Section 5: Additional Integration Techniques

Integration By Parts

Integration by parts is an integration method which enables us to find antiderivatives of some new functions such as $\ln (x)$ as well as antiderivatives of products of functions such as $x^{2} \ln (x)$ and $x e^{x}$.

If the function we're trying to integrate can be written as a product of two functions, u, and $d v$, then integration by parts lets us trade out a complicated integral for hopefully simpler one.

Integration By Parts Formula

$\int u d v=u v-\int v d u$
For definite integrals,
$\left.\int_{a}^{b} u d v=u v\right]_{a}^{b}-\int_{a}^{b} v d u$

Example 1

Integrate $\int x e^{x} d x$
To use the By Parts method, we break apart the product into two parts:
$u=x$ and $d v=e^{x} d x$
We now calculate $d u$, the derivative of u, and v, the integral of $d v$.
$d u=\left(\frac{d}{d x} x\right) d x=1 d x \quad$ and $\quad v=\int e^{x} d x=e^{x}$.
Using the By Parts formula,
$\int x e^{x} d x=u v-\int v d u=x e^{x}-\int e^{x} d x$
Notice the remaining integral is simpler that the original, and one we can easily evaluate.
$\int x e^{x} d x=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+C$

We could have chosen either x or e^{x} as our u in the last example, but had we chosen e^{x}, the second integral would have become messier, rather than simpler.

Rule of Thumb

When selecting the u for By Parts, select a logarithmic expression if one is present. If not, select an algebraic expression (like x or $d x$).

Example 2

Integrate $\int_{1}^{4} 6 x^{2} \ln x d x$
Since this contains a logarithmic expression, we'll use it for our u.

$$
u=\ln x \quad \text { and } \quad d v=6 x^{2} d x
$$

We now calculate $d u$ and v.

$$
d u=\frac{1}{x} d x \quad \text { and } \quad v=\int 6 x^{2} d x=6 \frac{x^{3}}{3}=2 x^{3} .
$$

Using the By Parts formula,

$$
\left.\int_{1}^{4} 6 x^{2} \ln x d x=2 x^{3} \ln x\right]_{1}^{4}-\int_{1}^{4} 6 x^{2} \frac{1}{x} d x
$$

We can simplify the expression in the integral on the right:

$$
\left.\int_{1}^{4} 6 x^{2} \ln x d x=2 x^{3} \ln x\right]_{1}^{4}-\int_{1}^{4} 6 x d x
$$

The remaining integral is a basic one we can now evaluate.

$$
\left.\left.\int_{1}^{4} 6 x^{2} \ln x d x=2 x^{3} \ln x\right]_{1}^{4}-3 x^{2}\right]_{1}^{4}
$$

Finally, we can evaluate the expressions

$$
\int_{1}^{4} 6 x^{2} \ln x d x=\left[\left(2 \cdot 4^{3} \ln 4\right)-\left(2 \cdot 1^{3} \ln 1\right)\right]-\left[\left(3 \cdot 4^{2}\right)-\left(3 \cdot 1^{2}\right)\right]=128 \ln (4)-45 \approx 132.446
$$

Integration Using Tables of Integrals

There are many techniques of integration we will not be studying. Many of them lead to general formulas which can be compiled into a Table of Integrals - a type of cheat-sheet for integration.

For example, here are two entries you might find in a table of integrals:

Table of Integral Examples

$$
\begin{aligned}
& \int \frac{1}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|+C \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}}=\ln \left|x+\sqrt{x^{2}+a^{2}}\right|+C
\end{aligned}
$$

Example 3

Integrate $\int \frac{5}{x^{2}-9} d x$
This integral looks very similar to the form of the first integral in the examples table. By employing the rule that allows us to pull out constants, and by rewriting 9 as 3^{2}, we can better see the match.

$$
\int \frac{5}{x^{2}-9} d x=5 \int \frac{1}{x^{2}-3^{2}} d x
$$

Now we simply use the formula from the table, with $a=3$.

$$
\int \frac{5}{x^{2}-9} d x=5 \int \frac{1}{x^{2}-3^{2}} d x=5\left(\frac{1}{2 \cdot 3} \ln \left|\frac{x-3}{x+3}\right|\right)=\frac{5}{6} \ln \left|\frac{x-3}{x+3}\right|+C
$$

Sometimes we have to combine the table with other techniques we've learned, like substitution.

Example 4

Integrate $\int \frac{x^{2}}{\sqrt{x^{6}+16}} d x$
This integral looks somewhat like the second integral in the example table, but the power of x is incorrect, and there is an x^{2} in the numerator which does not match. Trying to utilize this rule, we can try to rewrite the denominator to look like (something) ${ }^{2}$. Luckily, $x^{6}=\left(x^{3}\right)^{2}$

$$
\int \frac{x^{2}}{\sqrt{x^{6}+16}} d x=\int \frac{x^{2}}{\sqrt{\left(x^{3}\right)^{2}+16}} d x
$$

Now we can use substitution, letting $u=x^{3}$, so $d u=3 x^{2} d x$.

Making the subsitution,

$$
\int \frac{x^{2}}{\sqrt{\left(x^{3}\right)^{2}+16}} d x=\int \frac{1}{\sqrt{u^{2}+16}} \frac{d u}{3}=\frac{1}{3} \int \frac{1}{\sqrt{u^{2}+16}} d u
$$

Now we can use the table entry.

$$
\frac{1}{3} \int \frac{1}{\sqrt{u^{2}+16}} d u=\frac{1}{3} \ln \left|u+\sqrt{u^{2}+16}\right|+C
$$

Undoing the substitution,

$$
\int \frac{x^{2}}{\sqrt{x^{6}+16}} d x=\frac{1}{3} \ln \left|x^{3}+\sqrt{x^{6}+16}\right|+C
$$

3.5 Exericses

In problems $1-4$, a function u or $d v$ is given. Find the piece u or $d v$ which is not given, calculate du and v, and apply the Integration by Parts Formula.

1. $\int 12 x \cdot \ln (x) d x$
$\mathrm{u}=\ln (\mathrm{x})$
2. $\int \mathrm{x} \cdot \mathrm{e}^{-\mathrm{X}} \mathrm{dx}$
$\mathrm{u}=\mathrm{x}$
3. $\int x^{4} \ln (x) d x$
$d v=x^{4} d x$
4. $\int \mathrm{x} \cdot(5 \mathrm{x}+1)^{19} \mathrm{dx} \quad \mathrm{u}=\mathrm{x}$

In problems 5-10 evaluate the integrals
5. $\int_{0}^{1} \frac{x}{e^{3 x}} d x$
6. $\int_{0}^{1} 10 x \cdot e^{3 x} d x$
7. $\int_{1}^{3} \ln (2 x+5) d x$
8. $\int x^{3} \ln (5 x) d x$
9. $\int x \ln (x+1) d x$
10. $\int_{1}^{2} \frac{\ln (\mathrm{x})}{\mathrm{x}^{2}} \mathrm{dx}$

For problems 11-14 integrate each function.
11. $\int \frac{1}{4-x^{2}}$
12. $\int \frac{2}{9-x^{2}}$
13. $\int \sqrt{4+x^{2}}$
14. $\int \sqrt{9+x^{2}}$

