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This chapter is (c) 2013.  It was remixed by David Lippman from Shana Calaway's remix of Contemporary Calculus 

by Dale Hoffman.  It is licensed under the Creative Commons Attribution license. 

Section 1: The Definite Integral 

Distance from Velocity 
 

Example 1 

Suppose a car travels on a straight road at a constant speed of 40 miles per hour for two hours.  

See the graph of its velocity below.  How far has it gone? 

 
 

We all remember distance = rate × time, so this one is easy.  The car has gone 40 miles per 

hour × 2 hours = 80 miles. 

 

 

Example 2 

Now suppose that a car travels so that its speed increases steadily from 0 to 40 miles per hour, 

for two hours.  (Just be grateful you weren’t stuck behind this car on the highway.)  See the 

graph of its velocity in below. How far has this car gone? 

 
 

The trouble with our old reliable distance = rate × time relationship is that it only works if the 

rate is constant.  If the rate is changing, there isn’t a good way to use this formula.   
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But look at graph from the last example again.  Notice that distance = rate × time also 

describes the area between the velocity graph and the t-axis, between t = 0 and t = 2 hours.  The 

rate is the height of the rectangle, the time is the length of the rectangle, and the distance is the 

area of the rectangle.  This is the way we can extend our simple formula to handle more 

complicated velocities:  And this is the way we can answer the second example. 

 

The distance the car travels is the area between its velocity graph, the t-axis, t = 0 and t = 2.  

This region is a triangle, so its area is ½bh = ½(2 hours)(40 miles per hour) = 40 miles.  So the 

car travels 40 miles during its annoying trip. 

 

 

In our distance/velocity examples, the function represented a rate of travel (miles per hour), and 

the area represented the total distance traveled.  This principle works more generally: 

 

For functions representing other rates such as the production of a factory (bicycles per day), or 

the flow of water in a river (gallons per minute) or traffic over a bridge (cars per minute), or the 

spread of a disease (newly sick people per week), the area will still represent the total amount of 

something. 

 
Example 3 

The graph below shows the flow rate (cubic feet per second) of water in the Skykomish river at 

the town of Goldbar in Washington state.     

 
 

The area of the shaded region represents the total volume (cubic feet) of water flowing past the 

town during the month of October.  We can approximate this area to approximate the total water 

by thinking of the shaded region as a rectangle with a triangle on top. 
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Total water  =  total area ≈ area of rectangle + area of the “triangle” 

 ≈ (2000 cubic feet/sec)(30 days) + 
1

2
 (1500 cf/s)(30 days)   = (2750 cubic feet/sec)(30 days) 

Note that we need to convert the units to make sense of our result: 

Total water  ≈  (2750 cubic feet/sec)(30 days)  = (2750 cubic feet/sec)(2,592,000 sec)  

                     ≈ 7.128 x 109  cubic feet. 

 

About 7 billion cubic feet of water flowed past Goldbar in October. 

 

Approximating with Rectangles 
How do we approximate the area if the rate curve is, well, curvy?  We could use rectangles and 

triangles, like we did in the last example.  But it turns out to be more useful (and easier) to 

simply use rectangles.  The more rectangles we use, the better our approximation is. 

   
 

Suppose we want to calculate the area between the graph of a positive function  f  and the x–axis  

on the interval [a, b]  (graphed above).  The Riemann Sum method is to build several rectangles 

with bases on the interval [a, b] and sides that reach up to the graph of f  (see below).  Then the 

areas of the rectangles can be calculated and added together to get a number called a Riemann 

Sum of f on [a, b].  The area of the region formed by the rectangles is an approximation of the 

area we want. 
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Example 4 

Approximate the area in the graph on the 

left between the graph of  f and the x–

axis  on the interval  [2, 5] by summing 

the areas of the rectangles in  the graph 

on the right. 

 

The total area of rectangles is (2)(3) + 

(1)(5) = 11  square units. 

