
Chapter 2    The Derivative Applied Calculus 97

This chapter is (c) 2013.  It was remixed by David Lippman from Shana Calaway's remix of Contemporary Calculus 
by Dale Hoffman.  It is licensed under the Creative Commons Attribution license. 

Section 3: Power and Sum Rules for Derivatives 

In the next few sections, we’ll get the derivative rules that will let us find formulas for derivatives 
when our function comes to us as a formula.  These are very algebraic section, and you should get 
lots of practice.  As we learn new rules, we will look at some basic applications. 

Building Blocks 
These are the simplest rules – rules for the basic functions.  We won’t prove these rules; we’ll just 
use them.  But first, let’s look at a few so that we can see they make sense. 

Example 1 
Find the derivative of ( ) bmxxfy +==

This is a linear function, so its graph is its own tangent line!  The slope of the tangent line, the 
derivative, is the slope of the line:  ( ) mxf ='

Rule:  The derivative of a linear function is its slope 

Example 2 
Find the derivative of ( ) .135=xf

Think about this one graphically, too.  The graph of f(x) is a horizontal line.  So its slope is zero. 
( ) 0' =xf

Rule: The derivative of a constant is zero 

Example 3 
Find the derivative of ( ) 2xxf =

This question is challenging using limits, as you saw in the previous section.  We will show you 
the long way to do it, then give you a shorthand rule to bypass all this. 

Recall the formal definition of the derivative:  
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From all that, we find the f ′(x) = 2x
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Luckily, there is a handy rule we use to skip using the limit: 

Power Rule: The derivative ( ) nxxf =  is ( ) 1−=′ nnxxf

Example 4 
Find the derivative of ( ) 34xxg = .

Using the power rule, we know that if ( ) 3xxf = , then ( ) 23xxf =′ .  Notice that g is 4 times the
function f.  Think about what this change means to the graph of g – it’s now 4 times as tall as 

the graph of f.  If we find the slope of a secant line, it will be 
x
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; each slope will 

be 4 times the slope of the secant line on the f graph.  This property will hold for the slopes of 
tangent lines, too: 

( ) ( ) 2233 123444 xxx
dx
dx

dx
d

=⋅==

Rule:  Constants come along for the ride; ( ) 'kfkf
dx
d

=

Here are all the basic rules in one place. 
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Derivative Rules:  Building Blocks 
In what follows, f and g are differentiable functions of x. 

(a) Constant Multiple Rule: ( ) 'kfkf
dx
d

=

(b) Sum (or Difference) Rule: ( ) '' gfgf
dx
d

+=+  (or ( ) '' gfgf
dx
d

−=− )

(c)  Power Rule: ( ) 1−= nn nxx
dx
d

Special cases:  ( ) 0=k
dx
d (because 0kxk = ) 

( ) 1=x
dx
d (because 1xx = ) 

(d)  Exponential Functions: ( ) xx ee
dx
d

=

( ) xx aaa
dx
d

⋅= ln

(e) Natural Logarithm: ( )
x

x
dx
d 1ln =

The sum, difference, and constant multiple rule combined with the power rule allow us to easily 
find the derivative of any polynomial. 

Example 5 
Find the derivative of ( ) 10038.11317 810 +−+= xxxxp
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You don’t have to show every single step.  Do be careful when you’re first working with the rules, 
but pretty soon you’ll be able to just write down the derivative directly: 
 
Example 6 

Find  ( )123317 2 +− xx
dx
d    

 
Writing out the rules, we'd write 

( ) 33340)1(33)2(17123317 2 −=+−=+− xxxx
dx
d  

 
Once you're familiar with the rules, you can, in your head, multiply the 2 times the 17 and the 
33 times 1, and just write 

( ) 3334123317 2 −=+− xxx
dx
d  

 
The power rule works even if the power is negative or a fraction.  In order to apply it, first translate 
all roots and basic rational expressions into exponents: 
 
Example 7 

Find the derivative of te
t

ty 543 4 +−=  

 
First step – translate into exponents: 

tt ette
t

ty 543543 42/1
4 +−=+−= −  

 
Now you can take the derivative: 
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If there is a reason to, you can rewrite the answer with radicals and positive exponents: 

tt e
tt

ett 516
2

3516
2
3

5
52/1 ++=++ −−  

 
Be careful when finding the derivatives with negative exponents.   
 
