Section 5: Additional Integration Techniques

Integration By Parts

Integration by parts is an integration method which enables us to find antiderivatives of some new functions such as $\ln(x)$ as well as antiderivatives of products of functions such as $x^2 \ln(x)$ and xe^x .

If the function we're trying to integrate can be written as a product of two functions, u, and dv, then integration by parts lets us trade out a complicated integral for hopefully simpler one.

INTEGRATION BY PARTS FORMULA

$$\int u dv = uv - \int v du$$

For definite integrals,

$$\int_{a}^{b} u dv = uv \Big]_{a}^{b} - \int_{a}^{b} v du$$

Example 1

Integrate $\int xe^x dx$

To use the By Parts method, we break apart the product into two parts: u = x and $dv = e^{x} dx$

We now calculate du, the derivative of u, and v, the integral of dv.

$$du = \left(\frac{d}{dx}x\right) dx = 1 dx$$
 and $v = \int e^x dx = e^x$.

Using the By Parts formula,

$$\int xe^{x} dx = uv - \int v du = xe^{x} - \int e^{x} dx$$

Notice the remaining integral is simpler that the original, and one we can easily evaluate. $\int xe^{x} dx = xe^{x} - \int e^{x} dx = xe^{x} - e^{x} + C$

We could have chosen either x or e^x as our u in the last example, but had we chosen e^x , the second integral would have become messier, rather than simpler.

RULE OF THUMB

When selecting the u for By Parts, select a logarithmic expression if one is present. If not, select an algebraic expression (like x or dx).

Example 2

Integrate
$$\int_{1}^{4} 6x^2 \ln x \, dx$$

Since this contains a logarithmic expression, we'll use it for our *u*. $u = \ln x$ and $dv = 6x^2 dx$

We now calculate *du* and *v*.

$$du = \frac{1}{x} dx$$
 and $v = \int 6x^2 dx = 6\frac{x^3}{3} = 2x^3$.

Using the By Parts formula,

$$\int_{1}^{4} 6x^{2} \ln x \, dx = 2x^{3} \ln x \Big]_{1}^{4} - \int_{1}^{4} 6x^{2} \frac{1}{x} \, dx$$

We can simplify the expression in the integral on the right:

$$\int_{1}^{4} 6x^{2} \ln x \, dx = 2x^{3} \ln x \Big]_{1}^{4} - \int_{1}^{4} 6x \, dx$$

The remaining integral is a basic one we can now evaluate.

$$\int_{1}^{4} 6x^{2} \ln x \, dx = 2x^{3} \ln x \Big]_{1}^{4} - 3x^{2} \Big]_{1}^{4}$$

Finally, we can evaluate the expressions

$$\int_{1}^{4} 6x^{2} \ln x \, dx = \left[\left(2 \cdot 4^{3} \ln 4 \right) - \left(2 \cdot 1^{3} \ln 1 \right) \right] - \left[(3 \cdot 4^{2}) - (3 \cdot 1^{2}) \right] = 128 \ln(4) - 45 \approx 132.446$$

Integration Using Tables of Integrals

There are many techniques of integration we will not be studying. Many of them lead to general formulas which can be compiled into a Table of Integrals - a type of cheat-sheet for integration.

For example, here are two entries you might find in a table of integrals:

TABLE OF INTEGRAL EXAMPLES $\int \frac{1}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$

$$\int \frac{1}{\sqrt{x^2 + a^2}} = \ln \left| x + \sqrt{x^2 + a^2} \right| + C$$

Example 3

Integrate
$$\int \frac{5}{x^2 - 9} dx$$

This integral looks very similar to the form of the first integral in the examples table. By employing the rule that allows us to pull out constants, and by rewriting 9 as 3^2 , we can better see the match.

$$\int \frac{5}{x^2 - 9} dx = 5 \int \frac{1}{x^2 - 3^2} dx$$

Now we simply use the formula from the table, with a = 3.

$$\int \frac{5}{x^2 - 9} dx = 5 \int \frac{1}{x^2 - 3^2} dx = 5 \left(\frac{1}{2 \cdot 3} \ln \left| \frac{x - 3}{x + 3} \right| \right) = \frac{5}{6} \ln \left| \frac{x - 3}{x + 3} \right| + C$$

Sometimes we have to combine the table with other techniques we've learned, like substitution.

Example 4

Integrate
$$\int \frac{x^2}{\sqrt{x^6 + 16}} dx$$

This integral looks somewhat like the second integral in the example table, but the power of x is incorrect, and there is an x^2 in the numerator which does not match. Trying to utilize this rule,

we can try to rewrite the denominator to look like (something)². Luckily, $x^6 = (x^3)^2$

$$\int \frac{x^2}{\sqrt{x^6 + 16}} dx = \int \frac{x^2}{\sqrt{(x^3)^2 + 16}} dx$$

Now we can use substitution, letting $u = x^3$, so $du = 3x^2 dx$.

Making the subsitution,

$$\int \frac{x^2}{\sqrt{\left(x^3\right)^2 + 16}} dx = \int \frac{1}{\sqrt{u^2 + 16}} \frac{du}{3} = \frac{1}{3} \int \frac{1}{\sqrt{u^2 + 16}} du$$

Now we can use the table entry.

$$\frac{1}{3}\int \frac{1}{\sqrt{u^2 + 16}} du = \frac{1}{3}\ln\left|u + \sqrt{u^2 + 16}\right| + C$$

Undoing the substitution,

$$\int \frac{x^2}{\sqrt{x^6 + 16}} dx = \frac{1}{3} \ln \left| x^3 + \sqrt{x^6 + 16} \right| + C$$

3.5 Exericses

In problems 1–4, a function u or dv is given. Find the piece u or dv which is not given, calculate du and v, and apply the Integration by Parts Formula.

1. $\int 12x \cdot \ln(x) dx$ $u = \ln(x)$ 2. $\int x \cdot e^{-x} dx$ u = x3. $\int x^4 \ln(x) dx$ $dv = x^4 dx$ 4. $\int x \cdot (5x + 1)^{19} dx$ u = x

In problems 5 - 10 evaluate the integrals

5.
$$\int_{0}^{1} \frac{x}{e^{3x}} dx$$

6. $\int_{0}^{1} 10x \cdot e^{3x} dx$
7. $\int_{1}^{3} \ln(2x+5) dx$
8. $\int x^{3} \ln(5x) dx$
9. $\int x \ln(x+1) dx$
10. $\int_{1}^{2} \frac{\ln(x)}{x^{2}} dx$

For problems 11 - 14 integrate each function.

11.
$$\int \frac{1}{4-x^2}$$
 12. $\int \frac{2}{9-x^2}$ 13. $\int \sqrt{4+x^2}$ 14. $\int \sqrt{9+x^2}$