 

 

Example 5 

Let  A  be the region bounded by the graph of  f(x) = 1/x, the x–axis, and vertical lines  at  x = 1  

and  x = 5.  We can’t find the area exactly (with what we know now), but we can approximate it 

using rectangles. 

 

When we make our rectangles, we have a lot of choices.  We could pick any (non-overlapping) 

rectangles whose bottoms lie within the interval on the x-axis, and whose tops intersect with the 

curve somewhere.  But it’s easiest to choose rectangles that – (a) have all the same width, and 

(b) take their heights from the function at one edge.  Below you'll see two ways to use four 

rectangles to approximate this area.  In the first graph, we used left-endpoints; the height of 

each rectangle comes from the function value at its left edge.  In the second graph on the next 

page, we used right-hand endpoints.   

 

Left-hand endpoints:  The area is approximately the sum of the areas of the rectangles.  Each 

rectangle gets its height from the function  
x

xf
1

  and each rectangle has width = 1.   

 
You can find the area of each rectangle using area = height × width.  So the total area of the 

rectangles, the left-hand estimate of the area under the curve, is 

            08.2
12

25

4

1

3

1

2

1
114131211  ffff   

Notice that because this function is decreasing, all the left endpoint rectangles stick out above 

the region we want – using left-hand endpoints will overestimate the area. 

 

Right-hand endpoints:  The right-hand estimate of the area is 

            28.1
60
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15141312  ffff   
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All the right-hand rectangles lie completely under the curve, so this estimate will be an 

underestimate. 

 

We can see that the true area is actually in between these two estimates.  So we could take their 

average:   

Average:  68.1
60

101

2

60/7712/25



 

 

In general, the average of the left-hand and right-hand estimates will be closer to the real area 

than either individual estimate.   

 

My estimate of the area under the curve is about 1.68.  (The actual area is about 1.61.) 

 

If we wanted a better answer, we could use even more, even narrower rectangles.  But there’s a 

limit to how much work we want to do by hand.  In practice, it’s probably best to choose a 

manageable number of rectangles.  We’ll have better methods to get more accurate answers 

before long. 

 

These sums of areas of rectangles are called Riemann sums.  You may see a shorthand notation 

used when people talk about sums.   We won’t use it much in this book, but you should know 

what it means. 

 

 Riemann sum:  A Riemann sum for a function f(x) over an interval [a, b] is a sum of areas 

of rectangles that approximates the area under the curve.  Start by dividing the interval [a, 

b] into n subintervals; each subinterval will be the base of one rectangle. We usually 

make all the rectangles the same width Δx.  The height of each rectangle comes from the 

function evaluated at some point in its sub interval.  Then the Riemann sum is: 

           xxfxxfxxfxxf n  321  

 Sigma Notation:  The upper-case Greek letter Sigma Σ is used to stand for Sum.  Sigma 

notation is a way to compactly represent a sum of many similar terms, such as a Riemann 

sum. 

 Using the Sigma notation, the Riemann sum can be written  



n

i

i xxf
1

. 

 This is read aloud as “the sum as i = 1 to n of f of x sub i Delta x.”  The “i” is a counter, 

like you might have seen in a programming class.   
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Definition of the Definite Integral 
 

Because the area under the curve is so important, it has a special vocabulary and notation. 

 

 The Definite Integral: 
   

 The definite integral of a positive function f(x) over an interval [a, b] is the area  

  between f, the x-axis, x = a and x = b.    

 The definite integral of a positive function f(x) from a to b is the area under the curve 

between a and b. 

 

 If f(t) represents a positive rate (in y-units per t-units), then the definite integral of f from a 

to b is the total y-units that accumulate between t = a and t = b.  

   

 Notation for the Definite Integral:   

 The definite integral of f from a to b is written 

    
b

a
dxxf  

 The  symbol is called an integral sign; it’s an elongated letter S, standing for sum.  

