Section 4: Exponents

The Laws of Exponents let you rewrite algebraic expressions that involve exponents. The last three listed here are really definitions rather than rules.

Laws of Exponents:

All variables here represent real numbers and all variables in denominators are nonzero.

$$1) x^a \cdot x^b = x^{a+b}$$

$$2) \frac{x^a}{x^b} = x^{a-b}$$

$$3) \left(x^a\right)^b = x^{ab}$$

$$4) (xy)^a = x^a y^a$$

$$5) \left(\frac{x}{y}\right)^b = \frac{x^b}{y^b}$$

6)
$$x^0 = 1$$
, provided $x \neq 0$

1)
$$x^{a} \cdot x^{b} = x^{a+b}$$
 2) $\frac{x^{a}}{x^{b}} = x^{a-b}$ 3) $(x^{a})^{b} = x^{ab}$
4) $(xy)^{a} = x^{a}y^{a}$ 5) $(x^{a})^{b} = x^{ab}$ 6) $x^{0} = 1$, provided $x \neq 0$
7) $x^{-n} = \frac{1}{x^{n}}$, provided $x \neq 0$ 8) $x^{1/n} = \sqrt[n]{x}$, provided $x \neq 0$

8)
$$x^{1/n} = \sqrt[n]{x}$$
, provided $x \neq 0$

Example 1

Simplify $(2x^2)^3(4x)$.

We'll begin by simplifying the $(2x^2)^3$ portion. Using property #4, we can write

$$2^{3}(x^{2})^{3}(4x)$$

Evaluate 2³, and use property #3

$$8x^{6}(4x)$$

Multiply the constants, and use property #1, recalling $x = x^1$

$$32x^{2}$$

Being able to work with negative and fractional exponents will be very important later in this course.

Rewrite $\frac{5}{r^3}$ using negative exponents.

Since
$$x^{-n} = \frac{1}{x^n}$$
, then $x^{-3} = \frac{1}{x^3}$.

$$\frac{5}{x^3} = 5x^{-3}$$

Example 3

Simplify as much as possible and write your answer using only positive exponents: $\left(\frac{x^{-2}}{y^{-3}}\right)^2$

$$\left(\frac{x^{-2}}{y^{-3}}\right)^2 = \frac{\left(x^{-2}\right)^2}{\left(y^{-3}\right)^2} = \frac{x^{-4}}{y^{-6}} = \frac{y^6}{x^4}$$

Example 4

Rewrite $4\sqrt{x} - \frac{3}{\sqrt{x}}$ using exponents.

A square root is a radical with index of two. In other words, $\sqrt{x} = \sqrt[2]{x}$. Using the exponent rule give above, $\sqrt{x} = \sqrt[2]{x} = x^{1/2}$. Rewriting the square roots using the fractional exponent,

$$4\sqrt{x} - \frac{3}{\sqrt{x}} = 4x^{1/2} - \frac{3}{x^{1/2}}$$

Now we can use the negative exponent rule to rewrite the second term in the expression.

$$4x^{1/2} - \frac{3}{x^{1/2}} = 4x^{1/2} - 3x^{-1/2}$$

Example 5

Rewrite using only positive exponents: $(\sqrt{p^5})^{-1/3}$

$$\left(\sqrt{p^5}\right)^{-1/3} = \left(\left(p^5\right)^{1/2}\right)^{-1/3} = p^{-5/6} = \frac{1}{p^{5/6}}$$

Example 6

Rewrite $x^{-4/3}$ as a radical.

First, we can use the negative exponent rule to rewrite this as $\frac{1}{x^{4/3}}$.

Since $\frac{4}{3} = 4 \cdot \frac{1}{3}$, we can use laws of exponents to rewrite this as $\frac{1}{(x^{1/3})^4}$.

Now using the radical equivalence, we can rewrite this as $\frac{1}{(\sqrt[3]{x})^4}$.

1.4 Exercises

Simplify each expression

1.
$$x^3x^5$$

2.
$$x^4x^2$$

3.
$$(x^3)^4$$

4.
$$(x^7)^2$$

5.
$$(2x^2)^3 x^4$$

6.
$$(5x^4)^2 x^5$$

7.
$$\frac{(3x^2)^2}{6x^3}$$

$$8. \ \frac{5x(4x)^2}{2x^2}$$

Simplify, and rewrite without negative exponents

9.
$$4x^{-3}$$

10.
$$2x^{-5}$$

11.
$$x^{-4}x^2$$

12.
$$x^{-2}x$$

13.
$$\frac{5x^{-3}}{2x^{-6}}$$

$$14. \ \frac{2x^{-4}}{6x^{-2}}$$

Rewrite using negative or fractional exponents

15.
$$\frac{4}{x^{-5}}$$

16.
$$\frac{4}{x^{-3}}$$

17.
$$3\sqrt{x}$$

18.
$$\sqrt[4]{x}$$

19.
$$\frac{4}{\sqrt[3]{x}}$$

$$20. \ \frac{1}{5\sqrt{x}}$$

Rewrite as a radical

21.
$$4x^{-1/2}$$

22.
$$5x^{-1/3}$$

23.
$$2x^{1/3}$$

24.
$$5x^{3/2}$$