral for hopefully simpler one. 
 
  
 INTEGRATION BY PARTS FORMULA 
 
 ∫ ∫−= vduuvudv  
 
 For definite integrals, 

 ] ∫∫ −=
b

a

b

a

b
a vduuvudv  

   
 

Example 1 
Integrate ∫ dxxex  
 
To use the By Parts method, we break apart the product into two parts: 

xu =    and   dxedv x=  
 
We now calculate du, the derivative of u, and v, the integral of dv. 

dxdxx
dx
ddu 1=






=    and   xx edxev == ∫ . 

 
Using the By Parts formula, 

∫∫∫ −=−= dxexevduuvdxxe xxx  
 
Notice the remaining integral is simpler that the original, and one we can easily evaluate. 

Cexedxexedxxe xxxxx +−=−= ∫∫  
 

We could have chosen either x or xe  as our u in the last example, but had we chosen xe , the 
second integral would have become messier, rather than simpler.   
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 RULE OF THUMB 
 
 When selecting the u for By Parts, select a logarithmic expression if one 

is present.  If not, select an algebraic expression (like x or dx). 
   
 

Example 2 

Integrate ∫
4

1

2 ln6 dxxx  

 
Since this contains a logarithmic expression, we'll use it for our u. 

xu ln=    and   dxxdv 26=  
 
We now calculate du and v. 

dx
x

du 1
=    and   3

3
2 2

3
66 xxdxxv === ∫ . 

 
Using the By Parts formula, 

] ∫∫ −=
4

1

24
1

3
4

1

2 16ln2ln6 dx
x

xxxdxxx  

 
We can simplify the expression in the integral on the right: 

] ∫∫ −=
4

1

4
1

3
4

1

2 6ln2ln6 xdxxxdxxx  

 
The remaining integral is a basic one we can now evaluate. 

] ]4124
1

3
4

1

2 3ln2ln6 xxxdxxx −=∫  

 
Finally, we can evaluate the expressions 

( ) ( )[ ] [ ] ( ) 446.132454ln128)13()43(1ln124ln42ln6 2233
4

1

2 ≈−=⋅−⋅−⋅−⋅=∫ dxxx  

 

Integration Using Tables of Integrals 
There are many techniques of integration we will not be studying.  Many of them lead to general 
formulas which can be compiled into a Table of Integrals - a type of cheat-sheet for integration.   
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For example, here are two entries you might find in a table of integrals: 

 
  
 TABLE OF INTEGRAL EXAMPLES 
 

 ∫ +
+
−

=
−

C
ax
ax

aax
ln

2
11

22    

 ∫ +++=
+

Caxx
ax

22

22
ln1  

   
   

Example 3 

Integrate dx
x∫ − 9

5
2  

 
This integral looks very similar to the form of the first integral in the examples table.  By 
employing the rule that allows us to pull out constants, and by rewriting 9 as 32, we can better 
see the match. 

∫∫ −
=

−
dx

x
dx

x 222 3
15

9
5

 

 
Now we simply use the formula from the table, with a = 3. 
 

C
x
x

x
xdx

x
dx

x
+

+
−

=







+
−

⋅
=

−
=

− ∫∫ 3
3ln

6
5

3
3ln

32
15

3
15

9
5

222  

 

Sometimes we have to combine the table with other techniques we've learned, like substitution.  

Example 4 

Integrate dx
x

x
∫

+166

2

 

 
This integral looks somewhat like the second integral in the example table, but the power of x is 
incorrect, and there is an x2 in the numerator which does not match.  Trying to utilize this rule, 
we can try to rewrite the denominator to look like (something)2.  Luckily, ( )236 xx =  

dx
x

x
∫

+166

2

 =
( )

dx
x

x
∫

+1623

2

 

 
Now we can use substitution, letting 3xu = , so dxxdu 23= .   
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Making the subsitution, 

( )
du

u
du

u
dx

x

x
∫∫∫

+
=

+
=

+ 16
1

3
1

316
1

16 2223

2

 

 
Now we can use the table entry. 

Cuudu
u

+++=
+

∫ 16ln
3
1

16
1

3
1 2

2
 

 
Undoing the substitution, 

Cxxdx
x

x
+++=

+
∫ 16ln

3
1

16
63

6

2

 

 

3.5 Exericses 
 
In problems  1–4,  a function  u  or  dv  is given.  Find the piece  u  or  dv  which is not given, 
calculate  du  and  v, and apply the Integration by Parts Formula. 
 
1. ⌡⌠   12x.ln(x) dx u = ln(x) 2.  ⌡⌠  x.e–x  dx u = x 

 
3. ⌡⌠   x4 ln(x) dx dv = x4 dx 4.  ⌡⌠  x.(5x + 1)19 dx u = x 

 
In problems 5 - 10 evaluate the integrals 
 

5. ⌡⌠
0

1
  

x
e3x    dx   6. ⌡⌠

0

1
   10x.e3x dx  7.  ⌡⌠

1

3
  ln(2x + 5)  dx  

 

8. ⌡⌠   x3 ln(5x) dx  9.  ⌡⌠  x ln(x + 1) dx  10. ⌡⌠
1

2
  
ln(x)
x2    dx 

 
For problems 11 - 14 integrate each function. 
 

11. ⌡⌠ 1
4 – x2     12. ⌡⌠ 2

9 – x2     13. ⌡⌠ 4 + x2    14.   ⌡⌠ 9 + x2  
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Section 6: Area, Volume, and Average Value 

Area 
 
We have already used integrals to find the area between the graph of a function and the 
horizontal axis.  Integrals can also be used to find the area between two graphs. 
 
If  f(x) ≥ g(x) for all  x  in  [a,b], then we can approximate the area between  f  and  g  by partitioning 
the interval  [a,b]  and forming a Riemann sum, as shown in the picture.  The height of each 
rectangle is  top – bottom,  f(ci) – g(ci)  so the area of the ith rectangle is   

(height).(base) = (f(ci) – g(ci)).∆x .  Adding up this rectangles gives an approximation of the total 

area as ( ) ( )( )∑
=

∆−
n

i
ii xcgcf

1

, a Riemann sum.   