  (The  corresponds to the Σ from the Riemann sum) 

 The dx on the end must be included;  The dx tells what the variable is – in this example, the 

variable is x.  (The dx corresponds to the x from the Riemann sum)  

 The function f is called the integrand. 

 The a and b are called the limits of integration. 

 

 Verb forms: 

 We integrate, or find the definite integral of a function.  This process is called 

integration. 

 Formal Algebraic Definition:    





n

i

i
n

b

a
xxfdxxf

1

lim .   

 Practical Definition: 

  The definite integral can be approximated with a Riemann sum (dividing the area into 

rectangles where the height of each rectangle comes from the function, computing the 

area of each rectangle, and adding them up).  The more rectangles you use, the narrower 

the rectangles are, the better your approximation will be. 

  

 Looking Ahead: 

  We will have methods for computing exact values of some definite integrals from 

formulas soon.  In many cases, including when the function is given to you as a table or 

graph, you will still need to approximate the definite integral with rectangles. 
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Example 6 

The graph shows y = r(t), the number of telephone calls made per hours on a Tuesday.  

Approximately how many calls were made between 9 pm and 11 pm?  Express this as a definite 

integral and approximate with a Riemann sum. 

  
 

We know that the accumulated calls will be the area under this rate graph over that two-hour 

period, the definite integral of this rate from t = 9 to t = 11.   

The total number of calls will be  
11

9
dttr . 

The top here is a curve, so we can’t get an exact answer.  But we can approximate the area 

using rectangles.  I’ll choose to use 4 rectangles, and I’ll choose left-endpoints: 

 

 
 

          .5.3125.1955.1805.1505.100
11

9
 dttr  

 

The units are calls per hour × hours = calls.   My estimate is that about 312 calls were made 

between 9 pm and 11 pm.  Is this an under-estimate or an over-estimate? 

 

Example 7 

Describe the area between the graph of  f(x) = 1/x, the x–axis, and the vertical lines at  x = 1  

and  x = 5  as a definite integral. 

 

This is the same area we estimated to be about 1.68 before.  Now we can use the notation of the 

definite integral to describe it.  Our estimate of  
5

1

1
dx

x
 was 1.68.  The true value of 

5

1

1
dx

x
 is 

about 1.61. 

 

 



Chapter 3    The Integral Applied Calculus 177 
  

 

Example 8 

Using the idea of area, determine the value of   
3

1
1 dxx .  

 

  
3

1
1 dxx represents the area between the graph of  f(x) = 1+x, the x–

axis, and the vertical lines at  1  and  3.   

   

Since this area can be broken into a rectangle and a triangle, we can 

find the area exactly.  The area equals  

4 + ½ (2)(2) = 6 square units. 

 

 

Example 9 

The table shows rates of population growth for Berrytown for several years.  Use this table to 

estimate the total population growth from 1970 to 2000: 

 

 
The definite integral of this rate will give the total change in population over the thirty-year 

period.  We only have a few pieces of information, so we can only estimate.  Even though I 

haven’t made a graph, we’re still approximating the area under the rate curve, using rectangles.  

How wide are the rectangles?  I have information every 10 years, so the rectangles have a width 

of 10 years.  How many rectangles?  Be careful here – this is a thirty-year span, so there are 

three rectangles.   

 

Using left-hand endpoints:  (1.5)(10) + (1.9)(10) + (2.2)(10) = 56  

Using right-hand endpoints: (1.9)(10) + (2.2)(10) + (2.4)(10) = 65  

Taking the average of these two: 5.60
2

6556



 

Our best estimate of the total population growth from 1970 to 2000 is 60.5 thousand people. 

 

Year (t) 1970 1980 1990 2000 

Rate of population growth R(t) 

(thousands of people per year) 

1.5 1.9 2.2 2.4 
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Signed Area 
 

You may have noticed that until this point, we’ve insisted that the integrand (the function we’re 

integrating) be positive.  That’s because we’ve been talking about area, which is always positive.  

