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This chapter is (c) 2013.  It was remixed by David Lippman from Shana Calaway's remix of Contemporary Calculus 
by Dale Hoffman.  It is licensed under the Creative Commons Attribution license. 

Section 2: The Derivative 
Definition of the Derivative 
 
Suppose we drop a tomato from the top of a 100 foot building and time its fall.  

 
Some questions are easy to answer directly from the table:   

(a) How long did it take for the tomato n to drop 100 feet?    (2.5 seconds) 
(b) How far did the tomato fall during the first second?   (100 – 84 = 16 feet) 
(c) How far did the tomato fall during the last second?    (64 – 0 = 64 feet) 
(d) How far did the tomato fall between  t =.5  and  t = 1?   (96 – 84 = 12 feet) 
 

Some other questions require a little calculation: 
(e) What was the average velocity of the tomato during its fall? 
 

 Average velocity = 
distance fallen

total time    =  
∆ position

∆ time   =  
–100 ft
2.5 s    =  –40 ft/s . 

 
(f) What was the average velocity between  t=1 and  t=2  seconds? 
 

 Average velocity  =  
∆ position

 ∆ time    =   
36 ft – 84 ft

2 s – 1 s    =  
–48 ft

1 s    =  –48 ft/s . 

 
Some questions are more difficult. 

(g) How fast was the tomato falling 1 second after it was dropped? 
 
This question is significantly different from the previous two questions about average velocity.  
Here we want the instantaneous velocity, the velocity at an instant in time.  Unfortunately the 
tomato is not equipped with a speedometer so we will have to give an approximate answer. 
 
One crude approximation of the instantaneous velocity after 1 second is simply the average 
velocity during the entire fall, –40 ft/s .  But the tomato fell slowly at the beginning and 
rapidly near the end so the "–40 ft/s" estimate may or may not be a good answer. 
 

Time (sec) Height (ft) 
0.0 100 
0.5 96 
1.0 84 
1.5 64 
2.0 36 
2.5 0 
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We can get a better approximation of the instantaneous velocity at t=1  by calculating the 
average velocities over a short time interval near t = 1 .  The average velocity between t = 0.5  

and t = 1 is 
–12 feet

0.5 s   = –24 ft/s, and the average velocity between t = 1 and t = 1.5  is   

 
–20 feet

.5 s   =  –40 ft/s  so we can be reasonably sure that the instantaneous velocity is between  –

24 ft/s  and  –40 ft/s. 
 
In general, the shorter the time interval over which we 
calculate the average velocity, the better the average 
velocity will approximate the instantaneous velocity.  

The average velocity over a time interval is   
∆ position

∆ time  , 

which is the slope of the secant line through two points 
on the graph of height versus time.   The instantaneous 
velocity at a particular time and height is the slope of the 
tangent line to the graph at the point given by that time 
and height. 
 
 
 

 Average velocity  =  
∆ position

∆ time     =  slope of the secant line through 2 points. 

 
       Instantaneous velocity  =  slope of the line tangent to the graph. 
            

 
 
 
GROWING BACTERIA 
 
Suppose we set up a machine to count the 
number of bacteria growing on a Petri plate.  At 
first there are few bacteria so the population 
grows slowly.  Then there are more bacteria to 
divide so the population grows more quickly.  
Later, there are more bacteria and less room and 
nutrients available for the expanding population, 
so the population grows slowly again.  Finally, 
the bacteria have used up most of the nutrients, 
and the population declines as bacteria die. 
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The population graph can be used to answer a number of questions. 
 

(a) What is the bacteria population at time  t = 3 days?  
 
 From the graph, at t = 3, the population is about 0.5 thousand, or 500 bacteria. 
 
(b) What is the population increment from  t = 3  to  t =10  days?              
 
 At t = 10, the population is about 4.5 thousand, so the increment is about  4000  bacteria 
 
(c) What is the rate of population growth from  t = 3 to  t = 10 days?    
 

The rate of growth from  t = 3  to  t = 10  is the average change in population during that 
time:   

 average change in population =  
change in population

change in time    =    
∆ population

∆ time

   =  
4000 bacteria

7 days     ≈   570  bacteria/day  . 

 
This is the slope of the secant line through the two points  (3, 500)  and  (10, 4500). 