 

 
 

The limit of this Riemann sum, as the number of rectangles gets larger and their width gets 
smaller, is the definite integral  ( ) ( )( )∫ −

b

a
dxxgxf .  

 
 The area between two curves f(x) and g(x), where f(x) ≥ g(x), between x = a and x = b 

is 
   ( ) ( )( )∫ −

b

a
dxxgxf  

 The integrand is “top – bottom.”  Make a graph to be sure which curve is which. 
 
 
Example 1 

Find the area bounded between the graphs of  f(x) = x  and  g(x) = 3  for  1 ≤ x ≤ 4.   
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Always start with a graph so you can see which graph is the top and which is the bottom.  In 
this example, the two curves cross, and they change positions; we’ll need to split the area into 
two pieces.  Geometrically, we can see that the area is 2 + ½ = 2.5. 
 
Writing the area as a sum of definite integrals, we get: 
Area = ( ) ( )∫∫ −+−

4

3

3

1
33 dxxdxx   

These integrals are easy to evaluate using antiderivatives: 

( ) .2
2
2515

2
99

2
33

3

0

23

1
=














 −−






 −=








−=−∫

xxdxx  

   

( ) .
2
19

2
912

2
163

2
3

4

3

24

3
=














 −−






 −=








−=−∫ xxdxx  

   
The two integrals also tell us that the total area between  f  and  g  is  2.5  square units, which 
we already knew. 

 
Note that the single integral ( ) 5.13

4

1
=−∫ dxx   is not the area we want in the last example.  The 

value of the integral is 1.5, and the value of the area is 2.5.  That’s because for the triangle on 
the right, the graph of y = x is above the graph of y = 3, so the integrand 3 – x is negative; in the 
definite integral, the area of that triangle comes in with a negative sign. 
 
In this example, it was easy to see exactly where the two curves crossed so we could break the 
region into the two pieces to figure separately.  In other examples, you might need to solve an 
equation to find where the curves cross. 
 
Example 2 

Two objects start from the same location and travel along the 
same path with velocities ( ) 3+= ttvA   and ( ) 342 +−= tttvB  
meters per second.  How far ahead is  A  after 3 seconds?   
 
Since ( ) ( )tvtv BA ≥   , the "area" between the graphs of  ( )tvA   
and ( )tvB represents the distance between the objects.   
 
After 3 seconds, the distance apart  

( ) ( )( ) ( ) ( )( ) ( )∫∫∫ −=+−−+=−=
3

0

23

0

23

0
5343 dtttdttttdttvtv BA  

( ) 5.130
3

279
2
5

32
5

3

0

3
2 =−






 −⋅=








−=

tt meters. 
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Volume 
Just as we can partition an interval and imagine approximating an area with rectangles to find a 
formula for the area between curves, we can partition an interval and imagine approximating a 
volume with simple shapes to find a formula for the volume of a solid.  While this approach 
works for a variety of shapes, our focus will be on shapes formed by revolving a curve around 
the horizontal axis. 
 
We start with an area, the region below a function on the interval a ≤ x ≤ b.  We are going to take 
that region, and rotate it around the x axis, creating the solid shape shown. 

 
 
To find the volume of this solid, we can start by partitioning the 
interval [0,1] and approximating the area with rectangles.  As before, 
the width of each rectangle would be ∆x and the height f(ci).  
 
If we took just one of these rectangles and rotated it about the 
horizontal axis, it would form a cylindrical shape.  The radius of that 
cylinder would be f(ci), so the volume would be ( ) xcfhrV i ∆== 22 )(ππ  
 
The volume of the whole solid could be approximated by rotating each 
of the rectangles about the x axis.  Adding up the volume of each of the 
little cylindrical discs gives an approximation of the total volume as 

( )( )∑
=

∆
n

i
i xcf

1

2π , a Riemann sum. 

 
The limit of this sum as the width of the rectanges becomes small is the 

definite integral ( )( ) dxxf
b

a
∫ 2π . 

 
 The volume of the solid obtained by rotating about the x-axis the area bounded by the 

curve f(x), the x-axis, x = a, and x = b is 
   ( )( )∫

b

a
dxxf 2π  

 
 
 
 

a b 

Rotate about 
the axis 

a b 

a 
b 
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Example 3 
Find the volume of the solid formed by rotating the area under ( ) xexf −=  on the interval [0,1] 
about the x-axis. 
 
This is the region pictured in the earlier example.  We substitute 
in the function and bounds into the formula we derived to set up 
the definite integral. 
Volume = ( )∫ −1

0

2dxe xπ  

 
Using exponent rules, the integrand can be simplified.  The 
constant π can be pulled out of the integral.   

∫ −1

0

2 dxe xπ  

 
Using the substitution u = -2x, we can integrate this function. 

358.1
2
1

2
1

2
1 )0(2)1(21

0

1

0

22 ≈





−−






−=

−= −−−−∫ eeedxe xx ππππ cubic units 

 
 

Average Value 
 
We know the average of n numbers, a1, a2, . . . , an , is their sum divided by n.  But what if we need 
to find the average temperature over a day’s time --  there are too many possible temperatures to add 
them up.  This is a job for the definite integral.   
 
 The average value of a function f(x) on the interval [a, b] is given by 

   ( )∫−

b

a
dxxf

ab
1  

  
 
 
The average value of a positive f  has a nice 
geometric interpretation.  Imagine that the area 
under  f  (Fig. a)  is a liquid that can "leak" 
through the graph to form a rectangle with the 
same area  (Fig. b).  
 
