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This chapter was remixed from Precalculus: An Investigation of Functions, (c) 2013 David Lippman and Melonie 

Rasmussen.  It is licensed under the Creative Commons Attribution license. 

Section 6: Polynomials and Rational Functions 

Polynomial Functions 
 

Terminology of Polynomial Functions 

A polynomial is function that can be written as n

n xaxaxaaxf  2

210)(  

 

Each of the ai constants are called coefficients and can be positive, negative, or zero, and 

be whole numbers, decimals, or fractions. 

 

A term of the polynomial is any one piece of the sum, that is any i

i xa . Each individual 

term is a transformed power function. 

 

The degree of the polynomial is the highest power of the variable that occurs in the 

polynomial. 

 

The leading term is the term containing the highest power of the variable: the term with 

the highest degree.  

 

The leading coefficient is the coefficient of the leading term. 

 

Because of the definition of the “leading” term we often rearrange polynomials so that the 

powers are descending. 
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n   

 

 

Example 1 

Identify the degree, leading term, and leading coefficient of the polynomial
32 423)( xxxf   

 

For the function f(x), the degree is 3, the highest power on x.  The leading term is the term 

containing that power, 
34x .  The leading coefficient is the coefficient of that term, -4. 

 

 

Short run Behavior:  Intercepts 
As with any function, the vertical intercept can be found by evaluating the function at an input of 

zero.  Since this is evaluation, it is relatively easy to do it for a polynomial of any degree.  To 

find horizontal intercepts, we need to solve for when the output will be zero.  For general 

polynomials, this can be a challenging prospect.  Consequently, we will limit ourselves to three 

cases: 

1) The polynomial can be factored using known methods: greatest common factor and 

trinomial factoring.   

2) The polynomial is given in factored form. 

3) Technology is used to determine the intercepts. 
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Example 2 

Find the horizontal intercepts of 
246 23)( xxxxf  . 

 

We can attempt to factor this polynomial to find solutions for f(x) = 0. 

023 246  xxx   Factoring out the greatest common factor 

  023 242  xxx   Factoring the inside as a quadratic in x
2 

   021 222  xxx  Then break apart to find solutions 
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This gives us 5 horizontal intercepts. 

 

 

Example 3 

Find the horizontal intercepts of 64)( 23  tttth  

 

Since this polynomial is not in factored form, has no 

common factors, and does not appear to be factorable 

using techniques we know, we can turn to technology to 

find the intercepts.   

 

Graphing this function, it appears there are horizontal 

intercepts at t = -3, -2, and 1. 

 

We could check these are correct by plugging in these 

values for t and verifying that ( 3) ( 2) (1) 0h h h     . 

 

 

Solving Polynomial Inequalities 

 

One application of our ability to find intercepts and sketch a graph of polynomials is the ability 

to solve polynomial inequalities.  It is a very common question to ask when a function will be 

positive and negative, and one we will use later in this course. 

 

 

Example 4 

Solve 0)4()1)(3( 2  xxx  

 

As with all inequalities, we start by solving the equality 0)4()1)(3( 2  xxx , which has 

solutions at x = -3, -1, and 4.  We know the function can only change from positive to 

negative at these values, so these divide the inputs into 4 intervals.   



Chapter 1    Review Applied Calculus 53 
 

We could choose a test value in each interval and evaluate the function 

)4()1)(3()( 2  xxxxf  at each test value to determine if the function is positive or 

negative in that interval 

 

 
 

On a number line this would look like: 

 

 
 

From our test values, we can determine this function is positive when x < -3 or x > 4, or in 

interval notation, ),4()3,(   

 

Rational Functions 
 

Rational functions are the ratios, or fractions, of polynomials.  They can arise from both simple 

and complex situations. 

 

Example 5 

You plan to drive 100 miles.  Find a formula for the time the trip will take as a function of the 

speed you drive. 

 

You may recall that multiplying speed by time will give you distance.  If we let t represent the 

drive time in hours, and v represent the velocity (speed or rate) at which we drive, then 

distancevt .  Since our distance is fixed at 100 miles, 100vt .  Solving this relationship 

for the time gives us the function we desired: 

v
vt

100
)(   

 

Notice that this is a transformation of the reciprocal toolkit function, 
1

( )f x
x

 .  Several natural 

phenomena, such as gravitational force and volume of sound, behave in a manner inversely 

proportional to the square of another quantity.  For example, the volume, V, of a sound heard 

at a distance d from the source would be related by 
2d

k
V   for some constant value k.  These 

functions are transformations of the reciprocal squared toolkit function 
2

1
( )f x

x
 . 