 
(d) What is the rate of population growth on the third day, at  t = 3 ? 

 
This question is asking for the 
instantaneous rate of population change, 
the slope of the line which is tangent to 
the population curve at  (3, 500).  If we 
sketch a line approximately tangent to the 
curve at  (3, 500)  and pick two points 
near the ends of the tangent line segment  ,  
we can estimate that  instantaneous rate of 
population growth  is approximately 320 
bacteria/day . 
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Tangent Lines 
 
Do this! 
The graph below is the graph of ( )xfy = .  We want to find the slope of the tangent line at the 
point (1, 2).   
First, draw the secant line between (1, 2) and (2, −1) and compute its slope. 
Now draw the secant line between (1, 2) and (1.5, 1) and compute its slope. 
Compare the two lines you have drawn.  Which would be a better approximation of the tangent 
line to the curve at (1, 2)? 
Now draw the secant line between (1, 2) and (1.3, 1.5) and compute its slope.  Is this line an even 
better approximation of the tangent line? 
Now draw your best guess for the tangent line and measure its slope.  Do you see a pattern in the 
slopes? 

 
You should have noticed that as the interval got smaller and smaller, the secant line got closer to 
the tangent line and its slope got closer to the slope of the tangent line.  That’s good news – we 
know how to find the slope of a secant line. 
 
In some applications, we need to know where the graph of a function  f(x)  has horizontal tangent lines 
(slopes = 0).   
 
Example 1 

At right is the graph of y = g(x).  At what values of  x  does the graph of  y = g(x) below  have 
horizontal tangent lines? 
 

 
 
The tangent lines to the graph of  g(x)  are horizontal (slope = 0) when  x ≈ –1, 1, 2.5, and 5. 
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Let's explore further this idea of finding the tangent slope based on the secant slope. 
 
Example 2 

Find the slope of the line L in the graph below which is tangent to  f(x) = x2  at the point  (2,4).   
 
We could estimate the slope of  L  from the graph, but we won't.  Instead, we will use the idea 
that secant lines over tiny intervals approximate the tangent line.   

              
We can see that the line through  (2,4)  and  (3,9)  on the graph of  f  is an approximation of the 
slope of the tangent line, and we can calculate that slope exactly:  m = ∆y/∆x = (9–4)/(3–2) = 5.  
But  m = 5  is only an estimate of the slope of the tangent line and not a very good estimate.  It's 
too big.  We can get a better estimate by picking a second point on the graph of f which is closer 
to (2,4)  ––  the point  (2,4)  is fixed and it must be one of the points we use.   
 
From the second figure, we can see that the slope of the line through the points  (2,4) and 
(2.5,6.25)  is a better approximation of the slope of the tangent line at  (2,4):   

6.25 4 2.25 4.5
2.5 2 0.5

ym
x

∆ −
= = = =

∆ −
  

a better estimate, but still an approximation.  We can continue picking points closer and closer 
to (2,4) on the graph of  f, and then calculating the slopes of the lines through each of these 
points and the point  (2,4): 
 

 
 
The only thing special about the x–values we picked is that they are numbers which are close, 
and very close, to  x = 2.  Someone else might have picked other nearby values for  x.  As the 
points we pick get closer and closer to the point  (2,4) on the graph of  y = x2 , the slopes of the 
lines through the points and  (2,4)  are better approximations of the slope of the tangent line, 
and these slopes are getting closer and closer to  4. 
 

Points to the left of (2,4) Points to the left of (2,4) 
x y = x2 Slope x y = x2 Slope 
1.5 2.25 3.5 3 9 5 
1.9 3.61 3.9 2.5 6.25 4.5 
1.99 3.9601 3.99 2.01 4.0401 4.01 
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We can bypass much of the calculating by not picking the points one at a time:  let's look at a 
general point near  (2,4).  Define  x = 2 + h  so  h  is the increment from 2 to  x.  If h is small, 
then  x = 2 + h is close to  2  and  the point ( ) ( )22 , (2 ) 2 , (2 )h f h h h+ + = + +  is close to  (2,4).  