If the height of the rectangle is  H, then the area 
of the rectangle is ( )abH −⋅  .  We know the area of the rectangle is the same as the area under  

f  so ( ) ( )∫=−⋅
b

a
dxxfabH .  Then ( )∫−

=
b

a
dxxf

ab
H 1 , the average value of  f  on  [a,b]. 

The average value of a positive function  f  is the height  H  of the rectangle whose area is the 
same as the area under  f. 

0 1 

1 
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Example 4 

During a 9 hour work day, the production rate at time  t  hours after the start of the shift was 
given by the function ttr += 5)(  cars  per hour.  Find the average hourly production rate. 
 

The average hourly production is ( ) 75
09

1 9

0
=+

− ∫ dtt cars per hour. 

 
 
A note about the units – remember that the definite integral has units (cars per hour) ∙ (hours) = 
cars.  But the 1/(b-a) in front has units 1/hours – the units of the average value are cars per hour, 
just what we expect an average rate to be.   
 
In general, the average value of a function will have the same units as the integrand. 
 
Function averages, involving means and more complicated averages, are used to "smooth" data 
so that underlying patterns are more obvious and to remove high frequency "noise" from signals.  
In these situations, the original function  f  is replaced by some "average of  f."  If  f  is rather 

jagged time data, then the ten year average of  f  is  the integral ( ) ( )∫
+

−
=

5

510
1 x

x
dttfxg  , an average 

of  f  over  5 units on each side of  x.   For 
example, the figure here1  shows the graphs of a 
Monthly Average (rather “noisy” data) of surface 
temperature data, an Annual Average (still rather 
“jagged), and a Five Year Average (a much 
smoother function).  Typically the average 
function reveals the pattern much more clearly 
than the original data.  This use of a “moving 
average” value of “noisy” data (weather 
information, stock prices) is a very common. 

 
 
 
 
 
 
 
 
 
 
 
 

Example 5 

                                                 
1 http://commons.wikimedia.org/wiki/File:Short_Instrumental_Temperature_Record.png, CC-BY 

http://commons.wikimedia.org/wiki/File:Short_Instrumental_Temperature_Record.png
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The graph to the right shows the amount 
of water in a reservoir over a 12 hour 
period.  Estimate the average amount of 
water in the reservoir over this period. 
 
If ( )tV is the volume of the water (in 
millions of liters) after t hours, then the 

average amount is ( )∫
12

012
1 dttV  . In order 

to find the definite integral, we’ll have to 
estimate.   I’ll use 6 rectangles, and I’ll take the heights from their right edges.   
 

 
My estimate of  the integral is 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 6.17922229.1921222.827.9218
12

0

=+++++≅∫ dttV .  

 
The units of this integral are millions of liters × feet.  So my estimate of the average volume is 

15
12

6.179
≅ millions of liters.  Your estimate might be a little different. 

 
In the figure below, you can see the same graph with the line 15=y drawn in.  The area under 
the curve and the area under the 
rectangle are (approximately) the 
same.   
 
In fact, that would be a different way 
to estimate the average value.  We 
could have estimated the placement of 
the horizontal line so that the area 
under the curve and under the line 
were equal. 
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3.6 Exercises 
 
In problems 1 – 4, use the values in the table to estimate the areas.   
 

x  ( )xf  ( )xg  ( )xh  
0 5 2 5 
1 6 1 6 
2 6 2 8 
3 4 2 6 
4 3 3 5 
5 2 4 4 
6 2 0 2 

 
1. Estimate the area between f and g, between x = 0 and x = 4. 
2. Estimate the area between g and h, between x = 0 and x = 6. 
3. Estimate the area between f and h, between x = 0 and x = 4. 
4. Estimate the area between f and g, between x = 0 and x = 6. 
 
 
5. Estimate the area of the island shown 
  
   
In problems 6 – 15, find the area between the graphs of  f  
and  g  for  x  in the given interval.  Remember to draw 
the graph! 
 
6. f(x) = x2 + 3 ,  g(x) = 1   and  –1 ≤ x ≤ 2.  

7. f(x) = x2 + 3 ,  g(x) = 1 + x   and  0 ≤ x ≤ 3. 

8. f(x) = x2 ,  g(x) = x   and  0 ≤ x ≤ 2.  

9. f(x) = (x –1)2 ,  g(x) = x  + 1  and  0 ≤ x ≤ 3. 

10. f(x) = 
1
x   ,  g(x) = x   and  1 ≤ x ≤ e.  

11. f(x) = x   ,  g(x) = x   and  0 ≤ x ≤ 4. 

12. f(x) = 4 – x 2 ,  g(x) = x  + 2 and  0 ≤ x ≤ 2. 

13. f(x) = ex ,  g(x) = x   and  0 ≤ x ≤ 2.  

14. f(x) = 3 ,  g(x) = 1 – x2     and  0 ≤ x ≤ 1.  

15. f(x) = 2 ,  g(x) = 4 – x2     and  –2 ≤ x ≤ 2. 
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For problems 16-18, find the volume of the solid obtained by rotating the specified region about 
the x axis. 

16.  Region under f(x) = x2 + 3  for  –1 ≤ x ≤ 2. 
17.  Region under f(x) = 4 – x 2  for  0 ≤ x ≤ 2. 

18.  Region under f(x) = 
1
x   for 1 ≤ x ≤ 2. 

 
In problems  19 and 20 use the values in the table  to estimate the average values. 

x  ( )xf  ( )xg  
0 5 2 
1 6 1 
2 6 2 
3 4 2 
4 3 3 
5 2 4 
6 2 0 

 
19. Estimate the average value of  f  on the interval [0, 6]. 
20. Estimate the average value of  g  on the interval [0, 6]. 
 
In problems 21 – 26, find the average value of  f  on the given interval. 
 
21. f(x)  from the graph for  0 ≤ x ≤ 2.  
22. f(x)  from the graph for  0 ≤ x ≤ 4. 
23. f(x)  from the graph for  1 ≤ x ≤ 6.  
24. f(x)  from the graph for  4 ≤ x ≤ 6. 
25. f(x) = 2x + 1  for  0 ≤ x ≤ 4.  
26. f(x) = x 2  for  0 ≤ x ≤ 2. 