If the “height” (from the function) is a negative number, then multiplying it by the width doesn’t 

give us actual area, it gives us the area with a negative sign.   

 

But it turns out to be useful to think about the possibility of negative area.  We’ll expand our idea 

of a definite integral now to include integrands that might not always be positive.  The “heights” 

of the rectangles, the values from the function, now might not always be positive. 

 

The Definite Integral and Signed Area: 
   

 The definite integral of a function f(x) over an interval [a, b] is the signed area  

  between f, the x-axis, x = a and x = b.    

 

 The definite integral of a function f(x) from a to b is the signed area under the curve 

between a and b. 

 

 If the function is positive, the signed area is positive, as before (and we can call it area.) 

 If the function dips below the x-axis, the areas of the regions below the x-axis come in with 

a negative sign.  In this case, we cannot call it simply “area.”  These negative areas take 

away from the definite integral. 

  
b

a
dxxf = (Area above x-axis) – (Area below x-axis). 

 

 If f(t) represents a positive rate (in y-units per t-units), then the definite integral of f from a 

to b is the total y-units that accumulate between t = a and t = b.  

 If f(t) represents any rate (in y-units per t-units), then the definite integral of f from a to b 

is the net y-units that accumulate between t = a and t = b. 

 

 

Example 10 

Find the definite integral of of  f(x) = –2  on the interval  [1,4]. 
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

1

4

  –2 dx   is the signed area of the region shown to the right.  The region lies below the x-axis, 

so the area, 6, comes in with a negative sign.  So the definite integral is 

1

4

  –2 dx   = –6. 

 

 

Negative rates indicate that the amount is decreasing.  For example, if f(t)  is the velocity of a car 

in the positive direction along a straight line at time  t  (miles/hour) , then negative values of  f  

indicate that the car is traveling in the negative direction, backwards.  The definite integral of f is 

the change in position of the car during the time interval.  If the velocity is positive, positive 

distance accumulates.  If the velocity is negative, distance in the negative direction accumulates. 

 

This is true of any rate.  For example, if  f(t)  is the rate of population change (people/year) for a 

town, then negative values of  f  would indicate that the population of the town was getting 

smaller, and the definite integral (now a negative number) would be the change in the 

population, a decrease,  during the time interval.   

 

Example 11 

In 1980 there were 12,000 ducks nesting around a lake, and the rate of population change (in 

ducks per year) is shown in Fig. 15.  Write a definite integral to represent the total change in the 

duck population from 1980 to 1990, and estimate the population in 1990. 

 
 

The change in population  

=  

1980

1990
 f(t) dt  = – (area between  f  and axis) 

 

 ≈  – (200 ducks/year).(10 years) = – 2000 ducks. 

 

Then (1990 duck population) = (1980 population) + (change from 1980 to 1990)  

  = (12,000) + ( –2000) =  10,000 ducks. 

 

 

Example 12 

A bug starts at the location  x = 12  on the x–axis at  1 pm walks along the axis with the velocity 

v(x) shown in the graph.  How far does the bug travel between 1 pm and 3 pm, and where is the 

bug at 3 pm? 
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Note that the velocity is positive from 1 until 2:30, then becomes negative.  So the bug moves in 

the positive direction from 1 until 2:30, then turns around and moves back toward where it 

started.  The area under the velocity curve from 1 to 2:30 shows the total distance traveled by 

the bug in the positive direction; the bug moved 12.5 feet in the positive direction.  The area 

between the velocity curve and the x-axis, between 2:30 and 3, shows the total distance traveled 

by the bug in the negative direction, back toward home; the bug traveled 2.5 feet in the negative 

direction.  The definite integral of the velocity curve,  
3

1
dttv , shows the net change in 

distance:  

  105.25.12
3

1
 dttv  

 

The bug ended up 10 feet further in the positive direction than he started.  At 3 pm, the bug is at 

x = 22. 

