Section 4: Exponents

The Laws of Exponents let you rewrite algebraic expressions that involve exponents. The last three listed here are really definitions rather than rules.

Laws of Exponents:

All variables here represent real numbers and all variables in denominators are nonzero.

1) $x^{a} \cdot x^{b}=x^{a+b}$
2) $\frac{x^{a}}{x^{b}}=x^{a-b}$
3) $\left(x^{a}\right)^{b}=x^{a b}$
4) $(x y)^{a}=x^{a} y^{a}$
5) $\left(\frac{x}{y}\right)^{b}=\frac{x^{b}}{y^{b}}$
6) $x^{0}=1$, provided $x \neq 0$
7) $x^{-n}=\frac{1}{x^{n}}$, provided $x \neq 0$
8) $x^{1 / n}=\sqrt[n]{x}$, provided $x \neq 0$

Example 1

Simplify $\left(2 x^{2}\right)^{3}(4 x)$.
We'll begin by simplifying the $\left(2 x^{2}\right)^{3}$ portion. Using property \#4, we can write $2^{3}\left(x^{2}\right)^{3}(4 x) \quad$ Evaluate 2^{3}, and use property \#3
$8 x^{6}(4 x) \quad$ Multiply the constants, and use property \#1, recalling $x=x^{1}$
$32 x^{7}$

Being able to work with negative and fractional exponents will be very important later in this course.

Example 2

Rewrite $\frac{5}{x^{3}}$ using negative exponents.

Since $x^{-n}=\frac{1}{x^{n}}$, then $x^{-3}=\frac{1}{x^{3}}$.
$\frac{5}{x^{3}}=5 x^{-3}$

Example 3

Simplify as much as possible and write your answer using only positive exponents: $\left(\frac{x^{-2}}{y^{-3}}\right)^{2}$

$$
\left(\frac{x^{-2}}{y^{-3}}\right)^{2}=\frac{\left(x^{-2}\right)^{2}}{\left(y^{-3}\right)^{2}}=\frac{x^{-4}}{y^{-6}}=\frac{y^{6}}{x^{4}}
$$

Example 4

Rewrite $4 \sqrt{x}-\frac{3}{\sqrt{x}}$ using exponents.

A square root is a radical with index of two. In other words, $\sqrt{x}=\sqrt[2]{x}$. Using the exponent rule give above, $\sqrt{x}=\sqrt[2]{x}=x^{1 / 2}$. Rewriting the square roots using the fractional exponent,

$$
4 \sqrt{x}-\frac{3}{\sqrt{x}}=4 x^{1 / 2}-\frac{3}{x^{1 / 2}}
$$

Now we can use the negative exponent rule to rewrite the second term in the expression.
$4 x^{1 / 2}-\frac{3}{x^{1 / 2}}=4 x^{1 / 2}-3 x^{-1 / 2}$

Example 5

Rewrite using only positive exponents: $\left(\sqrt{p^{5}}\right)^{-1 / 3}$
$\left(\sqrt{p^{5}}\right)^{-1 / 3}=\left(\left(p^{5}\right)^{1 / 2}\right)^{-1 / 3}=p^{-5 / 6}=\frac{1}{p^{5 / 6}}$

Example 6

Rewrite $x^{-4 / 3}$ as a radical.
First, we can use the negative exponent rule to rewrite this as $\frac{1}{x^{4 / 3}}$.
Since $\frac{4}{3}=4 \cdot \frac{1}{3}$, we can use laws of exponents to rewrite this as $\frac{1}{\left(x^{1 / 3}\right)^{4}}$.
Now using the radical equivalence, we can rewrite this as $\frac{1}{(\sqrt[3]{x})^{4}}$.

1.4 Exercises

Simplify each expression

1. $x^{3} x^{5}$
2. $x^{4} x^{2}$
3. $\left(x^{3}\right)^{4}$
4. $\left(x^{7}\right)^{2}$
5. $\left(2 x^{2}\right)^{3} x^{4}$
6. $\left(5 x^{4}\right)^{2} x^{5}$
7. $\frac{\left(3 x^{2}\right)^{2}}{6 x^{3}}$
8. $\frac{5 x(4 x)^{2}}{2 x^{2}}$

Simplify, and rewrite without negative exponents
9. $4 x^{-3}$
10. $2 x^{-5}$
11. $x^{-4} x^{2}$
12. $x^{-2} x$
13. $\frac{5 x^{-3}}{2 x^{-6}}$
14. $\frac{2 x^{-4}}{6 x^{-2}}$

Rewrite using negative or fractional exponents
15. $\frac{4}{x^{-5}}$
16. $\frac{4}{x^{-3}}$
17. $3 \sqrt{x}$
18. $\sqrt[4]{x}$
19. $\frac{4}{\sqrt[3]{x}}$
20. $\frac{1}{5 \sqrt{x}}$

Rewrite as a radical
21. $4 x^{-1 / 2}$
22. $5 x^{-1 / 3}$
23. $2 x^{1 / 3}$
24. $5 x^{3 / 2}$