 
27. The graph shows the velocity of a car during a  5 hour trip. 
 (a) Estimate how far the car traveled during the 5 hours. 
 (b) At what constant velocity should you drive in order to 

travel the same distance in 5 hours? 
 
 
 
 
28. The graph shows the number of telephone calls per minute 

at a large company. Estimate the average number of calls 
per minute 

 (a)  From 8 am  to  5 pm.    
 (b)  From  9 am to  1 pm.   
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Section 7: Applications to Business 

Consumer and Producer Surplus 
 
Here are a demand and a supply curve for a product.  Which is which? 
 

 
 
The demand curve is decreasing – lower prices are associated with higher quantities demanded, 
higher prices are associated with lower quantities demanded.  Demand curves are often shown as 
if they were linear, but there’s no reason they have to be. 
 
The supply curve is increasing – lower prices are associated with lower supply, and higher prices 
are associated with higher quantities supplied. 
 
The point where the demand and supply curve cross is called the equilibrium point (q*, p*).   

                       
 
Suppose that the price is set at the equilibrium price, so that the quantity demanded equals the 
quantity supplied.   Now think about the folks who are represented on the left of the equilibrium 
point.  The consumers on the left would have been willing to pay a higher price than they ended 
up having to pay, so the equilibrium price saved them money.  On the other hand, the producers 
represented on the left would have been willing to supply these goods for a lower price – they 
made more money than they expected to.  Both of these groups ended up with extra cash in their 
pockets! 

 supply 
 p=s(q) 

demand 
 p=d(q) 

Consumer 
Surplus 

Producer 
Surplus 

(q*, p*) 
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Graphically, the amount of extra money that ended up in consumers’ pockets is the area between 
the demand curve and the horizontal line at p*.  This is the difference in price, summed up over 
all the consumers who spent less than they expected to – a definite integral.  Notice that since the 
area under the horizontal line is a rectangle, we can simplify the area integral: 

( )( ) ( ) ( ) ****
*

0

*

0

*

0

*

0
qpdqqddqpdqqfdqpqd

qqqq
−=−=− ∫∫∫∫  

 
The amount of extra money that ended up in producers’ pockets is the area between the supply 
curve and the horizontal line at p*.  This is the difference in price, summed up over all the 
producers who received more than they expected to.  Similar to consumer surplus, this integral 
can be simplified: 

( )( ) ( ) ( )∫∫∫∫ −=−=−
*

0

*

0

*

0

*

0
****

qqqq
dqqsqpdqqsdqpdqqsp  

 
 Consumer and Producer Surplus 
 Given a demand function p = d(q) and a supply function p = s(q), and the equilibrium point 

(q*, p*) 
  The consumer surplus = ( ) **

*

0
qpdqqd

q
−∫  

  The producer surplus = ( )∫−
*

0
**

q
dqqsqp  

  The sum of the consumer surplus and producer surplus is the total gains from trade.   
 
 
What are the units of consumer and producer surplus?   
The units are (price per item)(quantity of items) = money!   
 
Example 1 

Suppose the demand for a product is given by 1508.0)( +−== qqdp and the supply for the 
same product is given by qqsp 2.5)( == .  For both functions, q is the quantity and p is the 
price, in dollars. 
a. Find the equilibrium point. 
b. Find the consumer surplus at the equilibrium price. 
c. Find the producer surplus at the equilibrium price. 
 
a. The equilibrium point is where the supply and demand functions are equal.  Solving 

qq 2.51508.0 =+−    gives   q = 25.   
The price when q = 25 is p = 130; the equilibrium point is (25, 130). 

b. The consumer surplus is:  ( ) ( )( ) .250$251301508.0
25

0

=−+−∫ dqq  

c. The producer surplus is:  ( )( ) .1625$2.525130
25

0

=− ∫ qdq  

 



Chapter 3    The Integral Business Calculus 215 
  

 
Example 2 

The tables below show information about the demand and supply functions for a product.  For 
both functions, q is the quantity and p is the price, in dollars. 
 

 
a. Which is which?  That is, which table represents demand and which represents supply? 
b. What is the equilibrium price and quantity? 
c. Find the consumer and producer surplus at the equilibrium price. 
 
a. The first table shows decreasing price associated with increasing quantity; that is the demand 
function. 
 
b. For both functions, q = 400 is associated with p = 40; the equilibrium price is $40 and the 
equilibrium quantity is 400 units.  Notice that we were lucky here, because the equilibrium 
point is actually one of the points shown.  In many cases with a table, we would have to 
estimate. 
 
c. The consumer surplus uses the demand function, which comes from the first table.  We’ll 
have to approximate the value of the integral using rectangles.  There are 4 rectangles, and I 
choose to use left endpoints.  

The consumer surplus = ( ) ( )( ) ≅−∫ 40040demand
400

0

dq

( )( ) ( )( ) ( )( ) ( )( ) ( ) 7000400)(4010046100531006110070 =−+++ .   
The consumer surplus is about $7,000. 
 
The producer surplus uses the supply function, which comes from the second table.  I choose to 
use left endpoints for this integral also.  

The producer surplus  = ( ) ≅− ∫
400

0

supply)400)(40( dq

( )( ) ( )( ) ( )( ) ( ) ( )[ ] 6400100)(33100)(28100211001440040 =+++− .   
The producer surplus is about $6400. 

 
  

q  0 100 200 300 400 500 600 700 
p  70 61 53 46 40 35 31 28 

 
q  0 100 200 300 400 500 600 700 
p  14 21 28 33 40 47 54 61 
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Continuous Income Stream 
In precalculus, you learned about compound interest in that really simple situation where you 
made a single deposit into an interest-bearing account and let it sit undisturbed, earning interest, 
for some period of time.  Recall: 
 
 Compound Interest Formulas 
  Let P = the principal (initial investment), r = the annual interest rate expressed as a 

decimal, and let A(t) be the amount in the account at the end of t years. 