 
We can immediately apply these rules to solve the problem we started the chapter with - finding a 
tangent line. 
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Example 8 
Find the equation of the line tangent to 210)( ttg −=  when t = 2. 
 
The slope of the tangent line is the value of the derivative.  We can compute ttg 2)( −=′ .  To 
find the slope of the tangent line when t = 3, evaluate the derivative at that point. 

4)2(2)2( −=−=′g .  The slope of the tangent line is -4. 
 
To find the equation of the tangent line, we also need a point on the tangent line.  Since the 
tangent line touches the original function at t = 2, we can find the point by evaluating the 
original function:  6210)3( 2 =−=g .  The tangent line must pass through the point (2, 6). 
 
Using the point-slope equation of a line, the tangent line will 
have equation )2(46 −−=− ty . 
Simplifying to slope-intercept form, the equation is 

144 +−= ty . 
 
Graphing, we can verify this line is indeed tangent to the 
curve. 
 
 
 

 
 
We can also use these rules to help us find the derivatives we need to interpret the behavior of a 
function. 
 
Example 9 

In a memory experiment, a researcher asks the subject to memorize as many words from a list 
as possible in 10 seconds.  Recall is tested, then the subject is given 10 more seconds to study, 
and so on.  Suppose the number of words remembered after t seconds of studying could be 
modeled by 2/5( ) 4W t t= .  Find and interpret (20)W ′ . 
 

3/5 3/52 8( ) 4
5 5

W t t t− −′ = ⋅ = , so 

( ) 3/58(20) 20 0.2652
5

W −′ = ≈  

 
Since W is measured in words, and t is in seconds, W' has units words per second. 

(20) 0.2652W ′ ≈  means that after 20 seconds of studying, the subject is learning about 0.27 
more words for each additional second of studying. 
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Business and Economics 
Next we will delve more deeply into some business applications.  To do that, we first need to 
review some terminology. 
 
Suppose you are producing and selling some item.  The profit you make is the amount of money 
you take in minus what you have to pay to produce the items.  Both of these quantities depend on 
how many you make and sell.  (So we have functions here.)  Here is a list of definitions for some 
of the terminology, together with their meaning in algebraic terms and in graphical terms. 
 
Your cost is the money you have to spend to produce your items. 
 
The Fixed Cost (FC) is the amount of money you have to spend regardless of how many items 
you produce.  FC can include things like rent, purchase costs of machinery, and salaries for office 
staff.  You have to pay the fixed costs even if you don’t produce anything. 
 
The Total Variable Cost (TVC) for q items is the amount of money you spend to actually 
produce them.  TVC includes things like the materials you use, the electricity to run the machinery, 
gasoline for your delivery vans, maybe the wages of your production workers.  These costs will 
vary according to how many items you produce. 
 
The Total Cost (TC, or sometimes just C) for q items is the total cost of producing them.  It’s the 
sum of the fixed cost and the total variable cost for producing q items. 

 
Why is it OK that are there two definitions for Marginal Cost (and Marginal Revenue, and 
Marginal Profit)?   
 
We have been using slopes of secant lines over tiny intervals to approximate derivatives.  In this 
example, we’ll turn that around – we’ll use the derivative to approximate the slope of the secant 
line. 
Notice that the “cost of the next item” definition is actually the slope of a secant line, over an 
interval of 1 unit: 

( ) ( ) ( )
1

1111 −+
=−+=

qCqCqMC  

So this is approximately the same as the derivative of the cost function at q: 
( ) ( )qCqMC '=  

In practice, these two numbers are so close that there’s no practical reason to make a distinction.  
For our purposes, the marginal cost is the derivative is the cost of the next item. 

The Marginal Cost (MC) at q items is the cost of producing the next item.  Really, it’s  
 MC(q) = TC(q + 1) – TC(q).   
In many cases, though, it’s easier to approximate this difference using calculus (see Example 
below).  And some sources define the marginal cost directly as the derivative,  
 MC(q) = TC'(q).   
In this course, we will use both of these definitions as if they were interchangeable. 
 