The slope  m  of the line through the points  (2,4)  and  ( )22 , (2 )h h+ +  is a good approximation 
of the slope of the tangent line at the point  (2,4):    
 

 
 

( )22 24 4 4(2 ) 4 4 4
(2 ) 2

h hy h h hm h
x h h h

+ + −∆ + − +
= = = = = +

∆ + −
 

 
The value  m = 4 + h  is the slope of the secant line through the two points  (2,4)  and  
( )22 , (2 )h h+ + .  As h gets smaller and smaller, this slope approaches the slope of the tangent 
line to the graph of  f  at  (2,4).   
 

More formally, we could write:   Slope of the tangent line = )4(limlim
00

h
x
y

hh
+=

∆
∆

→→
 

 
We can easily evaluate this limit using direct substitution, finding that as the interval h shrinks 
towards 0, the secant slope approaches the tangent slope, 4. 

 
 
The tangent line problem and the instantaneous velocity problem are the same problem.  In each 
problem we wanted to know how rapidly something was changing at an instant in time, and the 
answer turned out to be finding the slope of a tangent line, which we approximated with the slope 
of a secant line.  This idea is the key to defining the slope of a curve. 
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 The Derivative: 
   
  The derivative of a function f at a point (x, f(x)) is the instantaneous rate of change.    
  The derivative is the slope of the tangent line to the graph of f at the point (x, f(x)). 
  The derivative is the slope of the curve f(x) at the point (x, f(x)). 
  A function is called differentiable at (x, f(x)) if its derivative exists at (x, f(x)). 
 
 Notation for the Derivative: 
  The derivative of y = f(x) with respect to x is written as  
  ( )xf '  (read aloud as “f prime of x”), or 'y (“y prime”) 

  or 
dx
dy

(read aloud as “dee why dee ex”), or 
dx
df

 
  The notation that resembles a fraction is called Leibniz notation.  It displays not only the 

name of the function (f or y), but also the name of the variable (in this case, x).  It looks 

like a fraction because the derivative is a slope.  In fact, this is simply 
x
y

∆
∆

written in Roman 

letters instead of Greek letters. 
  
 Verb forms: 
  We find the derivative of a function, or take the derivative of a function, or differentiate 

a function. 

  We use an adaptation of the 
dx
dy

notation to mean “find the derivative of f(x):” 

  ( )( )
dx
dfxf

dx
d

=
 

 

 
 Formal Algebraic Definition: 

  
( ) ( )

h
xfhxfxf

h

−+
=

→0
lim)('  

 
 Practical Definition: 
  The derivative can be approximated by looking at an average rate of change, or the slope of 

a secant line, over a very tiny interval.  The tinier the interval, the closer this is to the true 
instantaneous rate of change, slope of the tangent line, or slope of the curve. 

  
 Looking Ahead: 
  We will have methods for computing exact values of derivatives from formulas soon.  If 

the function is given to you as a table or graph, you will still need to approximate this way. 
     
 
This is the foundation for the rest of this chapter.  It’s remarkable that such a simple idea (the slope 
of a tangent line) and such a simple definition  (for the derivative  f ' ) will lead to so many 
important ideas and applications. 
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Example 3 

Find the slope of the tangent line to 1( )f x
x

=  when x = 3.  

 
The slope of the tangent line is the value of the derivative 𝑓′(3).   
 

1(3)
3

f = , and 1(3 )
3

f h
h

+ =
+

 

 
Using the formal limit definition of the derivative, 

0 0

1 1
(3 ) (3) 3 3(3) lim lim

h h

f h f hf
h h→ →

−+ − +′ = =  

 
We can simplify by giving the fractions a common denominator. 

0

0

0

0

0

1 3 1 3
3 3 3 3lim

3 3
9 3 9 3lim

9 3lim

1lim
9 3

1lim
9 3

h

h

h

h

h

h
h h

h
h

h h
h

h
h

h
h

h h

h

→

→

→

→

→

+
⋅ − ⋅

+ +

+
−

+ +=

−
+=

−
= ⋅

+
−

=
+

 

 
We can evaluate this limit by direct substitution: 

0

1 1lim
9 3 9h h→

−
= −

+
 

 

The slope of the tangent line to 1( )f x
x

=  at x = 3 is 1
9

−  

 
 