  Compounding n times per year: ( )
nt

n
rPtA 





 += 1  

 
  Compounded continuously:  ( ) rtPetA =  
  If you’re using this formula to find what an account will be worth in the future, t > 0 and 

A(t) is called the future value. 
  If you’re using the formula to find what you need to deposit today to have a certain value 

P sometime in the future, t < 0 and A(t) is called the present value. 
     
 
 
You may also have learned somewhat more complicated annuity formulas to deal with slightly 
more complicated situations – where you make equal deposits equally spaced in time.   
 
But real life is not usually so neat. 
 
Calculus allows us to handle situations where “deposits” are flowing continuously into an 
account that earns interest.  As long as we can model the flow of income with a function, we can 
use a definite integral to calculate the present and future value of a continuous income stream.  
The idea is – each little bit of income in the future needs to be multiplied by the exponential 
function to bring it back to the present, and then we’ll add them all up (a definite integral). 
 
 
 Continuous Income Stream 
 Suppose money can earn interest at an annual interest rate of r, compounded continuously.  
 Let F(t) be a continuous  income function (in dollars per year) that applies between  
 year 0 and year T.   
 Then the present value of that income stream is given by ( )∫ −=

T rt dtetFPV
0

. 

 The future value can be computed by the ordinary compound interest formula rtPVeFV =  
 
 
 This is a useful way to compare two investments – find the present value of each to see which is 
worth more today. 
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Example 3 
You have an opportunity to buy a business that will earn $75,000 per year continuously over the 
next eight years.  Money can earn 2.8% per year, compounded continuously.  Is this business 
worth its purchase price of $630,000? 
 
First, please note that we still have to make some simplifying assumptions.  We have to assume 
that the interest rates are going to remain constant for that entire eight years.  We also have to 
assume that the $75,000 per year is coming in continuously, like a faucet dripping dollars into 
the business.  Neither of these assumptions might be accurate.   
 
But moving on: 
The present value of the $630,000 is, well, $630,000.  This is one investment, where we put our 
$630,000 in the bank and let it sit there. 
 
To find the present value of the business, we think of it as an income stream.  The function F(t) 
in this case is a constant $75,000 dollars per year, so F(t) = 75,000 .  The interest rate is 2.8% 
and the term we're interested in is 8 years, so  r = .028, and T = 8: 

66.511,67275000
8

0

028. ≅= ∫ − dtePV t  

The present value of the business is about $672,500, which is more than the $630,000 asking 
price – this is a good deal. 

 
 

While this integral could have been done using substitution, for many of the integrals in this 
section, we don't have the techniques to use antiderivatives, or in some cases no antiderivative 
exists.  Technology will work quickly, and it will give you an answer that’s good enough. 
 
 
Example 4 

A company is considering purchasing a new machine for its production floor.  The machine 
costs $65,000.  The company estimates that the additional income from the machine will be a 
constant $7000 for the first year, then will increase by $800 each year after that.  In order to buy 
the machine, the company needs to be convinced that it will pay for itself by the end of 8 years 
with this additional income.  Money can earn 1.7% per year, compounded continuously.  
Should the company buy the machine? 
 
We’ll assume that the income will come in continuously over the 8 years.  We’ll also assume 
that interest rates will remain constant over that 8-year time period. 
 
We’re interested in the present value of the machine, which we will compare to its $65,000 
price tag.  Let t  be the time, in years, since the purchase of the machine.  The income from the 
machine is different depending on the time.   
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From t = 0 to t = 1 (the first year), the income is constant $7000 per year.  From t = 1 to t = 8, 
the income is increasing by $800 each year; the income flow function F(t) will be 
( ) ( ) tttF 800620018007000 +=−+= .  To find the present value, we’ll have to divide the 

integral into the two pieces, one for each of the functions: 
 

( ) 7016680062007000
8

1

017.0
1

0

017.0 ≅++= ∫∫ −− dtetdtePV tt .  

 
The present value is greater than the cost of the machine, so the company should buy the 
machine. 

 

3.7 Exercises 
 
1.  The demand and supply functions for a certain product are given by qp 5.150 −= and 

5.1002. 2 += qp , where p is in dollars and q is the number of items. 
(a) Which is the demand function? 
(b) Find the equilibrium price and quantity 
(c) Find the total gains from trade at the equilibrium price.   

 
2. Still thinking about the product from Exercise 1, with its demand and supply functions, 

suppose the price is set artificially at $70 (which is above the equilibrium price).   
(a) Find the quantity supplied and the quantity demanded at this price.   
(b) Compute the consumer surplus at this price, using the quantity demanded. 
(c) Compute the producer surplus at this price, using the quantity demanded (why?). 
(d) Find the total gains from trade at this price. 
(e) What do you observe? 

 
3. When the price of a certain product is $40, 25 items can be sold.  When the price of the same 

product costs $20, 185 items can be sold.  On the other hand, when the price of this product 
is $40, 200 items will be produced.  But when the price of this product is $20, only 100 items 
will be produced.  Use this information to find supply and demand functions (assume for 
simplicity that the functions are linear), and  compute the consumer and producer surplus at 
the equilibrium price. 

 
4. Find the present and future values of a continuous income stream of $5000 per year for 12 

years if money can earn 1.3% annual interest compounded continuously. 
 
5. Find the present value of a continuous income stream of $40,000 per year for 35 years if 

money can earn  
(a) 0.8% annual interest, compounded continuously, 
 (b) 2.5% annual interest, compounded continuously, 
 (c) 4.5% annual interest, compounded continuously. 
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6. Find the present value of a continuous income stream ( ) ttF += 20 , where t is in years and F 
is in tens of thousands of dollars per year, for 10 years, if money can earn 2% annual interest, 
compounded continuously. 