The units on marginal cost is cost per item.  
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Example 10 
The table shows the total cost (TC) of producing q items.   
a) What is the fixed cost? 
b) When 200 items are made, what is the total variable cost?  

The average variable cost? 
c) When 200 items are made, estimate the marginal cost. 
 
a) The fixed cost is $20,000, the cost even when no items are made. 
 
b) When 200 items are made, the total cost is $45,000.  Subtracting the fixed cost, the total 
variable cost is $45,000 - $20,000 = $25,000. 
 
The average variable cost is the total variable cost divided by the number of items, so we would 
divide the $25,000 total variable cost by the 200 items made.  $25,000 ÷ 200= $125.  On 
average, each item had a variable cost of $125. 
 
c) We need to estimate the value of the derivative, or the slope of the tangent line at q = 200.  

Finding the secant line from q=100 to q=200 gives a slope of 100
100200

000,35000,45
=

−
− .  Finding 

the secant line from q=200 to q=300 gives a slope of 80
200300

000,45000,53
=

−
− .   We could estimate 

the tangent slope by averaging these secant slopes, giving us an estimate of $90/item.   
 
This tells us that after 200 items have been made, it will cost about $90 to make one more item. 

 
 
Example 11 

The cost to produce x items is x  hundred dollars. 
 
(a)  What is the cost for producing 100 items?  101 items?   What is cost of the 101st item? 
 
(b)  For   C(x) = x   , calculate  C'(x)  and evaluate  C'  at  x = 100.  How does C '(100)  
compare with the last answer in part (a)? 
 
(a) Put  C(x) = x   = x1/2 hundred dollars,  the cost for  x  items.  Then C (100) = $1000 and 
C(101) = $1004.99, so it costs  $4.99  for that 101st item.  Using this definition, the marginal 
cost is $4.99. 
 

 (b) 1/21 1( )
2 2

C x x
x

−′ = =  so  1 1(100)
202 100

C′ = =  hundred dollars  =  $5.00.   

 
Note how close these answers are!  This shows (again) why it’s OK that we use both definitions 
for marginal cost. 

 

Items, q Total Cost, TC 
0 $20,000 
100 $35,000 
200 $45,000 
300 $53,000 
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Demand is the functional relationship between the price p and the quantity q that can be sold (that 
is demanded).  Depending on your situation, you might think of p as a function of q, or of q as a 
function of p. 
 
Your revenue is the amount of money you actually take in from selling your products.  Revenue is 
price × quantity. 

 
The Total Revenue (TR, or just R) for q items is the total amount of money you take in for selling 
q items.   

 
 
 
 
 
 
 
 

 
The Profit (P) for q items is TR(q) – TC(q), the difference between total revenue and total costs 
 
The average profit for q items is P/q.  The marginal profit at q items is P(q + 1) – P(q), or ( )qP′  
 
Graphical Interpretations of the Basic Business Math Terms 
 
Illustration/Example: 
Here are the graphs of TR and TC for producing and selling a certain item.  The horizontal axis is 
the number of items, in thousands.  The vertical axis is the number of dollars, also in thousands.   

 
 
 
First, notice how to find the fixed cost and variable cost from the graph here.  FC is the y-
intercept of the TC graph.  (FC = TC(0).)  The graph of TVC would have the same shape as the 
graph of TC, shifted down.  (TVC = TC – FC.)   

The Marginal Revenue (MR) at q items is the cost of producing the next item,  
 MR(q) = TR(q + 1) – TR(q).   
Just as with marginal cost, we will use both this definition and the derivative definition  
 MR(q) = TR’(q). 
 
Your profit is what’s left over from total revenue after costs have been subtracted.   
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MC(q) = TC(q + 1) – TC(q), but that’s impossible to read on this graph.  How could you 
distinguish between TC(4022) and TC(4023)?  On this graph, that interval is too small to see, and 
our best guess at the secant line is actually the tangent line to the TC curve at that point.  (This is 
the reason we want to have the derivative definition handy.)    
 
MC(q) is the slope of the tangent line to the TC curve at (q, TC(q)).   
MR(q) is the slope of the tangent line to the TR curve at (q, TR(q)). 
 