The Derivative as a Function 
We now know how to find (or at least approximate) the derivative of a function for any x-value; 
this means we can think of the derivative as a function, too.  The inputs are the same x’s; the output 
is the value of the derivative at that x value. 
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Example 4 
Below is the graph of a function ( )xfy = .  We can use the information in the graph to fill in a 
table showing values of ( )xf ' : 

 
 
At various values of x, draw your best guess at the tangent line and measure its slope.  You 
might have to extend your lines so you can read some points.  In general, your estimate of the 
slope will be better if you choose points that are easy to read and far away from each other.  
Here are my estimates for a few values of x (parts of the tangent lines I used are shown): 

 
 
We can estimate the values of f’(x) at some non-integer values of x, too:  f’(.5) ≈ 0.5  and  
f’(1.3) ≈ –0.3. 
 
We can even think about entire intervals.  For 
example, if  0 < x < 1, then  f(x) is increasing, all the 
slopes are positive, and so f’(x) is positive.  
 
The values of  f’(x)  definitely depend on the values 
of  x ,  and  f’(x)  is a function of  x.  We can use the 
results in the table to help sketch the graph of  f’(x) .  

 
 
 
 
 
 
 

x  ( )xfy =  ( )xf ' = the estimated SLOPE  
of the tangent line to the curve  
at the point ( )yx, . 

0 0 1 
1 1 0 
2 0 −1 
3 −1 0 
3.5 0 2 
4 1 1 
5 2 0.5 
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Example 5 
Shown is the graph of the height h(t) of a rocket at time t.  Sketch the graph of the velocity of 
the rocket at time t.  (Velocity is the derivative of the height function, so it is the slope of the 
tangent to the graph of position or height.) 
 
 
 
 
 
 
 
 
 
We can estimate the slope of the function at several points.  The lower graph below shows the 
velocity of the rocket.  This is v(t) = h’(t). 

 
 

 
 
We can also find derivative functions algebraically using limits. 
 
Example 6 

Find ( )22 4 1d x x
dx

− +  

 
Setting up the derivative using a limit, 

0

( ) ( )( ) lim
h

f x h f xf x
h→

+ −′ =  

 
We will start by simplifying ( )f x h+ . 

2( ) 2( ) 4( ) 1f x h x h x h+ = + − + −    Expand 



Chapter 2    The Derivative Applied Calculus 90 
 

2 2

2 2

2( 2 ) 4( ) 1
2 4 2 4 4 1

x xh h x h
x xh h x h

= + + − + −

= + + − − −
 

 
Now finding the limit, 

0

( ) ( )( ) lim
h

f x h f xf x
h→

+ −′ =     Substitute in the formulas 

( ) ( )2 2 2

0

2 4 2 4 4 1 2 4 1
lim
h

x xh h x h x x
h→

+ + − − − − − −
=  Now simplify 

2 2 2

0

2

0

2 4 2 4 4 1 2 4 1lim

4 2 4lim

h

h

x xh h x h x x
h

xh h h
h

→

→

+ + − − − − + +
=

+ −
=

 

( )

( )
0

0

4 2 4
lim

lim 4 2 4
h

h

h x h
h

x h
→

→

+ −
=

= + −
     Factor out the h and simplify 

 
We can find the limit of this expression by direct substitution: 

( )
0

( ) lim 4 2 4 4 4
h

f x x h x
→

′ = + − = −  

 
Notice that the derivative depends on x, and that this formula will tell us the slope of the tangent 
line to f at any value x.  For example, if we wanted to know the tangent slope of f at x = 3, we 
would simply evaluate: (3) 4 3 4 8f ′ = ⋅ − = . 

 
 
A formula for the derivative function is very powerful, but as you can see, calculating the 
derivative using the limit definition is very time consuming.  In the next section, we will identify 
some patterns that will allow us to start building a set of rules for finding derivatives without 
needing the limit definition. 
 
 
Interpreting the Derivative 
 
So far we have emphasized the derivative as the slope of the line tangent to a graph.  That 
interpretation is very visual and useful when examining the graph of a function, and we will 
continue to use it.  Derivatives, however, are used in a wide variety of fields and applications, and 
some of these fields use other interpretations.  The following are a few interpretations of the 
derivative that are commonly used. 
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General 
Rate of Change:  f '(x)  is the rate of change of the function at x.  If the units for  x  are 

years and the units for  f(x)  are people, then the units for   
df
dx   are   

people
year   ,  a rate of 

change in population. 
Graphical 

Slope:  f '(x) is the slope of the line tangent to the graph of f at the point ( x, f(x) ). 
 