 

 

Example 13 

Use the graph to calculate  

0

2

 f(x) dx  , 

2

4

 f(x) dx  ,  

4

5

 f(x) dx  , and 

0

5

 f(x) dx  . 

     
 

Using the given areas, 

0

2

 f(x) dx  = 2,  

2

4

 f(x) dx  = – 5 ,   

4

5

 f(x) dx  = 2,  and 

  

0

5

 f(x) dx  = (area above) – (area below) = (2+2) – (5) = –1. 
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Approximating with Technology 
If your function is given as a graph or table, you will still have to approximate definite integrals 

using areas, usually of rectangles.  But if your function is given as a formula, you can turn to 

technology to get a better approximate answer.  For example, most graphing calculators have 

some kind of numerical integration tool built in.  You can also find many online tools that can do 

this; type numerical integration into any search engine to see a selection of these.   

 

Most numerical integration tools use rectangles to estimate the signed area, just as you would do 

by hand.  But they use many more rectangles than you would have the patience for, so they get a 

better answer.  Some of them use computer algebra systems to find exact answers; we will learn 

how to do this ourselves later in this chapter. 

 

When you turn to technology to find the value of a definite integral, be careful.  Not every tool 

will be able to give you a correct answer for every integral.  I have had good luck with my TI 84.  

You should make an estimate of the answer yourself first so you can judge whether the answer 

you get makes sense. 

 

Example 14 

Use technology to approximate the definite integral 
5

1

1
dx

x
.  (This is the same definite integral 

we approximated with rectangles before.) 

 

I used my TI-84; the answer it gave me was 1.609437912.  This agrees with the exact answer 

for all the decimal digits displayed.  WebMath said the answer was 1.60944, which is accurate 

for all the decimal digits displayed.  Microsoft Math said the answer was ln(5); that’s exactly 

correct.  Wolfram|Alpha says the answer is log(5); that’s not how everyone writes the natural 

log, so that might trick you into writing the wrong answer.   

 

Example 15 

Use technology to approximate the definite integral dxe xx




2

1

2

 

I asked WebMath, and it said the answer was zero – I know this is not correct, because the 

function here is positive, so there must be some area under the curve here.  I asked Microsoft 

Math, and it simply repeated the definite integral; that’s because there isn’t an algebraic way to 

find the exact answer.  I asked my TI-84, and it said the answer was 86.83404047; that makes 

sense with what I expected.  Wolfram|Alpha also says the answer is about 86.834.  So I believe:  

.834.86
2

1

2


 dxe xx  

Accumulation in Real Life 
 

We have already seen that the "area" under a graph can represent quantities whose units are not the 

usual geometric units of square meters or square feet.  For example, if  t  is a measure of time in 

seconds  and  f(t) is a velocity with units  feet/second, then  the definite integral has units 

(feet/second) ∙ (seconds) = feet. 
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In general, the units for the definite integral  

a

b

 f(x) dx   are   (y-units ) . (x-units).  A quick check 

of the units can help avoid errors in setting up an applied problem. 

 

In previous examples, we looked at a function represented a rate of travel (miles per hour); in 

that case, the area represented the total distance traveled.  For functions representing other rates 

such as the production of a factory (bicycles per day), or the flow of water in a river (gallons per 

minute) or traffic over a bridge (cars per minute), or the spread of a disease (newly sick people 

per week), the area will still represent the total amount of something. 

 

Example 16 

Suppose MR(q) is the marginal revenue in dollars/item for selling q items.  What does 

 
150

0
dqqMR represent? 

 

 
150

0
dqqMR  has units (dollars/item) ∙ (items) = dollars, and represents the accumulated dollars 

for selling from 0 to 150 items.  That is,    150
150

0
TRdqqMR  , the total revenue from selling 

150 items. 