Profit is the distance between the TR and TC curve.  If you experiment with your clear plastic 
ruler, you’ll see that the biggest profit occurs exactly when the tangent lines to the TR and TC 
curves are parallel.  This is the rule “profit is maximized when MR = MC.” which we'll explore 
later in the chapter. 
 
Example 12 

The demand, D, for a product at a price of p dollars is given by 2( ) 200 0.2D p p= − .  Find the 
marginal revenue when the price is $10. 
 
First we need to form a revenue equation.  Since Revenue = Price×Quantity, and the demand 
equation shows the quantity of product that can be sold, we have 

( )2 3( ) ( ) 200 0.2 200 0.2R p D p p p p p p= ⋅ = − = −  

 
Now we can find marginal revenue by finding the derivative 

( ) ( ) 22( ) 200 1 0.2 3 200 0.6R p p p′ = − = −  

 
At a price of $10, ( )2(10) 200 0.6 10 140R′ = − = . 
 

Notice the units for R' are dollars of Revenue
dollar of price

, so (10) 140R′ =  means that when the price is 

$10, the revenue will increase by $140 for each dollar the price was increased. 
 
 
2.3 Exercises 
 

1. Fill in the values in the table for  ( )( )xf
dx
d 3 , ( ) ( )( )xgxf

dx
d

+2 , and ( ) ( )( )xfxg
dx
d

−3 . 

 

x f(x) f '(x) g(x) g '(x)   ( )( )xf
dx
d 3   ( ) ( )( )xgxf

dx
d

+2    ( ) ( )( )xfxg
dx
d

−3  

          
0 3 –2 –4 3  
1 2 –1 1 0 
2 4 2 3 1 
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2. Find  (a)  D( x12 )      (b)  
d
dx ( 7 x  )  (c)  D(  

1
x3 ) (d)  

d xe 
dx     

3. Find  (a)  D( x9  ) (b)  
d x2/3

dx   (c)  D(  
1
x4 )    (d)  D( xπ  ) 

 
In problems  4 – 8,  (a) calculate  f '(1)  and  (b) determine when  f '(x) = 0. 
 
4. f(x) =  x2  – 5x + 13  
5. f(x) = 5x2  – 40x + 73 
6. f(x) =  x3  + 9x2  + 6  
7. f(x) =  x3 + 3x2 + 3x  – 1 
8. f(x) =  x3  + 2x2  + 2x  – 1  
 
9. Where do f(x) = x2 – 10x + 3  and  g(x) = x3 – 12x have horizontal tangent lines ? 
 
10. It takes  T(x) = x2  hours to weave  x  small rugs.  What is the marginal production time to 

weave a rug?  (Be sure to include the units with your answer.) 
 
11. It costs  C(x) = x   dollars to produce  x  golf balls.  What is the marginal production cost to 

make a golf ball?  What is the marginal production cost when  x = 25?  when x= 100?  (Include 
units.) 

 
12. An arrow shot straight up from ground level with an initial velocity of  128 feet per second will 

be at height  h(x) = –16x2 + 128x  feet at  x  seconds.   

 (a) Determine the velocity of the arrow when  x = 0, 1 and 2 
seconds. 

 (b) What is the velocity of the arrow, v(x), at any time  x? 
 (c) At what time  x  will the velocity of the arrow be  0?  
 (d) What is the greatest height the arrow reaches? 
 (e) How long will the arrow be aloft? 
 (f) Use the answer for the velocity in part (b) to determine the  
  acceleration, a(x) = v '(x), at any time  x. 
 
13. If an arrow is shot straight up from ground level on the moon with an initial velocity of 128 

feet per second, its height will be  h(x) = –2.65x2 + 128x  feet at  x  seconds.  Do parts (a) – (e) 
of problem 40 using this new equation for  h. 

 
14. f(x) = x3  +  A x2  + B x  + C  with constants  A, B  and  C.  Can you find conditions on the  
 constants  A, B  and  C which will guarantee that the graph of  y = f(x)  has two distinct 

"vertices"? (Here a "vertex" means a place where the curve changes from increasing to 
decreasing or from decreasing to increasing.) 
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