Physical 

Velocity:  If  f(x)  is the position of an object at time  x, then f '(x) is the velocity of the 
object at time x.  If the units for  x  are hours and  f(x)  is distance measured in miles, 

then the units for  f '(x) = 
df
dx   are   

miles
hour  , miles per hour, which is a measure of 

velocity. 
 
Acceleration: If  f(x) is the velocity of an object at time  x, then f '(x) is the acceleration of 

the object at time x.  If the units are for  x  are hours and  f(x)  has the units  
miles
hour   , 

then the units for  the acceleration f '(x)  =  
df
dx   are   

miles/hour
hour    =   

miles
hour2

 , miles per 

hour per hour. 
  
Business 

Marginal Cost, Marginal Revenue, and Marginal Profit:  We'll explore these terms in more 
depth later in the section.  Basically, the marginal cost is approximately the additional 
cost of making one more object once we have already made x  objects.  If  the units for  

x  are bicycles and the units for  f(x)  are dollars,  then the units for  f '(x) =  
df
dx    

are   
dollars
bicycle ,  the cost per bicycle. 

 
In business contexts, the word "marginal" usually means the derivative or rate of change of 
some quantity.   

 
 
Example 7 

Suppose the demand curve for widgets was given by 1( )D p
p

= , where D is the quantity of 

items widgets, in thousands, at a price of p dollars.  Interpret the derivative of D at p = $3. 
 

Note that we calculated (3)D′  earlier to be 1(3) 0.111
9

D′ = − ≈ − . 
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Since D has units "thousands of widgets" and the units for p is dollars of price, the units for D′

will be thousands of widgets
dollar of price

.  In other words, it shows how the demand will change as the 

price increases.   
 
Specifically, (3) 0.111D′ ≈ −  tells us that when the price is $3, the demand will decrease by 
about 0.111 thousand items for every dollar the price increases. 

 
 
2.2 Exercises 
 
1. What is the slope of the line through   (3,9)  and  (x, y)  for y = x2  and  x = 2.97?   x = 3.001?    
 x = 3+h?   What happens to this last slope when  h  is very small (close to 0)?   Sketch the 

graph of  y = x2  for  x  near  3. 
 
2. What is the slope of the line through   (–2,4)  and  (x, y)  for y = x2  and  x = –1.98?   x = –

2.03?  x = –2+h?  What happens to this last slope when  h  is very small (close to 0)?   Sketch 
the graph of  y = x2  for  x  near  –2. 

 
3. What is the slope of the line through   (2,4)  and  (x, y)  for y = x2 + x – 2   and  x = 1.99?    
 x = 2.004?   x = 2+h?  What happens to this last slope when  h  is very small?   Sketch the 

graph of  y = x2  + x – 2  for  x  near  2. 
 
4. What is the slope of the line through   (–1,–2)  and  (x, y)  for y = x2 +x – 2  and  x = –.98?    
 x = –1.03?   x = –1+h?  What happens to this last slope when  h  is very small?   Sketch the 

graph of  y = x2  + x – 2  for  x  near  –1. 
 
 
5. The graph to the right shows the temperature 

during a day in Ames. 
(a)  What was the average change in 

temperature from  9 am  to  1 pm?  
(b) Estimate how fast the temperature was 

rising at  10 am  and  at 7 pm? 
 
 
 
 
 
 
 
 

 



Chapter 2    The Derivative Applied Calculus 93 
 

6. The graph shows the distance of a car from a measuring position located on the edge of a 

straight road. 

(a)  What was the average velocity of the car 
from  t = 0  to  t = 30 seconds? 

(b) What was the average velocity of the car 
from  t = 10  to  t = 30 seconds? 

(c) About how fast was the car traveling  at  
t = 10 seconds?  at  t = 20 s ?  at  t = 30 s 
? 

(d) What does the horizontal part of the 
graph between  t = 15  and  t = 20 
seconds mean? 