 

 

Example 17 

Suppose r(t), in centimeters per year, represents how the diameter of a tree changes with time.  

What does  
2

1

T

T
dttr  represent? 

 

 
2

1

T

T
dttr has units of (centimeters per year) ∙ (years) = centimeters, and represents the 

accumulated growth of the tree’s diameter from T1 to T2.  That is,  
2

1

T

T
dttr is the change in the 

diameter of the tree over this period of time. 
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3.1 Exercises 
 

1. Let  A(x) represent the area bounded by the graph and the 

horizontal axis and vertical lines at t=0 and t=x  for the graph 

shown.  Evaluate  A(x)  for  x = 1, 2, 3, 4, and 5. 

 

 

 

    

2. Let  B(x) represent the area bounded by the graph and the 

horizontal axis and vertical lines at t=0 and  t=x  for the 

graph shown.  Evaluate  B(x)  for  x = 1, 2, 3, 4, and 5. 

 

 

 

 

3. Let C(x) represent the area bounded by the graph and the 

horizontal axis and vertical lines at t=0 and t=x for the graph 

shown.  Evaluate C(x) for  x = 1, 2, and 3 and find a formula for  

C(x). 

 

 

 

 

 

4. Let A(x) represent the area bounded by the graph and the 

horizontal axis and vertical lines at t=0 and  t=x  for the graph 

shown.  Evaluate A(x)  for  x = 1, 2, and 3   and find a formula for  

A(x). 

 

 

 

 

 

5. A car had the velocity shown in the graph to the right.  How far 

did the car travel from t= 0 to t = 30 seconds? 

 

 

 

6. A car had the velocity shown below.  How afar did the car travel 

from t = 0 to t = 30 seconds? 
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7. The velocities of two cars are shown in the graph.   

(a)  From the time the brakes were applied, how many 

seconds did it take each car to stop?   

(b)  From the time the brakes were applied, which car 

traveled farther until it came to a complete stop? 

 

 

 

 

8.   You and a friend start off at noon and walk in the same direction 

along the same path at the rates shown. 

 (a) Who is walking faster at 2 pm?  Who is ahead at 2 pm? 

 (b) Who is walking faster at 3 pm?  Who is ahead at 3 pm? 

 (c) When will you and your friend be together?  (Answer in words.) 

 

 

 

 

9. Police chase:  A speeder traveling 45 miles per hour (in a 25 

mph zone) passes a stopped police car which immediately 

takes off after the speeder.  If the police car speeds up 

steadily to 60 miles/hour in 20 seconds and then travels at a 

steady 60 miles/hour, how long and how far before the 

police car catches the speeder who continued traveling at 45 

miles/hour?   

 

 

 

10.  Water is flowing into a tub.  The table shows the rate at which the water flows, in gallons per 

minute.  The tub is initially empty.   

 
t, in 

minutes 

0 1 2 3 4 5 6 7 8 9 10 

Flow rate, 

in gal/min 

0.5 1.0 1.2 1.4 1.7 2.0 2.3 1.8 0.7 0.5 0.2 

 

 

Use the table to estimate how much water is in the tub after  

a. five minutes 

b. ten minutes 
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11.  The table shows the speedometer readings for a short car trip.   

 

t , in minutes 0 5 10 15 20 

Speed, in mph 0 30 40 65 40 

 

a. Use the table to estimate how far the car traveled over the twenty minutes shown. 

b. How accurate would you expect your estimate to be? 

 

12.  The table shows values of  tf .  Use the table to estimate  
40

0
dttf . 

t 0 10 20 30 40 

 tf  17 22 18 11 35 

 

 

13. The table shows values of  xg .   

x 0 1 2 3 4 5 6 

 xg  140 142 144 152 154 165 200 

 

 

Use the table to estimate  

a.  
3

0
dxxg   b.  

6

3
dxxg   c.  