 
7. Find the present value of a continuous income stream ( ) 23.012 ttF += , where t is in years and 

F is in thousands of dollars per year, for 8 years, if money can earn 3.7% annual interest, 
compounded continuously. 

 
8. Find the future value of a continuous income stream ( ) 1006408500 ++= ttF , where t is in 

years and F is in dollars per year, for 15 years, if money can earn 6% annual interest, 
compounded continuously. 

 
9. A business is expected to generate income at a continuous rate of $25,000 per year for the next 

eight years.  Money can earn 3.4% annual interest, compounded continuously.  The business 
is for sale for $153,000.  Is this a good deal? 
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Section 8: Differential Equations 
 
A differential equation is an equation involving the derivative of a function.  They allow us to 
express with a simple equation the relationship between a quantity and it's rate of change. 
 
 
Example 1 

A bank pays 2% interest on its certificate of deposit accounts, but charges a $20 annual fee.  
Write an equation for the rate of change of the balance, )(tB′ . 
 
If the balance )(tB  has units of dollars, then )(tB′  has units of dollars per year.  When we think 
of what is changing the balance of the account, there are two factors: 
1) The interest, which increases the balance, and 
2) The fee, which decreases the balance. 
 
Considering the interest, we know each year the balance will increase by 2%, but 2% of what?  
Each year that will change, since we earn interest on whatever the current balance is.  We can 
represent the amount of increase as 2% of the balance:  )(02.0 tB  dollars/year. 
 
The fee already has the units of dollars/year.  Since everything now has the same units, we can 
put the two together, and create the equation: 

20)(02.0)( −=′ tBtB  
 
 
The result is an example of a differential equation.  Notice this particular equation involves both 
the derivative and the original function, and so we can't simplify find )(tB  using basic 
integration. 
 
Algebraic equations contain constants and variables, and the solutions 
of an algebraic equation are typically numbers.  For example,  x = 3  
and  x = –2  are solutions of the algebraic equation  x2 = x + 6.  
Differential equations contain derivatives or differentials of functions.  
Solutions of differential equations are functions.  The differential 
equation  y' = 3x2  has infinitely many solutions, and two of those 
solutions are the functions  y = x3 + 2  and   y = x3 – 4. 
 
You have already solved lots of differential equations:  every time you 
found an antiderivative of a function  f(x), you solved the differential 
equation  y' = f(x)  to get a solution  y.  The differential equation   
y' = f(x) , however,  is just the beginning.  Other applications generate 
different differential equations, like in the bank balance example 
above. 
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Checking Solutions of Differential Equations 
Whether a differential equation is easy or difficult to solve, it is important to be able to check 
that a possible solution really satisfies the differential equation. 
 
A possible solution of an algebraic equation can be checked by putting the solution into the 
equation to see if the result is true:  x = 3  is a solution of  5x + 1 = 16  since  5(3) + 1 = 16 is 
true.  Similarly, a solution of a differential equation can be checked by substituting the function 
and the appropriate derivatives into the equation to see if the result is true:  y = x2  is a solution 
of  xy' = 2y  since y' = 2x and x(2x) = 2(x2) is true. 
 
Example 2 

Check  (a)  that  y = x2 + 5  is a solution of  y'' + y = x2 + 7  and  

 (b)  that  y = x + 5/x  is a solution of  y' + 
y
x   = 2. 

 
(a)  y = x2 + 5  so  y' = 2x  and  y'' = 2.  Substituting these functions for  y  and  y''  into the 
differential equation  y'' + y = x2 + 7, we have  y'' + y = (2) + (x2 + 5) = x2 + 7,  so  y = x2 + 5  is 
a solution of the differential equation. 
 
(b) y = x + 5/x  so  y' = 1 – 5/x2 .   Substituting these functions for  y  and  y '  in the 

differential equation  y' + 
y
x   = 2 ,  we have 

 y' + 
y
x   =  (1 – 5/x2) +  

1
x (x + 5/x) = 1 – 5/x2 + 1 + 5/x2  = 2, the result we wanted to verify. 

 
 

Separable Differential Equations 
 
A differential equation is called separable if the variables can be separated algebraically so that 
all the x's and dx are one one side of the equation, and all the y's and dy are on the other side of 
the equation.  In other words, so the equation has the form dyygdxxf )()( = . 
 
Once separated, separable differential equations can be solved by integrating both sides of the 
equation. 
 
Example 3 

Find the solution of  
y

xy
2

16 +
=′  

 
Rewriting y' is a helpful first step. 

y
x

dx
dy

2
16 +

=  
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Now we can multiply both sides by dx and by 2y to separate the variables. 
( )dxxydy 162 +=  

  
Integrating each side, 

( )∫∫ += dxxydy 162  

2
2

1
2 3 CxxCy ++=+  

 
Notice that we can combine the two constants to create a new, consolidated constant C, so we 
usually only bother to put a constant on the right side. 

Cxxy ++= 22 3  
  
As expected, there is a whole family of solutions to this differential equation. 
 
An initial value problem is a differential equation that provides additional information about the 
initial, or starting, value of the function.  This allows us to then solve for the constant and find a 
single solution. 
 
 
Example 4 

Find the solution of  
y

xy
2

16 +
=′ , which satisfies 3)2( =y  

 
In the previous example we found the general solution, Cxxy ++= 22 3 .   
Substituting in the initial condition, y = 3 when x = 2, 

C++= 2)2(33 22 , so C++= 2129 , giving 5−=C . 
 
The solution is 53 22 −+= xxy .  Sometimes it is desirable to solve for y. 

53 2 −+±= xxy , but since the initial condition had a positive y value, we isolate the solution  

53 2 −+= xxy  
 
 
Example 5 

A bank pays 2% interest on its certificate of deposit accounts, but charges a $20 annual fee.  If 
you initially invest $3,000, how much will you have after 10 years? 
 