(e) What does the negative velocity at  t = 
25  represent? 

 
 
7. The graph shows the distance of a car from a 

measuring  

 position located on the edge of a straight 
road. 

(a) What was the average velocity of the 
car from  t = 0  to  t = 20 seconds? 

(b) What was the average velocity from  t 
= 10  to  t = 30 seconds? 

 (c) About how fast was the car traveling at  t = 10  
  seconds?  at  t = 20 s ?  at  t = 30 s ? 
 
 
8. The graph shows the composite developmental skill 

level of chessmasters at different ages as determined 
by their performance against other chessmasters.  
(From "Rating Systems for Human Abilities", by 
W.H. Batchelder and R.S. Simpson, 1988. UMAP 
Module 698.) 

 
(a) At what age is the "typical" chessmaster 

playing the best chess? 
(b) At approximately what age is the chessmaster's skill level increasing most rapidly? 
(c) Describe the development of the "typical" chessmaster's skill in words. 
(d) Sketch graphs which you think would reasonably describe the performance levels 

versus age for an athlete, a classical pianist, a rock singer, a mathematician, and a 
professional in your major field. 
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10. Use the function in the graph to fill in the table  and then graph  m(x). 
 x y = f(x) m(x)  =  the estimated slope of the tangent 

  line to y=f(x) at the point (x,y) 
                                                            

0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 

 
 
 
 
11. Use the function in the graph to fill in the table  and then graph  m(x). 
 x y = g(x) m(x)  =  the estimated slope of the tangent 

  line to y=g(x) at the point (x,y) 
                                                           
0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 

 
12. (a) At what values of  x  does the graph of  f  in the 

graph  have a horizontal tangent line? 

 (b) At what value(s)  of  x  is the value of  f  the 

largest?  smallest? 

 (c) Sketch the graph of  m(x) = the slope of the line 

tangent to the graph of  f  at the point  (x,y). 
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13. (a) At what values of  x  does the graph of  g  have a  
  horizontal tangent line? 
 (b) At what value(s)  of  x  is the value of  g  the 

largest?  smallest? 
 (c) Sketch the graph of  m(x) = the slope of the line 

tangent to the  graph of  g  at the point  (x,y). 
 
 
14. Match the situation descriptions with the corresponding time–velocity graph. 
 (a) A car quickly leaving from a stop sign.  
 (b) A car sedately leaving from a stop sign. 
 (c) A student bouncing on a trampoline.  
 (d) A ball thrown straight up. 
 (e) A student confidently striding across 

campus to take a calculus test. 
 (f) An unprepared student walking across 

campus to take a calculus test. 
For each function  f(x)  in problems  15 – 20,  
perform steps  (a) – (d): 
 

(a) calculate  msec = ( ) ( )f x h f x
h

+ − and simplify  (b) determine   mtan   =   

 

lim
h →0

  msec   

(c) evaluate  mtan  at  x = 2 ,  (d) find the equation of the line tangent to the graph of  f  at  (2, f(2) ) 
 
15. f(x) = 3x – 7 16. f(x) = 2 – 7x 17. f(x) = ax + b   where  a  and  b  are constants 
 
18. f(x) =  x2  + 3x 19. f(x) =  8 – 3x2   20. f(x) = ax2 + bx + c  where a, b and c are constants 
 
21. Match the graphs of the three functions below with the graphs of their derivatives.    
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22. Below are six graphs, three of which are derivatives of the other three.  Match the functions 
with their derivatives. 

 

 
 
23. The graph below shows the temperature during a summer day in Chicago.  Sketch the graph of 

the rate at which the temperature is changing.  (This is just the graph of the slopes of the lines 
which are tangent to the temperature graph.) 

 
 
24.  Fill in the table with the appropriate units for  f '(x). 

 units for  x units for  f(x) units for  f '(x)          
hours miles 
people automobiles 
dollars pancakes 
days trout 
seconds miles per second 
seconds gallons 
study hours test points 

 
25. If C(x) is the total cost, in millions, of producing x thousand items, interpret (4) 2C′ = . 
 
26. Suppose P(t) is the number of individuals infected by a disease t days after it was first detected.  
Interpret (50) 200P′ = − .
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