6

0
dxxg  

 

14. What are the units for the "area" of a rectangle  with the given  

 base and height units? 

  Base units Height units "Area" units 

  miles per second seconds 

  hours dollars per hour 

  square feet feet 

  kilowatts hours 

  houses people per house 

  meals meals 

 

In problems  15 – 17 , represent the area of each bounded region as a definite integral, and use 

geometry to  

determine the value of the definite integral. 

 

15. The region bounded by  y = 2x , the x–axis, the line x = 1, and  x = 3. 

 

16. The region bounded by  y = 4 – 2x , the x–axis, and the y–axis. 

 

17. The shaded region in the graph to the right. 
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18.  Using the graph of f shown and the given areas of 

several regions, evaluate: 

 (a) 

0

3

 f(x) dx  (b) 

3

5

 f(x) dx  (c) 

5

7

 f(x) dx  

 

19. Using the graph of f shown and the given areas of several regions, evaluate: 

(a) 

1

3

 g(x) dx  (b) 

3

4

 g(x) dx  

 (c) 

4

8

 g(x) dx   (d) 

1

8

 g(x) dx  

 

 

20. Use the graph to evaluate: 

(a) 

–2

1

 h(x) dx  (b) 

4

6

 h(x) dx   

(c) 

–2

6

 h(x) dx  (d) 

–2

4

 h(x) dx   

 

 

21. Your velocity along a straight road is shown to the right. 

How far did you travel in 8 minutes? 

  

 

22. Your velocity along a straight road is shown below. How 

many feet did you walk in 8 minutes? 
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In problems 23 - 26, the units are given for x and for  f(x) .  Give the units of 

a

b

 f(x) dx  . 

23. x is time in "seconds",  and  f(x)  is velocity in  "meters per second." 

 

24. x is time in "hours",  and  f(x)  is a flow rate in  "gallons per hour." 

 

25. x is a position in "feet",  and  f(x)  is an area in "square feet." 

 

26. x is a position in "inches", and f(x)  is a density in "pounds per inch." 

 

In problems 27 – 31, represent the area with a definite integral and use technology to find the 

approximate answer.  

 

27. The region bounded by  y = x 3, the x–axis, the line x = 1, and  x = 5. 

 

28. The region bounded by  y = x   , the x–axis, and  the line x = 9. 

 

29. The shaded region shown to the right. 

 

30. The shaded region below. 

 
 

31. Consider the definite integral   
3

0
3 dxx .   

 (a)   Using six rectangles, find the left-hand Riemann sum for this definite integral. 

 (b) Using six rectangles, find the right-hand Riemann sum for this definite integral. 

 (c)   Using geometry, find the exact value of this definite integral.  

 

32. Consider the definite integral 
2

0

3 dxx . 

 (a)  Using four rectangles, find the left-hand Riemann sum for this definite integral. 

 (b) Using four rectangles, find the right-hand Riemann sum for this definite integral. 

 

33. Write the total distance traveled by the car in the graph 

between 1 pm and 4 pm as a definite integral and 

estimate the value of the integral. 
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Problems  34 – 41  refer to the graph of  f  shown.  Use the 

graph to determine the values of the definite integrals.  

(The bold numbers represent the area of each region.) 

 

34. 

0

3

 f(x) dx    35. 

3

5

 f(x) dx    36. 

2

2

 f(x) dx     

37. 

6

7

 f(w) dw    38. 

0

5

 f(x) dx    39. 

0

7

 f(x) dx    40. 

3

6

 f(t) dt    41. 

5

7

 f(x) dx     

 

Problems  42 – 47  refer to the graph of  g  shown.  Use the 

graph to evaluate the integrals. 

   

42. 

0

2

 g(x) dx    43. 

1

3

 g(t) dt    44. 

0

5

 g(x) dx     

 

45. 

0

8

 g(s) ds   46.

0

3

 2g(t) dt    47. 

5

8

 1+g(x) dx   
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