You may recognize this as the example from the beginning of the section, for which we set up 

the equation 20)(02.0)( −=′ tBtB , or more simply, 2002.0 −= B
dt
dB  

 
We can separate this equation by multiply by dt and dividing by the entire expression on the 
right. 
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dt
B
dB

=
− 2002.0

 

 
Integrating the left side of this equation requires substitution.  Let 2002.0 −= Bu , so 

dBu 02.0= .  Making the substitution, 

2002.0ln
02.0
1ln

02.0
11

02.0
1

02.0
102.0/

2002.0
−=====

− ∫∫∫∫ Bu
u

du
uu

du
B
dB  

 
Integrating on the right side of the differential equation is comparably easier: 

Ctdt +=∫  
 
Together, this gives us the general solution to the differential equation: 

CtB +=− 2002.0ln
02.0
1  

 
Now we would like to solve for B.  Start by multiplying by 0.02. 

CtB 02.002.02002.0ln +=−   We can rename D = 0.02C for simplicity 

DtB +=− 02.02002.0ln    Exponentiate both sides: eleft = eright 
DtB ee +− = 02.02002.0ln     Use the log rule:  Ae A =ln  

DteB +=− 02.02002.0    Since the right side is always positive, we can drop 
      the absolute value sign. 

DteB +=− 02.02002.0    Using the rule BABA eee +=+  
DteeB 02.02002.0 =−    Rename k = eD 

tkeB 02.02002.0 =−     Add 20 and divide by 0.02 

1000
02.002.0

20 02.002.0

+=
+

=
tt kekeB   Rename A = k/0.02 

100002.0 += tAeB  
 
Finally, we can substitute our initial value of B = 3000 when t = 0 to solve for the constant A: 

10003000 )0(02.0 += Ae  
2000=A  

 
This gives us the equation for the account balance after t years:  10002000 02.0 += teB  
 
To find the balance after 10 years, we can evaluate this equation at t = 10. 

81.3442$10002000)10( )10(02.0 ≈+= eB  
 
It's worth noting that this answer isn't exactly right.  Differential equations assume continuous 
changes, and it is unlikely interest is compounded continuously or the fee is extracted 
continuously.  However, the answer is likely close to the actual answer, and differential 
equations provide a relatively simple model of a complicated situation. 
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Models of Growth 
The bank account example demonstrated one basic model of growth:  growth proportional to the 
existing quantity.  Bank accounts and populations both tend to grow this way if not constrained.  
This type of growth is called unlimited growth. 
 
 Unlimited Growth 
 If a quantity or population y grows at a rate proportional that quantity's size, it can be 

modeled with unlimited growth, which has the differential equation: 
 ryy =′ ,  where r is a constant 
 
 
Example 6 

A population grows by 8% each year.  If the current population is 5,000, find an equation for 
the population after t years. 
 
The population is growing by a percent of the current population, so this is unlimited growth. 

y
dt
dy 08.0=    Separate the variables 

dtdy
y

08.01
=   Integrate both sides 

Cty += 08.0ln   Exponentiate both sides 
Cty ee += 08.0ln   Simplify both sides, using the tricks we used in the bank example 

tAey 08.0=  
 
Now substitute in the initial condition 

)0(08.05000 Ae= , so A = 5000. 
The population will grow following the equation tey 08.05000= . 

 
Notice that the solution to the unlimited growth equation is an exponential equation. 
 
When a product is advertised heavily, sales will tend to grow very quickly, but eventually the 
market will reach saturation, and sales will slow.  In this type of growth, called limited growth, 
the population grows at a rate proportional to the distance from the maximum value. 
 
 Limited Growth 
 If a quantity grows at a rate proportional to the distance from the maximum value, M, it can 

be modeled with limited growth, which has the differential equation: 
 )( yMky −=′ ,  where k is a constant, and M is the maximum size of y. 
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Example 7 
A new cell phone is introduced.  The company estimates they will sell 200 thousand phones.  
After 1 month they have sold 20 thousand.  How many will they have sold after 9 months? 
 
In this case there is a maximum amount of phones they expect to sell, so M = 200 thousand.  
Modeling the sales, y, in thousands of phones, we can write the differential equation 

)200( yky −=′  
 
Since it was a new phone, 0)0( =y .  We also know the sales after one month, 20)1( =y .   
 
Solving the differential equation, 

)200( yk
dt
dy

−=   Separate the variables 

kdt
y

dy
=

−200
  Integrate both sides. On the left use the substitution yu −= 200  

Ckty +=−− 200ln  Multiply both sides by -1, and exponentiate both sides 
Ckty ee −−− =200ln   Simplify 
ktBey −=−200   Subtract 200, divide by -1, and simplify 

200+= −ktAey  
 
Using the initial condition 0)0( =y , 

2000 )0( += −kAe , so  2000 += A ,  giving 200−=A  
 
Using the value 20)1( =y , 

20020020 )1( +−= −ke  Subtract 200 and divide by -200 
ke−==

−
− 9.0

200
180   Take the ln of both sides 

ke k −== −ln9.0ln  Divide by -1 
105.09.0ln ≈−=k  

 
As a quick sanity check, this value is positive as we would expect, indicating that the sales are 
growing over time.  We now have the equation for the sales of phones over time: 

200200 105.0 +−= − teA  
 
Finally, we can evaluate this at t = 9 to find the sales after 9 months. 

26.122200200 )9(105.0 ≈+−= −eA thousand phones. 
 
Limited growth is also commonly used for learning models, since when learning a new skill, 
people typically learn quickly at first, then their rate of improvement slows down as they 
approach mastery. 
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Earlier we used unlimited growth to model a population, but often a population will be 
constrained by food, space, and other resources.  When a population grows both proportional to 
its size, and relative to the distance from some maximum, that is called logistic growth.  This 
leads to the differential equation )( yMkyy −=′ , which is accurate but not always convenient to 
use.  We will use a slight modification.  Since solving this differential equation requires 
integration techniques we haven't learned, the solution form is given. 
 