 

Interval Test x in interval f( test value) >0 or <0? 

x < -3 -4 72 > 0 

-3 < x < -1 -2 -6 < 0 

-1 < x < 4 0 -12 < 0 

x > 4 5 288 > 0 

 

 

0 0 0 positive negative negative positive 
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We have seen the graphs of the basic reciprocal function and the squared reciprocal function 

from our review of toolkit functions.  These graphs have several important features. 

 

 

 

 

 

1
( )f x

x
                                                                                                    

2

1
( )f x

x
  

 

 

Let’s begin by looking at the reciprocal function, 
1

( )f x
x

 .  As you well know, dividing by zero 

is not allowed and therefore zero is not in the domain, and so the function is undefined at an 

input of zero. 

 

Short run behavior:  

As the input values approach zero from the left side (taking on very small, negative values), the 

function values become very large in the negative direction (in other words, they approach 

negative infinity). 

We write: as
 0x , )(xf . 

 

As we approach zero from the right side (small, positive input values), the function values 

become very large in the positive direction (approaching infinity). 

We write: as
 0x , )(xf . 

 

This behavior creates a vertical asymptote.  An asymptote is a line that the graph approaches. In 

this case the graph is approaching the vertical line x = 0 as the input becomes close to zero.   

 

Long run behavior:  

As the values of x approach infinity, the function values approach 0. 

As the values of x approach negative infinity, the function values approach 0. 

Symbolically: as x , 0)( xf  

 

Based on this long run behavior and the graph we can see that the function approaches 0 but 

never actually reaches 0, it just “levels off” as the inputs become large.  This behavior creates a 

horizontal asymptote.  In this case the graph is approaching the horizontal line ( ) 0f x  as the 

input becomes very large in the negative and positive directions. 
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Vertical and Horizontal Asymptotes 

A vertical asymptote of a graph is a vertical line x = a where the graph tends towards 

positive or negative infinity as the inputs approach a.  As ax  , )(xf . 

 

A horizontal asymptote of a graph is a horizontal line y b  where the graph approaches 

the line as the inputs get large. As x , bxf )( . 

 

 

Example 6 

Sketch a graph of the reciprocal function shifted two units to the left and up three units.  

Identify the horizontal and vertical asymptotes of the graph, if any. 

 

Transforming the graph left 2 and up 3 would result in the function 

3
2

1
)( 




x
xf , or equivalently, by giving the terms a common denominator, 

2

73
)(






x

x
xf  

 

Shifting the toolkit function would give us this 

graph.  Notice that this equation is undefined at 

x = -2, and the graph also is showing a vertical 

asymptote at x = -2. 

As 2x  , ( )f x  , and as 2x  ,

( )f x   

 

As the inputs grow large, the graph appears to 

be leveling off at output values of 3, indicating 

a horizontal asymptote at 3y  .  

As x , 3)( xf . 

  

Notice that horizontal and vertical asymptotes get shifted left 2 and up 3 along with the 

function. 

 

 

A general rational function is the ratio of any two polynomials. 

 

Rational Function 

A rational function is a function that can be written as the ratio of two polynomials, P(x) 

and Q(x). 
2
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   
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   
   

 

 

Rational functions can arise from real situations. 
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Example 7 

A large mixing tank currently contains 100 gallons of water, into which 5 pounds of sugar 

have been mixed.  A tap will open pouring 10 gallons per minute of water into the tank at the 

same time sugar is poured into the tank at a rate of 1 pound per minute.  Find the 

concentration (pounds per gallon) of sugar in the tank after t minutes.   

 

Notice that the amount of water in the tank is changing linearly, as is the amount of sugar in 

the tank.  We can write an equation independently for each: 

twater 10100    tsugar 15   

 

The concentration, C, will be the ratio of pounds of sugar to gallons of water 

t

t
tC

10100

5
)(




  

 

 

Vertical Asymptotes of Rational Functions 

The vertical asymptotes of a rational function will occur where the denominator of the 

function is equal to zero and the numerator is not zero. 

 

Horizontal Asymptote of Rational Functions 

The horizontal asymptote of a rational function can be determined by looking at the 

degrees of the numerator and denominator. 

Degree of denominator > degree of numerator: Horizontal asymptote at 0y   

Degree of denominator < degree of numerator: No horizontal asymptote
 

Degree of denominator = degree of numerator: Horizontal asymptote at ratio of leading 

coefficients. 

 

 

Example 8 

In the sugar concentration problem from earlier, we created the equation 
t

t
tC

10100

5
)(




 .   

Find the horizontal asymptote and interpret it in context of the scenario. 

 

Both the numerator and denominator are linear (degree 1), so since the degrees are equal, 

there will be a horizontal asymptote at the ratio of the leading coefficients.  In the numerator, 

the leading term is t, with coefficient 1.  In the denominator, the leading term is 10t, with 

coefficient 10.  The horizontal asymptote will be at the ratio of these values: As t  , 

1
( )

10
C t  .  This function will have a horizontal asymptote at 

1

10
y  . 

 

This tells us that as the input gets large, the output values will approach 1/10.  In context, this 

means that as more time goes by, the concentration of sugar in the tank will approach one 

tenth of a pound of sugar per gallon of water or 1/10 pounds per gallon. 

Example 9 

Find the horizontal and vertical asymptotes of the function 
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)5)(2)(1(

)3)(2(
)(






xxx

xx
xf  

 

First, note this function has no inputs that make both the numerator and denominator zero, so 

there are no potential holes.  The function will have vertical asymptotes when the 

denominator is zero, causing the function to be undefined.  The denominator will be zero at x 

= 1, -2, and 5, indicating vertical asymptotes at these values. 

The numerator has degree 2, while the denominator has degree 3.  Since the degree of the 

denominator is greater than the degree of the numerator, the denominator will grow faster 

than the numerator, causing the outputs to tend towards zero as the inputs get large, and so as 

x , 0)( xf .  This function will have a horizontal asymptote at 0y  . 

 

As with all functions, a rational function will have a vertical intercept when the input is zero, if 

the function is defined at zero.  It is possible for a rational function to not have a vertical 

intercept if the function is undefined at zero. 

 

Likewise, a rational function will have horizontal intercepts at the inputs that cause the output to 

be zero (unless that input corresponds to a hole).  It is possible there are no horizontal intercepts.  

Since a fraction is only equal to zero when the numerator is zero, horizontal intercepts will occur 

when the numerator of the rational function is equal to zero. 

 

Example 10 

Find the intercepts of 
)5)(2)(1(

)3)(2(
)(






xxx

xx
xf  

 

We can find the vertical intercept by evaluating the function at zero 

5

3

10

6

)50)(20)(10(

)30)(20(
)0( 







f  

 

The horizontal intercepts will occur when the function is equal to zero: 

)5)(2)(1(

)3)(2(
0






xxx

xx
  This is zero when the numerator is zero 

3,2

)3)(2(0





x

xx
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1.6 Exercises 
 

Find the degree and leading coefficient of each polynomial 

1. 
74x       2. 

65x    

3. 
25 x      4. 

36 3 4x x   

5. 
4 22  3   1 x x x           6. 

5 4 26 2    3x x x    

 

Find the vertical and horizontal intercepts of each function. 

7.     2 1 2 ( 3)f t t t t      9.     3 1 4 ( 5)f x x x x     

9.    2 3 1 (2 1)g n n n       10.    3 4 (4 3)k u n n       

11.   4 3 22 8 6C t t t t      12.   4 3 24 12 40C t t t t    

Use your calculator or other graphing technology to solve graphically for the zeros of the 

function. 

13.   3 27 4 30f x x x x       14.   3 26 28g x x x x      

 

Solve each inequality. 

15.   
2

3 2 0x x      16.   
2

5 1 0x x    

17.      1 2 3 0x x x       18.    4 3 6 0x x x       

 

For each function, find the horizontal intercepts, the vertical intercept, the vertical asymptotes, 

and the horizontal asymptote.   

 

19.  
2 3

4

x
p x

x





    20.  

5

3 1

x
q x

x





 

 

21.  
 

2

4

2
s x

x



    22.  

 
2

5

1
r x

x



 

 

23.  
2

2

3 14 5

3 8 16

x x
f x

x x

 


 
    24.  

2

2

2 7 15

3 14 15

x x
g x

x

 


 
 

 

25.  
22   1

4

x x
h x

x

 



    26.  

22 3 20

5

x x
k x

x

 



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27. A scientist has a beaker containing 20 mL of a solution containing 20% acid.  To dilute this, 

she adds pure water.   

a. Write an equation for the concentration in the beaker after adding n mL of water. 

b. Find the concentration if 10 mL of water has been added. 

c. How many mL of water must be added to obtain a 4% solution? 

d. What is the behavior as n , and what is the physical significance of this? 

 

28. A scientist has a beaker containing 30 mL of a solution containing 3 grams of potassium 

hydroxide.  To this, she mixes a solution containing 8 milligrams per mL of potassium 

hydroxide.   

e. Write an equation for the concentration in the tank after adding n mL of the second 

solution. 

f. Find the concentration if 10 mL of the second solution has been added. 

g. How many mL of water must be added to obtain a 50 mg/mL solution? 

h. What is the behavior as n , and what is the physical significance of this? 

 

 

 


	Chapter 1:  Review
	Section 6: Polynomials and Rational Functions
	Polynomial Functions
	Rational Functions
	1.6 Exercises