 
 Logistic Growth 
 If a quantity grows at a rate proportional to its size and to the distance from the maximum 

value, M, it can be modeled with logistic growth, which has the differential equation: 

 





 −=′

M
yryy 1  

 
 r can be interpreted as "the growth rate absent constraints" - how the population would 

grow if there wasn't a maximum value. 
 
 This differential equation has solutions of the form 

 rtAe
My −+

=
1

 

  
 
 
Example 8 

A colony of 100 rabbits is introduced to a reclaimed forest.  After 1 year, the population has 
grown to 300.  It is estimated the forest can sustain 5000 rabbits.  The forest service plans to 
reintroduce wolves to the forest when the rabbit population reaches 3000 rabbits.  When will 
that occur? 
 
The maximum sustainable population was given as M = 5000.  Using the solution form, 

rtAe
y −+
=

1
5000  

 
Using the 100)0( =y , we can solve for A 

)0(1
5000100 rAe−+

=   Simplify 

A+
=

1
5000100   Multiply both sides by 1+A 

5000)1(100 =+ A   Divide by 100 
501 =+ A  

49=A  
 
Now, using 300)1( =y , we can solve for r. 
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)1(491
5000300 re−+

=  

( ) 5000491300 =+ −re  

300
5000491 =+ −re  

3197.0
49

1
3

50

≈
−

=−re  

3197.0ln=− r  
1404.13197.0ln ≈−=r  

 
We now have the equation for the population after t years. 

te
y 1404.1491

5000
−+

=  

 
To answer the original equation, of when the rabbit population will reach 3000, we need to 
solve for t when y = 3000. 

te 1404.1491
50003000 −+

=  

( ) 50004913000 1404.1 =+ − te  

01361.0
49

1
3
5

1404.1 ≈
−

=− te  

01361.0ln1404.1 =− t  

77.3
1404.1
01361.0ln

≈
−

=t years. 

 
 
Logistic growth is also a good model for unadvertised sales.  A new product that is not 
advertised will have sales increase slowly at first, then grow as word of mouth spreads and 
people become familiar with the product.  Sales will level off as they approach market saturation. 
 

3.8 Exercises 
 
In problems  1 – 4, check that the function  y  is a solution of the given differential equation. 
 
1. y' + 3y = 6.  y = e–3x + 2. 2. y' – 2y = 8.  y = e2x – 4. 
 

3. y' = – x/y.  y = 7 – x2  . 4. y' = x – y.  y = x – 1 + 2e–x . 
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In problems  5 – 8 check that the function  y  is a solution of the given initial value problem. 
 
5. y' = 6x2 – 3  and  y(1) = 2 .  y = 2x3 – 3x + 3.  
6. y' = 6x + 4  and y(2) = 3.  y = 3x2 + 4x – 17.  
7. y' = 5y  and  y(0) = 7.  y = 7e5x.  
8. y' = –2y  and  y(0) = 3.  y = 3e–2x. 
  
 
In problems  9 – 12, a family of solutions of a differential equation is given.  Find the value of the 
constant C so the solution satisfies the initial value condition. 
 
9. y' = 2x  and  y(3) = 7.  y = x2 + C. 10. y' = 3x2 – 5  and  y(1) = 2.  y = x3 – 5x + C. 
 
11. y' = 3y  and  y(0) = 5.  y = Ce3x. 11. y' = –2y  and  y(0) = 3.  y = Ce–2x. 
 
In problems 13 – 18,  solve the differential equation.  (Assume that  x  and  y  are restricted so 
that division by zero does not occur.) 
 
13. y' = 2xy  14. y' = x/y 15. xy' = y + 3  
 
16. y' = x2y + 3y 17. y' = 4y 18. y' = 5(2 – y) 
 
In problems  19 – 22, solve the initial value separable differential equations. 
 
19. y' = 2xy  for y(0) = 3, y(0) = 5, and  y(1) = 2.  

20. y' = x/y  for  y(0) = 3, y(0) = 5, and  y(1) = 2. 

21. y' = 3y  for  y(0) = 4, y(0) = 7,  and  y(1) = 3.  

22. y' = –2y  for  y(0) = 4, y(0) = 7,  and  y(1) = 3. 

 
23. The rate of growth of a population  P(t)  which starts with 3,000 people and increases by 4% per year 

is P '(t) = 0.0392.P(t).  Solve the differential equation and use the solution to estimate the population 
in 20 years. 

 
24. The rate of growth of a population  P(t)  which starts with 5,000 people and increases by 3% per 

year is    P '(t) = 0.0296.P(t).  Solve the differential equation and use the solution to estimate the 
population in 20 years. 
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25. A manufacturer estimates that she can sell a maximum of 130 thousand cell phones in a city. 

By advertising heavily, her total sales grow at a rate proportional to the distance below this 
upper limit.  If she enters a new market, and after 6 months her total sales are 59 thousand 
phones, find a formula for the total sales (in thousands) t months after entering the market, 
and use this to estimate the total sales at the end of the first year. 

 
26.  The temperature of a turkey in the oven will grow like limited growth.  The turkey starts out 

at 40 degrees Fahrenheit, and is placed into a 350 degree oven.  After 30 minutes, the 
turkey's temperature has risen to 55 degrees.  How long will it take until the turkey's 
temperature reaches 165 degrees? 

 
27. A new cell phone is introduced into the market. It is predicted that sales will grow 

logistically. The manufacturer estimates that they can sell a maximum of 100 thousand cell 
phones. After 44 thousand cell phones have been sold, sales are increasing by 4 thousand 
phones per month.  Use this to estimate the total sales at the end of the first year. 

 
28. Biologists stocked a lake with 400 fish and estimated the carrying capacity of the lake to 

be 8000 fish. The number of fish tripled in the first year.  How long will it take the  
population to increase to 4000? 
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